इलेक्ट्रॉनिक विशिष्ट ऊष्मा

From Vigyanwiki

ठोस अवस्था भौतिकी में इलेक्ट्रॉनिक विशिष्ट ऊष्मा, जिसे कभी-कभी इलेक्ट्रॉन ऊष्मा क्षमता भी कहा जाता है, एक इलेक्ट्रॉन गैस की विशिष्ट ऊष्मा है। ठोस पदार्थों में ऊष्मा का निर्वासन फोनन और मुक्त इलेक्ट्रॉनों द्वारा होता है। हालाँकि, शुद्ध धातुओं के लिए, तापीय चालकता में इलेक्ट्रॉनिक योगदान हावी है। अशुद्ध धातुओं में, अशुद्धियों के साथ टकराव से इलेक्ट्रॉन माध्य मुक्त पथ कम हो जाता है, और फोनन योगदान इलेक्ट्रॉनिक योगदान के साथ तुलनीय हो सकता है।

परिचय

यद्यपि ड्रूड प्रतिरूप धातुओं के भीतर इलेक्ट्रॉन गति का वर्णन करने में काफी सफल रहा, लेकिन इसमें कुछ गलत पहलू हैं: यह प्रयोगात्मक माप की तुलना में गलत संकेत के साथ हॉल गुणांक की भविष्यवाणी करता है, जालक ताप क्षमता के लिए अतिरिक्त इलेक्ट्रॉनिक ताप क्षमता की कल्पना की जाती है, अर्थात् ऊंचे तापमान पर प्रति इलेक्ट्रॉन, प्रयोगात्मक मूल्यों के साथ भी असंगत है, क्योंकि धातुओं की माप डुलोंग-पेटिट नियम से कोई विचलन नहीं दिखाती है। ताप क्षमता में इलेक्ट्रॉनों का देखा गया इलेक्ट्रॉनिक योगदान सामान्यतः एक प्रतिशत से भी कम है। परिमाण यांत्रिकी के विकास से पहले यह समस्या अघुलनशील लगती थी। इस विरोधाभास को पॉली अपवर्जन सिद्धांत की खोज के बाद अर्नोल्ड सोमरफेल्ड द्वारा हल किया गया था, जिन्होंने माना कि बोल्ट्जमैन वितरण को फर्मी-डिराक वितरण के साथ बदलने की आवश्यकता थी और इसे मुक्त इलेक्ट्रॉन प्रतिरूप में सम्मिलित किया गया था।

मुक्त इलेक्ट्रॉन प्रतिरूप के भीतर व्युत्पत्ति

आंतरिक ऊर्जा

जब किसी धातु प्रणाली को परम शून्य से गर्म किया जाता है, तो प्रत्येक इलेक्ट्रॉन को ऊर्जा प्राप्त नहीं होती है जैसा कि समविभाजन निर्देश देता है। परमाणु कक्षाओं में केवल वे इलेक्ट्रॉन फर्मी स्तर के तापीय रूप से उत्तेजित होते हैं जो कि की ऊर्जा सीमा के भीतर होते हैं। पारम्परिक गैस के विपरीत, इलेक्ट्रॉन केवल अपने ऊर्जावान प्रतिवैस में ही मुक्त अवस्था में जा सकते हैं। एक-इलेक्ट्रॉन ऊर्जा स्तर तरंग सदिश द्वारा इलेक्ट्रॉन द्रव्यमान के संबंध के माध्यम से निर्दिष्ट किया जाता है। यह संबंध व्याप्त ऊर्जा अवस्थाओं को रिक्त अवस्थाओं से अलग करता है और k-स्थल में गोलाकार सतह से मेल खाता है। जैसे मूल अवस्था वितरण बन जाता है:

जहाँ

  • फर्मी-डिराक वितरण है
  • मूल अवस्था के अनुरूप ऊर्जा स्तर की ऊर्जा है
  • सीमा में मूल अवस्था ऊर्जा है, जो इस प्रकार अभी भी वास्तविक मूल अवस्था ऊर्जा से विचलित है।

इसका तात्पर्य यह है कि सीमा में इलेक्ट्रॉनों के लिए मूल अवस्था ही एकमात्र व्याप्त अवस्था है, पाउली अपवर्जन सिद्धांत को ध्यान में रखता है। आंतरिक ऊर्जा मुक्त इलेक्ट्रॉन प्रतिरूप के भीतर एक प्रणाली का मान उस स्तर में इलेक्ट्रॉनों की औसत संख्या के एक-इलेक्ट्रॉन स्तर के योग से गुणा किया जाता है:

जहां 2 का कारक इलेक्ट्रॉन की स्पिन अप और स्पिन डाउन स्थिति को निर्धारित करता है।

आंतरिक ऊर्जा और इलेक्ट्रॉन घनत्व में कमी

इस सन्निकटन का उपयोग करते हुए कि एक निर्बाध फलन पर एक योग के लिए परिमित बड़ी प्रणाली के लिए k के सभी अनुमत मानों को इस प्रकार दिया जाता है::

जहाँ प्रणाली का आयतन है.

कम आंतरिक ऊर्जा के लिए के लिए अभिव्यक्ति को इस प्रकार पुनः लिखा जा सकता है:

और इलेक्ट्रॉन घनत्व के लिए अभिव्यक्ति को इस प्रकार लिखा जा सकता है:

उपरोक्त पूर्णांकी का मूल्यांकन इस तथ्य का उपयोग करके किया जा सकता है कि पर पूर्णांकी की निर्भरता को मुक्त कणों के रूप में वर्णित किए जाने पर इलेक्ट्रॉनिक ऊर्जा के संबंध के माध्यम से पर निर्भरता में बदला जा सकता है, , जो एक स्वेच्छाचारी फलन के लिए उत्पन्न होता है::

सहित, जो कि कणों के घनत्व या प्रति इकाई आयतन की अवस्थाओं के घनत्व के रूप में जाना जाता है, जिससे कि और के बीच स्तिथि की कुल संख्या होती है। आदर्श भावों का उपयोग करके इस प्रकार पुनः लिखा जा सकता है:

इन इंटीग्रल्स का मूल्यांकन उन तापमानों के लिए किया जा सकता है जो सोमरफेल्ड विस्तार को लागू करके और उस अनुमान का उपयोग करके फर्मी तापमान की तुलना में छोटे हैं जो के क्रम के अनुसार के लिए से भिन्न है। अभिव्यक्तियाँ बन जाती हैं:

मूल अवस्था विन्यास के लिए उपरोक्त भावों के पहले पद (अभिन्न) मूल अवस्था की आंतरिक ऊर्जा और इलेक्ट्रॉन घनत्व उत्पन्न करते हैं। इलेक्ट्रॉन घनत्व के लिए अभिव्यक्ति कम हो जाती है। इसे आंतरिक ऊर्जा के लिए अभिव्यक्ति में प्रतिस्थापित करने पर, निम्नलिखित अभिव्यक्ति मिलती है:


अंतिम अभिव्यक्ति

मुक्त इलेक्ट्रॉन प्रतिरूप के भीतर इलेक्ट्रॉनों का योगदान इस प्रकार दिया गया है:

, मुक्त इलेक्ट्रॉनों के लिए:

पारम्परिक परिणाम () की तुलना में, यह निष्कर्ष निकाला जा सकता है कि यह परिणाम एक कारक द्वारा दबा हुआ है, जो परिमाण के क्रम के कमरे के तापमान पर है। यह प्रयोगात्मक रूप से मापी गई ताप क्षमता में इलेक्ट्रॉनिक योगदान की अनुपस्थिति की व्याख्या करता है।

ध्यान दें कि इस व्युत्पत्ति में प्रायः द्वारा दर्शाया जाता है जिसे फर्मी ऊर्जा के नाम से जाना जाता है। इस संकेतन में, इलेक्ट्रॉन ताप क्षमता बन जाती है:

और मुक्त इलेक्ट्रॉनों: के लिए फर्मी ऊर्जा की परिभाषा फर्मी तापमान का उपयोग करते हुए बन जाती है।

धातुओं की ताप क्षमता के लिए प्रयोगात्मक परिणामों के साथ तुलना

डेबी तापमान दोनों से नीचे के तापमान के लिए और फर्मी तापमान धातुओं की ताप क्षमता को इलेक्ट्रॉन और फोनन योगदान के योग के रूप में लिखा जा सकता है जो क्रमशः रैखिक और घन हैं: । गुणांक प्रयोगात्मक रूप से गणना और निर्धारण किया जा सकता है। हम इस मान की विवरणी नीचे देते हैं: [1]

प्रकार में का मुक्त इलेक्ट्रॉन मान में का प्रायोगिक मान
Li 0.749 1.63
Be 0.500 0.17
Na 1.094 1.38
Mg 0.992 1.3
Al 0.912 1.35
K 1.668 2.08
Ca 1.511 2.9
Cu 0.505 0.695
Zn 0.753 0.64
Ga 1.025 0.596
Rb 1.911 2.41
Sr 1.790 3.6
Ag 0.645 0.646
Cd 0.948 0.688
In 1.233 1.69
Sn 1.410 1.78
Cs 2.238 3.20
Ba 1.937 2.7
Au 0.642 0.729
Hg 0.952 1.79
Ti 1.29 1.47
Pb 1.509 2.98

किसी धातु में मुक्त इलेक्ट्रॉन सामान्यतः उच्च तापमान पर डुलोंग-पेटिट नियम से शक्तिशाली विचलन का कारण नहीं बनते हैं। तब से में रैखिक है और में रैखिक है, कम तापमान पर जालक का योगदान इलेक्ट्रॉनिक योगदान की तुलना में तीव्रता से विलुप्त हो जाता है और बाद वाले को मापा जा सकता है। किसी धातु की ताप क्षमता में अनुमानित और प्रयोगात्मक रूप से निर्धारित इलेक्ट्रॉनिक योगदान का विचलन बहुत बड़ा नहीं है। कुछ धातुएँ इस अनुमानित भविष्यवाणी से काफी भिन्न हैं। मापों से संकेत मिलता है कि ये त्रुटियां धातु में किसी तरह से बदले गए इलेक्ट्रॉन द्रव्यमान से जुड़ी हैं, इलेक्ट्रॉन ताप क्षमता की गणना के लिए इसके स्थान पर एक इलेक्ट्रॉन के प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी) पर विचार किया जाना चाहिए। Fe और Co के लिए बड़े विचलन को इन संक्रमण धातुओं के आंशिक रूप से भरे हुए डी-कोशों के लिए उत्तरदायी ठहराया जाता है, जिनके डी-बैंड फर्मी ऊर्जा पर स्थित होते हैं।

क्षार धातुओं से मुक्त इलेक्ट्रॉन प्रतिरूप के साथ सबसे अच्छा समझौता होने की अपेक्षा है क्योंकि ये धातुएं एक बंद कोश के बाहर केवल एक एस-इलेक्ट्रॉन हैं। हालाँकि, सोडियम, जिसे एक मुक्त इलेक्ट्रॉन धातु के सबसे निकट माना जाता है, सिद्धांत से अपेक्षा से 25 प्रतिशत अधिक गामा होने का निर्धारण किया गया है।

कुछ प्रभाव सन्निकटन से विचलन को प्रभावित करते हैं:

  • कठोर स्फटिक जालक की आवधिक क्षमता के साथ चालन इलेक्ट्रॉनों की परस्पर क्रिया की उपेक्षा की जाती है।
  • फ़ोनों के साथ चालन इलेक्ट्रॉनों की अंतःक्रिया को भी उपेक्षित किया जाता है। यह अंतःक्रिया इलेक्ट्रॉन के प्रभावी द्रव्यमान में परिवर्तन का कारण बनती है और इसलिए यह इलेक्ट्रॉन ऊर्जा को प्रभावित करती है।
  • चालन इलेक्ट्रॉनों की आपस में परस्पर क्रिया को भी अनदेखा कर दिया जाता है। एक गतिमान इलेक्ट्रॉन आसपास के इलेक्ट्रॉन गैस में एक जड़त्वीय प्रतिक्रिया का कारण बनता है।

अतिचालक

अतिचालकता आवधिक प्रणाली के कई धातु तत्वों और मिश्र धातुओं, अंतरधात्विक यौगिकों और अपमिश्रित अर्धचालकों में भी होती है। यह प्रभाव सामग्री को ठंडा करने पर होता है। यह प्रभाव सामग्री को ठंडा करने पर होता है। अतिचालकता के लिए महत्वपूर्ण तापमान से नीचे ठंडा करने पर एन्ट्रापी कम हो जाती है जो इंगित करता है कि अतिचालक अवस्था सामान्य अवस्था की तुलना में अधिक क्रमबद्ध है। एन्ट्रापी परिवर्तन छोटा है, इसका मतलब यह होना चाहिए कि इलेक्ट्रॉनों का केवल एक बहुत छोटा अंश अतिचालक अवस्था में संक्रमण में भाग लेता है, लेकिन, ताप क्षमता में इलेक्ट्रॉनिक योगदान में भारी बदलाव होता है। क्रांतिक तापमान पर ताप क्षमता में तीव्र उछाल होता है जबकि क्रांतिक तापमान से ऊपर के तापमान के लिए ताप क्षमता तापमान के साथ रैखिक होती है।

व्युत्पत्ति

अतिसंवाहक के लिए इलेक्ट्रॉन ताप क्षमता की गणना बीसीएस सिद्धांत में की जा सकती है। इस स्तिथि में कूपर जोड़े में फर्मिओनिक क्वासिपार्टिकल्स की प्रणाली की एन्ट्रापी है:

जहाँ साथ फर्मी-डिराक वितरण है

और

  • फर्मी ऊर्जा के संबंध में कण ऊर्जा है
  • ऊर्जा अंतर मापदण्ड है जहां और इस संभावना को दर्शाता है कि कूपर जोड़ी क्रमशः अधिकृत है या अनधिकृत है।

ताप क्षमता द्वारा दी गई है।

अंतिम दो पदों की गणना की जा सकती है:

ताप क्षमता के लिए अभिव्यक्ति में इसे प्रतिस्थापित करना और फिर से लागू करना कि पारस्परिक स्थान में से अधिक का योग में एक अभिन्न अंग द्वारा प्रतिस्थापित किया जा सकता है जो स्तिथियों के घनत्व से गुणा किया जाता है। इससे निम्न प्राप्त होता है:


अतिसंवाहक के लिए विशेषता व्यवहार

अतिचालक अवस्था में संक्रमण कर सकने वाली प्रजातियों के लिए इलेक्ट्रॉन ताप क्षमता के विशिष्ट व्यवहार की जांच करने के लिए, तीन क्षेत्रों को परिभाषित किया जाना चाहिए:

  1. क्रांतिक तापमान से ऊपर
  2. क्रांतिक तापमान पर
  3. क्रांतिक तापमान से नीचे


T > T c पर अतिसंवाहक

के लिए यह माना जाता है कि और इलेक्ट्रॉन ताप क्षमता बन जाती है:

जैसा कि अपेक्षित था, यह उपरोक्त अनुभाग में प्राप्त सामान्य धातु का परिणाम है क्योंकि एक अतिचालक महत्वपूर्ण तापमान से ऊपर एक सामान्य परिचालक के रूप में व्यवहार करता है।

T < T c पर अतिसंवाहक

के लिए अतिसंवाहक के लिए इलेक्ट्रॉन ताप क्षमता इस प्रकार की घातीय क्षय प्रदर्शित करती है:


T = T c पर अतिसंवाहक

क्रांतिक तापमान पर ताप क्षमता बंद हो जाती है। ताप क्षमता में यह असंतोष इंगित करता है कि किसी सामग्री के लिए सामान्य संचालन से अतिचालक में संक्रमण द्वितीय कोटि प्रावस्था संक्रमण है।

यह भी देखें

  • ड्रूड प्रतिरूप
  • फर्मी-डिराक आँकड़े
  • थर्मल प्रभावी द्रव्यमान
  • प्रभावी द्रव्यमान (ठोस अवस्था भौतिकी)
  • अतिचालकता
  • बीसीएस सिद्धांत

संदर्भ

  1. Kittel, Charles (2005). ठोस अवस्था भौतिकी का परिचय (in English) (8 ed.). United States of America: John Wiley & Sons, Inc. p. 146. ISBN 978-0-471-41526-8.

General references: