गणना की सीमा

From Vigyanwiki

गणना की सीमाएँ अनेक विभिन्न कारकों द्वारा नियंत्रित होती हैं। विशेष रूप से, गणना या डेटा स्टोरेज उपकरण की मात्रा के लिए अनेक भौतिक और व्यावहारिक सीमाएँ हैं जो किसी दिए गए द्रव्यमान, आयतन या ऊर्जा के साथ की जा सकती हैं।

हार्डवेयर सीमाएँ या भौतिक सीमाएँ

प्रसंस्करण और स्मृति घनत्व

  • बेकेंस्टीन बाध्य उस जानकारी की मात्रा को सीमित करता है जिसे गोलाकार आयतन के अंदर समान सतह क्षेत्र वाले ब्लैक होल की एन्ट्रापी तक संग्रहीत किया जा सकता है।
  • ऊष्मप्रवैगिकी किसी सिस्टम के डेटा स्टोरेज को उसकी ऊर्जा, कणों की संख्या और कण मोड के आधार पर सीमित करता है। वास्तव में, यह बेकेंस्टीन बाउंड की तुलना में अधिक शसक्त बाउंड है।[1]


प्रोसेसिंग स्पीड

  • ब्रेमरमैन की सीमा भौतिक ब्रह्मांड में एक स्व-निहित प्रणाली की अधिकतम कम्प्यूटेशनल गति है, और यह द्रव्यमान-ऊर्जा तुल्यता या द्रव्यमान-ऊर्जा बनाम अनिश्चितता सिद्धांत बाधाओं पर आधारित है।

कम्युनिकेशन डिले

  • मार्गोलस-लेविटिन प्रमेय प्रति यूनिट ऊर्जा 6 × 1033 संचालन प्रति सेकंड प्रति जूल अधिकतम कम्प्यूटेशनल गति पर एक सीमा निर्धारित करता है। चूँकि, क्वांटम मेमोरी तक पहुंच होने पर इस बाध्यता से बचा जा सकता है। कम्प्यूटेशनल एल्गोरिदम को तब डिज़ाइन किया जा सकता है जिसके लिए एक प्रारंभिक गणना चरण के लिए इच्छित रूप से छोटी मात्रा में ऊर्जा/समय की आवश्यकता होती है।[2][3]

ऊर्जा आपूर्ति

लैंडॉउर का सिद्धांत ऊर्जा खपत के लिए एक निचली सैद्धांतिक सीमा को परिभाषित करता है इस परकार kT ln 2 प्रति अपरिवर्तनीय स्थिति परिवर्तन के लिए खपत होती है जहां k बोल्ट्जमैन स्थिरांक है और T कंप्यूटर का ऑपरेटिंग तापमान है। प्रतिवर्ती कंप्यूटिंग इस निचली सीमा के अधीन नहीं है। सिद्धांत रूप में भी, गणना में बचाई गई ऊर्जा की तुलना में शीतलन पर अधिक ऊर्जा निवेश किए बिना, ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि विकिरण के अनुमानित तापमान, 3 केल्विन से कम नहीं बनाया जा सकता है। चूँकि, 109 - 1010 वर्षों के समयमान पर, ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि विकिरण तेजी से कम हो जाएगा, जिसके बारे में तर्क दिया गया है कि अंततः ऊर्जा की प्रति इकाई 1030 तक अधिक संगणना संभव हो सकेगी।[4] इस तर्क के महत्वपूर्ण भागों स्पष्टीकरण की आवश्यकता पर विवाद किया गया है।[5]


भौतिक सीमाओं तक पहुंचने वाले उपकरणों का निर्माण

भौतिक और व्यावहारिक सीमाओं तक पहुंचने वाले कंप्यूटिंग उपकरणों या डेटा स्टोरेज उपकरणों के उत्पादन के लिए अनेक विधि प्रस्तावित किए गए हैं:

  • एक ठंडे पतित तारे को एक विशाल डेटा स्टोरेज उपकरण के रूप में उपयोग किया जा सकता है, इसे विभिन्न उत्तेजित अवस्थाओं में सावधानीपूर्वक व्याकुल करके उसी तरह से जैसे कि इन उद्देश्यों के लिए एक परमाणु या क्वांटम अच्छी तरह से उपयोग किया जाता है। ऐसे तारे का निर्माण कृत्रिम रूप से करना होगा, क्योंकि कोई भी प्राकृतिक पतित तारा बहुत लंबे समय तक इस तापमान तक ठंडा नहीं होगा। यह भी संभव है कि न्यूट्रॉन स्टार की सतह पर न्यूक्लियॉन सम्मिश्र अणु बना सकते हैं,[6] कुछ लोगों ने सुझाव दिया है कि इसका उपयोग कंप्यूटिंग उद्देश्यों के लिए किया जा सकता है,[7] फेमटोटेक्नोलॉजी पर आधारित एक प्रकार का कम्पुट्रोनियम बनाना है, जो नैनोटेक्नोलॉजी पर आधारित कंप्यूट्रोनियम की तुलना में तेज़ और सघन होगा।
  • डेटा स्टोरेज या कंप्यूटिंग डिवाइस के रूप में ब्लैक होल का उपयोग करना संभव हो सकता है, यदि इसमें निहित जानकारी के निष्कर्षण के लिए एक व्यावहारिक तंत्र पाया जा सकता है। ऐसा निष्कर्षण सैद्धांतिक रूप से संभव हो सकता है (स्टीफन हॉकिंग का ब्लैक होल सूचना विरोधाभास का प्रस्तावित समाधान)। इससे स्टोरेज घनत्व बिल्कुल बेकेनस्टीन सीमा के समान हो जाएगा। सेठ लॉयड ने 1.485 × 10−27 मीटर त्रिज्या के एक ब्लैक होल में एक किलोग्राम पदार्थ को संपीड़ित करके बनाए गए "अंतिम लैपटॉप" की कम्प्यूटेशनल क्षमताओं की गणना की, और निष्कर्ष निकाला कि वाष्पीकरण से पहले यह केवल 10−19 सेकंड तक ही टिकेगा। हॉकिंग विकिरण, किन्तु इस संक्षिप्त समय के समय यह लगभग 5 × 1050 ऑपरेशन प्रति सेकंड की दर से गणना कर सकता था, अंततः 1016 बिट्स (~1 पीबी) पर लगभग 1032 ऑपरेशन कर सकता था। लॉयड का कहना है कि "रौचक बात यह है कि चूँकि यह काल्पनिक गणना अति-उच्च घनत्व और गति पर की जाती है, किन्तु संसाधित होने के लिए उपलब्ध बिट्स की कुल संख्या अधिक परिचित परिवेश में काम करने वाले वर्तमान कंप्यूटरों के लिए उपलब्ध संख्या से बहुत दूर नहीं है।"[8]
  • द सिंगुलैरिटी इज़ नियर में, रे कुर्ज़वील सेठ लॉयड की गणना का निरुपित देते हैं कि एक सार्वभौमिक मापदंड का कंप्यूटर प्रति सेकंड 1090 ऑपरेशन करने में सक्षम है। ब्रह्मांड का द्रव्यमान 3×1052 किलोग्राम अनुमानित किया जा सकता है। यदि ब्रह्मांड के सभी पदार्थ को ब्लैक होल में बदल दिया जाए, तो हॉकिंग विकिरण के कारण वाष्पित होने से पहले इसका जीवनकाल 2.8 × 10139 सेकंड होगा। उस जीवनकाल के समय ऐसा सार्वभौमिक मापदंड का ब्लैक होल कंप्यूटर 2.8 × 10229 ऑपरेशन करेगा।[9]


कंप्यूटर विज्ञान में सार सीमाएँ

सैद्धांतिक कंप्यूटर विज्ञान के क्षेत्र में कम्प्यूटेशनल समस्याओं की संगणना और कॉम्प्लेक्सिटी की अधिकांशत: मांग की जाती है। कम्प्यूटेबिलिटी सिद्धांत उस डिग्री का वर्णन करता है जिस तक समस्याएं गणना योग्य हैं, जबकि कॉम्प्लेक्सिटी सिद्धांत संसाधन खपत की स्पर्शोन्मुख डिग्री का वर्णन करता है। इसलिए कम्प्यूटेशनल समस्याएं कॉम्प्लेक्सिटी वर्गों तक ही सीमित हैं। अंकगणितीय पदानुक्रम और बहुपद पदानुक्रम उस डिग्री को वर्गीकृत करते हैं जिस तक समस्याएं क्रमशः बहुपद समय में गणना योग्य और गणना योग्य होती हैं। उदाहरण के लिए, अंकगणितीय पदानुक्रम का स्तर गणना योग्य, आंशिक कार्यों को वर्गीकृत करता है। इसके अतिरिक्त, यह पदानुक्रम इतना सख्त है कि अंकगणितीय पदानुक्रम में किसी भी अन्य वर्ग में सख्ती से अगणनीय कार्यों को वर्गीकृत किया जाता है।

लूज और टाइट सीमा

कंप्यूटर विज्ञान में भौतिक स्थिरांक और गणना के एब्स्ट्रेक्ट मॉडल के संदर्भ में प्राप्त अनेक सीमाएं लूज हैं।[10] बहुत कम ज्ञात सीमाएँ सीधे रूप से अग्रणी प्रौद्योगिकियों में बाधा डालती हैं, किन्तु अनेक इंजीनियरिंग बाधाओं को वर्तमान में संवर्त-फ़ॉर्म सीमाओं द्वारा समझाया नहीं जा सकता है।

यह भी देखें

संदर्भ

  1. Sandberg, Anders (22 December 1999). "The Physics of Information Processing Superobjects: Daily Life Among the Jupiter Brains" (PDF). Archived from the original (PDF) on 5 March 2015. Retrieved 30 May 2014. {{cite journal}}: Cite journal requires |journal= (help)
  2. Jordan, Stephen P. (2017). "मनमाने ढंग से कम ऊर्जा पर तेज़ क्वांटम गणना". Phys. Rev. A. 95 (3): 032305. arXiv:1701.01175. Bibcode:2017PhRvA..95c2305J. doi:10.1103/physreva.95.032305. S2CID 118953874.
  3. Sinitsyn, Nikolai A. (2018). "Is there a quantum limit on speed of computation?". Physics Letters A. 382 (7): 477–481. arXiv:1701.05550. Bibcode:2018PhLA..382..477S. doi:10.1016/j.physleta.2017.12.042. S2CID 55887738.
  4. Sandberg, Anders; Armstrong, Stuart; Cirkovic, Milan M. (2017-04-27). "That is not dead which can eternal lie: the aestivation hypothesis for resolving Fermi's paradox". arXiv:1705.03394 [physics.pop-ph].
  5. Bennett, Charles H.; Hanson, Robin; Riedel, C. Jess (1 August 2019). "'फ़र्मी के विरोधाभास को हल करने के लिए सौंदर्यीकरण परिकल्पना' पर टिप्पणी करें". Foundations of Physics. 49 (8): 820–829. arXiv:1902.06730. Bibcode:2019FoPh...49..820B. doi:10.1007/s10701-019-00289-5. ISSN 1572-9516. S2CID 119045181.
  6. "न्यूट्रॉन सितारों पर जीवन". The Internet Encyclopedia of Science.
  7. "Femtotech? (Sub)Nuclear Scale Engineering and Computation". Archived from the original on October 25, 2004. Retrieved 2006-10-30.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  8. Lloyd, Seth (2000). "गणना की अंतिम भौतिक सीमाएँ" (PDF). Nature. 406 (6799): 1047–1054. arXiv:quant-ph/9908043. Bibcode:2000Natur.406.1047L. doi:10.1038/35023282. PMID 10984064. S2CID 75923. Archived from the original (PDF) on 2008-08-07.
  9. Kurzweil, Ray (2005). विलक्षणता निकट है. New York: Viking. p. 911.
  10. Markov, Igor (2014). "संगणना की मौलिक सीमाओं पर सीमाएं". Nature. 512 (7513): 147–154. arXiv:1408.3821. Bibcode:2014Natur.512..147M. doi:10.1038/nature13570. PMID 25119233. S2CID 4458968.


बाहरी संबंध