इष्टतम निर्णय
इष्टतम निर्णय एक ऐसा निर्णय है जो कम से कम अन्य सभी उपलब्ध निर्णय विकल्पों के रूप में ज्ञात या अपेक्षित परिणाम की ओर ले जाता है। निर्णय सिद्धांत में यह एक महत्वपूर्ण अवधारणा है। विभिन्न निर्णय परिणामों की तुलना करने के लिए, सामान्यतः उनमें से प्रत्येक को एक उपयोगिता मूल्य प्रदान किया जाता है।
यदि इस बारे में अनिश्चितता है कि परिणाम क्या होगा लेकिन अनिश्चितता के वितरण के बारे में ज्ञान है, तो वॉन न्यूमैन-मॉर्गेनस्टर्न स्वयंसिद्धों के अंतर्गत इष्टतम निर्णय अपेक्षित उपयोगिता को अधिकतम करता है (एक निर्णय के सभी संभावित परिणामों पर उपयोगिता की संभावना-भारित मध्यम)। कभी-कभी, हानि के अपेक्षित मूल्य को कम करने की समतुल्य समस्या पर विचार किया जाता है, जहां हानि (-1) गुणा उपयोगिता है। एक अन्य समतुल्य समस्या अपेक्षित खेद को कम कर रही है।
''उपयोगिता'' एक विशेष निर्णय परिणाम की वांछनीयता को मापने के लिए एक स्वेच्छाचारी शब्द है और ''उपयोगिता'' से संबंधित नहीं है। उदाहरण के लिए, किसी स्टेशन वैगन के बदले स्पोर्ट्स कार खरीदना सबसे अच्छा निर्णय हो सकता है, अगर किसी अन्य मानदंड (जैसे, व्यक्तिगत प्रतिबिंब पर प्रभाव) के संदर्भ में परिणाम अधिक वांछनीय है, यहां तक कि स्पोर्ट्स कार की उच्च लागत और बहुमुखी प्रतिभा की कमी को देखते हुए हो सकता है।
इष्टतम निर्णय खोजने की समस्या एक गणितीय अनुकूलन समस्या है। व्यवहार रूप में, कुछ लोग यह सत्यापित करते हैं कि उनके निर्णय इष्टतम हैं, लेकिन इसके बदले "पर्याप्त अच्छे" निर्णय लेने के लिए अनुमानों का उपयोग करते हैं—अर्थात्, वे संतुष्टि में संलग्न होते हैं।
एक अधिक औपचारिक दृष्टिकोण का उपयोग तब किया जा सकता है जब निर्णय इतना महत्वपूर्ण हो कि इसे विश्लेषण करने में लगने वाले समय को प्रेरित किया जा सके या जब यह अधिक सरल सहज दृष्टिकोण के समाधान करने के लिए बहुत जटिल हो, जैसे कि कई उपलब्ध निर्णय विकल्प और एक सम्मिश्र निर्णय-परिणाम संबंध हैं।
औपचारिक गणितीय विवरण
प्रत्येक निर्णय विकल्पों के एक समुच्चय में प्रत्येक निर्णय का परिणाम होता है। सभी संभावित परिणाम समुच्चय बनाते हैं। प्रत्येक परिणाम के लिए उपयोगिता नियुक्त करते हुए, हम किसी विशेष निर्णय की उपयोगिता को परिभाषित कर सकते हैं।
तब हम एक इष्टतम निर्णय को परिभाषित कर सकते हैं जो को अधिकतम करता है:
इस प्रकार समस्या का समाधान तीन चरणों में विभाजित किया जा सकता है:
- प्रत्येक निर्णय के लिए परिणाम की भविष्यवाणी करता है।
- प्रत्येक परिणाम को उपयोगिता प्रदान करता है;
- को अधिकतम करने वाले निर्णय का पता लगाना।
परिणाम में अनिश्चितता के अंतर्गत
यदि निश्चित रूप से भविष्यवाणी करना संभव नहीं है कि किसी विशेष निर्णय का परिणाम क्या होगा, तो एक संभाव्य दृष्टिकोण आवश्यक है। अपने सबसे सामान्य रूप में, इसे इस प्रकार व्यक्त किया जा सकता है:
एक निर्णय को देखते हुए, हम सप्रतिबंध प्रायिकता घनत्व द्वारा वर्णित संभावित परिणामों के लिए संभाव्यता वितरण जानते हैं। को एक यादृच्छिक चर ( सशर्त पर) के रूप में देखते हुए, हम निर्णय की अपेक्षित उपयोगिता की गणना कर सकते है।
- ,
जहां समाकल को पूरे समुच्चय (डीग्रोट, पीपी. 121) पर ले लिया जाता है।
एक इष्टतम निर्णय तब होता है जब को अधिकतम करता है, जैसा ऊपर है:
एक उदाहरण मोंटी हॉल समस्या है।
यह भी देखें
संदर्भ
- मॉरिस डेग्रोट इष्टतम सांख्यिकीय निर्णय मैकग्रा-हिल न्यूयॉर्क 1970 आईएसबीएन 0-07-016242-5।
- जेम्स ओ बर्जर सांख्यिकीय निर्णय सिद्धांत और बायेसियन विश्लेषण दूसरा संस्करण 1980। सांख्यिकी में स्प्रिंगर श्रृंखला आईएसबीएन 0-387-96098-8।