अर्ध-उद्धरण

From Vigyanwiki

अर्ध-उद्धरण या काईन-उद्धरण औपचारिक भाषाओं में भाषा सम्बन्धी उपकरण है जो उपयोग-उल्लेख महत्ता को उचित रूप से देखते हुए भाषा सम्बन्धी अभिव्यक्तियाें के बारे में सामान्य नियमों के कठोर और संक्षिप्त सूत्रीकरण की सुविधा प्रदान करता है।इसे दार्शनिक और तर्कशास्त्री, विलार्ड वान ऑर्मन काईन ने अपनी पुस्तक मैथमैटिकल लॉजिक में प्रस्तुत किया था,जो मूल रूप से 1940 में प्रकाशित हुई थी।सरल शब्दों में कहें तो,अर्ध-उद्धरण किसी को उन प्रतीकों को प्रस्तुत करने में सक्षम बनाता है जो किसी दिए गए उदाहरण में भाषा सम्बन्धी अभिव्यक्तियाें के प्रतीक होते हैं और एक अलग उदाहरण में उस भाषा सम्बन्धी अभिव्यक्तियाें के रूप में उपयोग किए जाते हैं।

उदाहरण के लिए,कोई भी अर्ध-उद्धरण का उपयोग प्रतिस्थापन परिमाणन के एक उदाहरण को दर्शाने के लिए कर सकते है,जैसे कि निम्नलिखित है

"बर्फ सफेद है",यदि और केवल यदि बर्फ सफेद हो।

इसलिए,प्रतीकों के कुछ अनुक्रम ऐसे होते हैं जो निम्नलिखित वाक्य को सत्य बनाता है जब φ के प्रत्येक उदाहरण को प्रतीकों के उस अनुक्रम द्वारा प्रतिस्थापित किया जाता है:

φ सत्य है यदि और केवल यदि φ हो।

अर्ध-उद्धरण का उपयोग यह स्पष्ट करने के लिए किया जाता है (सामान्यतः अधिक जटिल सूत्रों में) कि इस वाक्य में φ और "φ" संबंधित बातें हैं,कि एक धातुभाषा में दूसरे की पुनरावृत्ति है। काईन ने अर्ध-उद्धरण चिह्न को प्रस्तावित किया क्योंकि वह चर के उपयोग से बचना चाहता था,और केवल संवृत्त वाक्य के साथ काम करना चाहते थे (अभिव्यक्तियाँ जिनमें कोई भी मुक्त चर सम्मिलित नहीं था)।हालांकि,उन्हें अभी भी उनमें मनमाने ढंग से विधेय वाले वाक्यों के बारे में बात करने में सक्षम होने की आवश्यकता थी,और इस प्रकार,अर्ध-उद्धरण चिह्न ने ऐसे कथन बनाने के लिए तंत्र प्रदान किये।काईन ने उम्मीद की थी कि,चर और स्कीमेता से बचते हुए,वह पाठकों के लिए भ्रम को कम करेगा,साथ ही उस भाषा के निकट रहेगा जो गणितज्ञ वास्तव में उपयोग करते हैं।[1]

अर्ध-उद्धरण को कभी-कभी सामान्य उद्धरण चिह्नों के अतिरिक्त प्रतीकों ⌜और⌝ (यूनिकोड U+231C,U+231D),या दोहरे वर्ग कोष्ठक, ⟦ ⟧ ("ऑक्सफोर्ड कोष्ठक") का उपयोग करके दर्शाया जाता है।[2][3][4]

कैसे काम करता है

औपचारिक भाषाओं के निर्माण नियमों को बताने के लिए अर्ध-उद्धरण विशेष रूप से उपयोगी है।उदाहरण के लिए,मान लीजिए कि कोई नई औपचारिक भाषा,L के सुव्यवस्थित सूत्रों (wffs) को निम्नलिखित पुनरावर्ती परिभाषा के माध्यम से केवल एक तार्किक संचालन,निषेध के साथ परिभाषित करना चाहता है:

  1. कोई भी लोवरकेस रोमन अक्षर (पादलिपि के साथ या के बिना) L का सुव्यवस्थित सूत्र (wff) है।
  2. यदि φ, L का सुगठित सूत्र (wff) है, तो '~φ',L का सुगठित सूत्र (wff) है।
  3. और कोई भी L का सुगठित सूत्र (wff) नहीं है।

शाब्दिक रूप से व्याख्या करने पर,नियम 2 वह व्यक्त नहीं करता है जो स्पष्ट रूप से अभिप्रेत है। '~φ' के लिए (अर्थात्, '~' और 'φ' के संयोजन का परिणाम है उसी क्रम में, बाएं से दाएं ) L का सुगठित सूत्र (wff) नहीं है, क्योंकि नियमों के स्पष्ट रूप से अभिप्रेत अर्थ के अनुसार सुव्यवस्थित सूत्र (wffs)में कोई भी ग्रीक अक्षर नहीं आ सकता है।दूसरे शब्दों में,हमारा दूसरा नियम कहता है कि यदि प्रतीकों का कुछ अनुक्रम φ (उदाहरण के लिए, 3 प्रतीकों का अनुक्रम φ = '~~p') L का सुगठित सूत्र (wff) है,जिससे 2 प्रतीकों का अनुक्रम ' ~φ',L का सुगठित सूत्र (wff) है। नियम 2 को बदलने की जरूरत है जिससे 'φ' की दूसरी उपस्थिति (उद्धरण-चिह्न में) को अक्षरसः नहीं लिया जा सकता है।

अर्ध-उद्धरण को इस तथ्य को पकड़ने के लिए संक्षिप्त लिपि के रूप में प्रस्तुत किया जाता है कि सूत्र जो व्यक्त करता है वह सटीक उद्धरण नहीं है,किन्तु प्रतीकों की संक्षिप्तता के बारे में कुछ है।अर्ध-उद्धरण का उपयोग करके नियम 2 के लिए हमारा प्रतिस्थापन इस तरह दिखता है:

2'. यदि φ, L का सुगठित सूत्र (wff) है, तब ⌜~φ⌝, L का सुगठित सूत्र (wff) है।

अर्ध-उद्धरण चिह्न ' ⌜' और '⌝ ' की व्याख्या इस प्रकार की जाती है। जहां 'φ',L के सुगठित सूत्र (wff) को दर्शाता है,' ⌜~φ⌝ ' संयोजन के परिणाम को दर्शाता है '~' और सुगठित सूत्र (wff) को 'φ' द्वारा निरूपित करता है (उसी क्रम में,बाएं से दाएं)। इस प्रकार नियम 2' (नियम 2 के विपरीत) तार्किक परिणाम, उदाहरण के लिए, यदि 'p',L का सुगठित सूत्र (wff) है,तो '~p', L का सुगठित सूत्र (wff) है।

इसी प्रकार, हम इस नियम को जोड़कर किसी भाषा को विभक्ति के साथ परिभाषित नहीं कर सकते:

2.5. यदि φ और ψ,L के सुगठित सूत्र (wff) हैं, तो '(φ v ψ)', L का सुगठित सूत्र (wff) है।

किन्तु इसके अतिरिक्त:

2.5'. यदि φ और ψ,L के सुगठित सूत्र (wffs) हैं, तो ⌜(φ v ψ)⌝,L का सुगठित सूत्र (wff) है।

यहां अर्ध-उद्धरण चिह्नों की व्याख्या ज्यों का त्यों की गई है। जहां 'φ' और 'ψ',L के सुगठित सूत्रों (wffs) को दर्शाते हैं, '⌜(φ v ψ)⌝' बाएं कोष्ठक के संयोजन के परिणाम को दर्शाता है, सुगठित सूत्र (wff) को 'φ' द्वारा निरूपित किया जाता है, रिक्त स्थान, 'v', रिक्त स्थान, सुगठित सूत्र (wff) जिसे 'ψ' से और दाएँ कोष्ठक (उसी क्रम में, बाएँ से दाएँ) दर्शाया गया। पहले की तरह, नियम 2.5' (नियम 2.5 के विपरीत) में सम्मिलित है,उदाहरण के लिए, यदि 'p' और 'q',L का सुगठित सूत्र (wffs) हैं,तो '(p v q)',L का सुगठित सूत्र (wff) है।

कार्यक्षेत्र-संबंधी मुद्दे

यह उन चरों का उपयोग करके अर्ध-उद्धरण संदर्भों में मात्रा निर्धारित करने का कोई अर्थ नहीं है जो कि संप्रतीक श्रृंखला (जैसे संख्याएं, लोग, इलेक्ट्रॉनों) के अतिरिक्त अन्य चीजों पर आधारित है। उदाहरण के लिए,मान लीजिए कि कोई यह विचार व्यक्त करना चाहता है कि 's(0)',0 के उत्तरवर्ती को दर्शाता है, 's(1)',1 के उत्तरवर्ती को दर्शाता है,आदि। किसी को प्रलोभन दिया जा सकता है कहने के लिए:

उदाहरण के लिए,मान लीजिए, φ = 7. इस मामले में ⌜s(φ)⌝ क्या है? निम्नलिखित अस्थायी व्याख्याएँ समान रूप से निरर्थक होंगी:

  1. ⌜s(φ)⌝ = 's(7)',
  2. ⌜s(φ)⌝ = 's(111)' (द्विआधारी प्रणाली में, '111' पूर्णांक 7 को दर्शाता है),
  3. ⌜s(φ)⌝ = 's(VII)',
  4. ⌜s(φ)⌝ = 's(seven)',
  5. ⌜s(φ)⌝ = 's(семь)' (रूसी में 'семь' का अर्थ 'seven' होता है),
  6. ⌜s(φ)⌝ = 's(एक सप्ताह में दिनों की संख्या)'।

दूसरी ओर, यदि φ = '7', तो ⌜s(φ)⌝ = 's(7)', और यदि φ = 'seven', तो ⌜s(φ)⌝ = 's(seven)'।

इस कथन का विस्तारित संस्करण इस प्रकार है:

  • यदि φ प्राकृतिक संख्या है, तो 's', बाएँ कोष्ठक, φ, और दाएँ कोष्ठक (उसी क्रम में, बाएँ से दाएँ) को संयोजित करने का परिणाम दर्शाता है φ के उत्तरवर्ती को दर्शाता है।

यह कोटि त्रुटि है,क्योंकि संख्या ऐसी चीज़ नहीं है जिसे श्रेणीबद्ध किया जा सके (चूँकि एक संख्यांक है)।

सिद्धांत को बताने की उचित विधि है:

  • यदि φ अरबी अंक है जो प्राकृतिक संख्या को दर्शाता है,तब ⌜s(φ)⌝,φ द्वारा निरूपित संख्या के उत्तरवर्ती को दर्शाता है।

अर्ध-उद्धरण को ऐसे उपकरण के रूप में चित्रित करना आकर्षक है जो उद्धृत संदर्भों में प्रमात्रीकरण की अनुमति देता है,किन्तु यह गलत है:उद्धृत संदर्भों में परिमाणन सदैव अनुचित होता है।किन्तु,अर्ध-उद्धरण सामान्य मात्रात्मक अभिव्यक्तियों को तैयार करने के लिए सुविधाजनक लघुपथ है-वह प्रकार जिसे प्रथम-क्रम तर्क में व्यक्त किया जा सकता है।

जब तक इन विचारों को ध्यान में रखा जाता है,तब तक कोने के उद्धरण संकेतन का "दुरुपयोग" करना पूरी तरह से हानिरहित है और जब भी उद्धरण जैसा कुछ आवश्यक हो तो इसका उपयोग करें किन्तु सामान्य उद्धरण स्पष्ट रूप से उचित नहीं है।

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Preface to the 1981 Revised Edition.
  2. What are Denotational Semantics and what are they for?. Allyn and Bacon. 1986.
  3. Dowty, D., Wall, R. and Peters, S.: 1981, Introduction to Montague semantics, Springer.
  4. Scott, D. and Strachey, C.: 1971, Toward a mathematical semantics for computer languages, Oxford University Computing Laboratory, Programming Research Group.

ग्रन्थसूची

  • Quine, W. V. (2003) [1940]. Mathematical Logic (Revised ed.). Cambridge, MA: Harvard University Press. ISBN 0-674-55451-5.

बाहरी संबंध