आइसोमेट्री

From Vigyanwiki

गणित में, एक आइसोमेट्री (या सर्वांगसमता, या सर्वांगसम परिवर्तन) मीट्रिक रिक्त स्थान के बीच एक दूरी -संरक्षण परिवर्तन है, जिसे आमतौर पर द्विभाजन माना जाता है।[lower-alpha 1] आइसोमेट्री शब्द प्राचीन ग्रीक से लिया गया है: ἴσος isos जिसका अर्थ है बराबर, और μέτρον metron जिसका अर्थ है माप।

दो यूक्लिडियन समूह # प्रत्यक्ष और अप्रत्यक्ष आइसोमेट्रिस आइसोमेट्रीज़ की एक फ़ंक्शन रचना एक प्रत्यक्ष आइसोमेट्री है। एक रेखा में परावर्तन (गणित) एक विपरीत समरूपता है, जैसे R 1 या R 2 छवि पर। अनुवाद (ज्यामिति) T एक प्रत्यक्ष आइसोमेट्री है: कठोर शरीर।[2]

परिचय

एक मीट्रिक स्थान (ढीला, एक सेट और सेट के तत्वों के बीच दूरी निर्दिष्ट करने के लिए एक योजना) को देखते हुए, एक आइसोमेट्री एक परिवर्तन (ज्यामिति) है जो तत्वों को उसी या किसी अन्य मीट्रिक स्थान पर मैप करता है जैसे कि छवि तत्वों के बीच की दूरी नया मीट्रिक स्थान मूल मीट्रिक स्थान में तत्वों के बीच की दूरी के बराबर है। द्वि-आयामी या त्रि-आयामी यूक्लिडियन अंतरिक्ष में, दो ज्यामितीय आंकड़े सर्वांगसमता (ज्यामिति) होते हैं यदि वे एक आइसोमेट्री द्वारा संबंधित होते हैं;[lower-alpha 2] आइसोमेट्री जो उन्हें संबंधित करती है वह या तो एक कठोर गति (अनुवाद या रोटेशन) है, या एक कठोर गति और एक प्रतिबिंब (गणित) की एक क्रिया संरचना है। आइसोमेट्री का उपयोग अक्सर निर्माण में किया जाता है जहां एक स्थान दूसरे स्थान में एम्बेडिंग होता है। उदाहरण के लिए, पूर्ण स्थान#मीट्रिक स्थान का समापन से एक आइसोमेट्री शामिल है में कॉची अनुक्रम ों के स्थान का एक भागफल सेट मूल स्थान इस प्रकार एक पूर्ण मीट्रिक स्थान के उप-स्थान के लिए आइसोमेट्रिक रूप से समरूपता है, और इसे आमतौर पर इस उप-स्थान के साथ पहचाना जाता है। अन्य एम्बेडिंग निर्माणों से पता चलता है कि प्रत्येक मीट्रिक स्थान कुछ मानक सदिश स्थान के एक बंद सेट के लिए आइसोमेट्रिक रूप से समाकृतिकता है और यह कि प्रत्येक पूर्ण मीट्रिक स्पेस कुछ बनच स्थान के बंद उपसमुच्चय के लिए आइसोमेट्रिक रूप से आइसोमोर्फिक है।

हिल्बर्ट अंतरिक्ष पर एक आइसोमेट्रिक सर्जेक्टिव लीनियर ऑपरेटर को एकात्मक ऑपरेटर कहा जाता है।

परिभाषा

होने देना और मेट्रिक्स के साथ मीट्रिक स्पेस बनें (जैसे, दूरियां) और एक समारोह (गणित) एक आइसोमेट्री कहा जाता है या यदि कोई हो तो दूरी को संरक्षित करता है किसी के पास

[4][lower-alpha 3]

एक आइसोमेट्री स्वचालित रूप से इंजेक्शन समारोह है;[lower-alpha 1] अन्यथा दो अलग-अलग बिंदुओं, ए और बी को एक ही बिंदु पर मैप किया जा सकता है, जिससे मीट्रिक डी के संयोग स्वयंसिद्ध का खंडन होता है। यह सबूत सबूत के समान है कि आंशिक रूप से आदेशित सेट ों के बीच एम्बेडिंग ऑर्डर इंजेक्शन है। स्पष्ट रूप से, मीट्रिक रिक्त स्थान के बीच प्रत्येक आइसोमेट्री एक टोपोलॉजिकल एम्बेडिंग है।

एक 'ग्लोबल आइसोमेट्री', 'आइसोमेट्रिक आइसोमोर्फिज्म' या 'कॉन्ग्रेंस मैपिंग' एक विशेषण आइसोमेट्री है। किसी भी अन्य आपत्ति की तरह, एक वैश्विक आइसोमेट्री में एक फ़ंक्शन व्युत्क्रम होता है। वैश्विक आइसोमेट्री का व्युत्क्रम भी एक वैश्विक आइसोमेट्री है।

दो मीट्रिक रिक्त स्थान X और Y को 'आइसोमेट्रिक' कहा जाता है यदि X से Y तक एक विशेषण आइसोमेट्री है। मेट्रिक स्पेस से द्विभाजित आइसोमेट्रीज़ का सेट (गणित) फ़ंक्शन संरचना के संबंध में एक समूह (गणित) बनाता है, जिसे 'आइसोमेट्री समूह ' कहा जाता है।

पथ आइसोमेट्री या आर्कवाइज आइसोमेट्री की कमजोर धारणा भी है:

एक 'पाथ आइसोमेट्री' या 'आर्कवाइज़ आइसोमेट्री' एक नक्शा है जो आर्क की लंबाई#परिभाषा को संरक्षित करता है; इस तरह का नक्शा आवश्यक रूप से दूरी के संरक्षण के अर्थ में एक आइसोमेट्री नहीं है, और यह आवश्यक रूप से विशेषण या इंजेक्शन भी नहीं है। यह शब्द अक्सर केवल आइसोमेट्री के लिए संक्षिप्त होता है, इसलिए किसी को संदर्भ से निर्धारित करने के लिए सावधानी बरतनी चाहिए कि किस प्रकार का इरादा है।

उदाहरण
  • कोई भी प्रतिबिंब (गणित), अनुवाद (ज्यामिति) और रोटेशन यूक्लिडियन रिक्त स्थान पर एक वैश्विक आइसोमेट्री है। यूक्लिडियन समूह और भी देखें Euclidean space § Isometries.
  • वो नक्शा में एक पथ आइसोमेट्री है लेकिन (सामान्य) आइसोमेट्री नहीं है। ध्यान दें कि आइसोमेट्री के विपरीत, इस पथ आइसोमेट्री को इंजेक्शन होने की आवश्यकता नहीं है।

आदर्श स्थानों के बीच आइसोमेट्री

निम्नलिखित प्रमेय मजूर और उलम के कारण है।

परिभाषा:[5] दो तत्वों का मध्यबिंदु x और y सदिश स्थान में सदिश है 1/2(x + y).

Theorem[5][6] — Let A : XY be a surjective isometry between normed spaces that maps 0 to 0 (Stefan Banach called such maps rotations) where note that A is not assumed to be a linear isometry. Then A maps midpoints to midpoints and is linear as a map over the real numbers . If X and Y are complex vector spaces then A may fail to be linear as a map over .

रेखीय समरूपता

दो नॉर्म्ड वेक्टर स्पेस दिए गए हैं और एक रेखीय समरूपता एक रेखीय नक्शा है जो मानदंडों को संरक्षित करता है:

सबके लिए [7] रैखिक आइसोमेट्री उपरोक्त अर्थों में दूरी-संरक्षित मानचित्र हैं। वे वैश्विक आइसोमेट्री हैं अगर और केवल अगर वे विशेषण हैं।

एक आंतरिक उत्पाद स्थान में, उपरोक्त परिभाषा कम हो जाती है

सबके लिए जो ऐसा कहने के बराबर है इसका तात्पर्य यह भी है कि आइसोमेट्री आंतरिक उत्पादों को संरक्षित करती है, जैसे

रैखिक आइसोमेट्री हमेशा एकात्मक ऑपरेटर नहीं होते हैं, हालांकि, इसके अतिरिक्त इसकी आवश्यकता होती है और मज़ूर-उलम प्रमेय द्वारा, मानक वेक्टर रिक्त स्थान का कोई भी आइसोमेट्री खत्म हो गया है Affine परिवर्तन है।

उदाहरण


कई गुना

विविध की एक आइसोमेट्री उस मैनिफोल्ड की किसी भी (चिकनी) मैपिंग को अपने आप में या किसी अन्य मैनिफोल्ड में है जो बिंदुओं के बीच की दूरी की धारणा को संरक्षित करती है। एक आइसोमेट्री की परिभाषा के लिए मैनिफोल्ड पर एक मीट्रिक (गणित) की धारणा की आवश्यकता होती है; एक (सकारात्मक-निश्चित) मीट्रिक वाला मैनिफोल्ड एक रीमैनियन मैनिफोल्ड है, एक अनिश्चित मीट्रिक वाला एक छद्म-रीमैनियन मैनिफोल्ड है। इस प्रकार, आइसोमेट्री का अध्ययन रीमैनियन ज्यामिति में किया जाता है।

एक से एक स्थानीय आइसोमेट्री (स्यूडो-रीमैनियन मैनिफोल्ड -) रीमैनियन कई गुना से दूसरे में एक नक्शा है जो पहले पर मीट्रिक टेंसर के लिए दूसरे मैनिफोल्ड पर मेट्रिक टेंसर को पुलबैक (डिफरेंशियल ज्योमेट्री) करता है। जब ऐसा नक्शा भी एक भिन्नता है, तो ऐसे मानचित्र को आइसोमेट्री (या आइसोमेट्रिक आइसोमोर्फिज्म) कहा जाता है, और रीमैनियन मैनिफोल्ड्स के श्रेणी सिद्धांत आरएम में आइसोमोर्फिज्म (समानता) की धारणा प्रदान करता है।

परिभाषा

होने देना और दो (छद्म-) रीमैनियन कई गुना हो, और चलो एक भिन्नता हो। फिर एक आइसोमेट्री (या आइसोमेट्रिक आइसोमोर्फिज्म) कहा जाता है यदि

कहां रैंक (0, 2) मीट्रिक टेन्सर के पुलबैक (अंतर ज्यामिति) को दर्शाता है द्वारा समान रूप से, पुशफॉरवर्ड (अंतर) के संदर्भ में हमारे पास किन्हीं भी दो सदिश क्षेत्रों के लिए है पर (यानी स्पर्शरेखा बंडल के खंड ),

यदि एक स्थानीय भिन्नता है जैसे कि तब स्थानीय आइसोमेट्री कहा जाता है।

गुण

आइसोमेट्री का संग्रह आमतौर पर एक समूह, आइसोमेट्री समूह बनाता है। जब समूह एक सतत समूह होता है, तो समूह का झूठा समूह हत्या वेक्टर क्षेत्र होता है।

मायर्स-स्टीनरोड प्रमेय में कहा गया है कि दो जुड़े रिमेंनियन मैनिफोल्ड के बीच प्रत्येक आइसोमेट्री चिकनी (विभेदक) है। इस प्रमेय का एक दूसरा रूप बताता है कि रिमेंनियन मैनिफोल्ड का आइसोमेट्री समूह एक झूठ समूह है।

Riemannian मैनिफोल्ड्स जिनमें हर बिंदु पर परिभाषित आइसोमेट्री हैं, सममित स्थान कहलाते हैं।

सामान्यीकरण

  • एक सकारात्मक वास्तविक संख्या ε दी गई है, एक ε-आइसोमेट्री या लगभग आइसोमेट्री (जिसे फेलिक्स हॉसडॉर्फ सन्निकटन भी कहा जाता है) एक नक्शा है मीट्रिक रिक्त स्थान के बीच जैसे कि
    1. के लिए किसी के पास और
    2. किसी भी बिंदु के लिए एक बिन्दु होता है साथ
यानी ए ε-आइसोमेट्री भीतर की दूरियों को बरकरार रखती है ε और आगे कोडोमेन का कोई तत्व नहीं छोड़ता है ε डोमेन के एक तत्व की छवि से दूर। ध्यान दें कि ε-आइसोमेट्री को निरंतर कार्य नहीं माना जाता है।
  • प्रतिबंधित आइसोमेट्री संपत्ति विरल वैक्टर के लिए लगभग आइसोमेट्रिक मैट्रिसेस की विशेषता है।
  • अर्ध isometry एक अन्य उपयोगी सामान्यीकरण है।
  • एक तत्व को एक सार यूनिटल C*-बीजगणित में एक आइसोमेट्री के रूप में भी परिभाषित किया जा सकता है:
    एक आइसोमेट्री है अगर और केवल अगर  : ध्यान दें कि जैसा कि परिचय में उल्लेख किया गया है, यह आवश्यक रूप से एकात्मक तत्व नहीं है क्योंकि सामान्य तौर पर यह नहीं होता है कि बाएं व्युत्क्रम एक सही व्युत्क्रम है।
  • छद्म-यूक्लिडियन अंतरिक्ष पर, आइसोमेट्री शब्द का अर्थ परिमाण को संरक्षित करने वाला एक रेखीय आक्षेप है। द्विघात रूप#द्विघात स्थान भी देखें।

यह भी देखें


फुटनोट्स

  1. 1.0 1.1

    "We shall find it convenient to use the word transformation in the special sense of a one-to-one correspondence among all points in the plane (or in space), that is, a rule for associating pairs of points, with the understanding that each pair has a first member P and a second member P' and that every point occurs as the first member of just one pair and also as the second member of just one pair...

    In particular, an isometry (or "congruent transformation," or "congruence") is a transformation which preserves length ..." — Coxeter (1969) p. 29[1]

  2. 3.11 Any two congruent triangles are related by a unique isometry.— Coxeter (1969) p. 39[3]


  3. Let T be a transformation (possibly many-valued) of () into itself.
    Let be the distance between points p and q of , and let Tp, Tq be any images of p and q, respectively.
    If there is a length a > 0 such that whenever , then T is a Euclidean transformation of onto itself.[4]


संदर्भ

  1. Coxeter 1969, p. 29
  2. Coxeter 1969, p. 46

    3.51 Any direct isometry is either a translation or a rotation. Any opposite isometry is either a reflection or a glide reflection.

  3. Coxeter 1969, p. 39
  4. 4.0 4.1 Beckman, F.S.; Quarles, D.A., Jr. (1953). "On isometries of Euclidean spaces" (PDF). Proceedings of the American Mathematical Society. 4 (5): 810–815. doi:10.2307/2032415. JSTOR 2032415. MR 0058193.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. 5.0 5.1 Narici & Beckenstein 2011, pp. 275–339.
  6. Wilansky 2013, pp. 21–26.
  7. Thomsen, Jesper Funch (2017). लीनियर अलजेब्रा [Linear Algebra]. Department of Mathematics (in dansk). Århus: Aarhus University. p. 125.
  8. Roweis, S.T.; Saul, L.K. (2000). "Nonlinear dimensionality reduction by locally linear embedding". Science. 290 (5500): 2323–2326. CiteSeerX 10.1.1.111.3313. doi:10.1126/science.290.5500.2323. PMID 11125150.
  9. Saul, Lawrence K.; Roweis, Sam T. (June 2003). "Think globally, fit locally: Unsupervised learning of nonlinear manifolds". Journal of Machine Learning Research. 4 (June): 119–155. Quadratic optimisation of (page 135) such that
  10. Zhang, Zhenyue; Zha, Hongyuan (2004). "Principal manifolds and nonlinear dimension reduction via local tangent space alignment". SIAM Journal on Scientific Computing. 26 (1): 313–338. CiteSeerX 10.1.1.211.9957. doi:10.1137/s1064827502419154.
  11. Zhang, Zhenyue; Wang, Jing (2006). "MLLE: Modified locally linear embedding using multiple weights". In Schölkopf, B.; Platt, J.; Hoffman, T. (eds.). Advances in Neural Information Processing Systems. NIPS 2006. NeurIPS Proceedings. Vol. 19. pp. 1593–1600. ISBN 9781622760381. It can retrieve the ideal embedding if MLLE is applied on data points sampled from an isometric manifold.


ग्रन्थसूची

श्रेणी: कार्य और मानचित्रण श्रेणी:मीट्रिक ज्यामिति श्रेणी:समरूपता श्रेणी: तुल्यता (गणित) श्रेणी: रीमानियन ज्यामिति