यह पॉलीगामा फलन में से प्रथम होता है। यह फलन कठोरता से बढ़ रहा है और मोनोटोनिक फलन और पर जटिलता से अवतल है ,[4] और यह स्पर्शोन्मुख विश्लेषण के रूप में व्यवहार करता है[5]
इस प्रकार से कुछ असीम रूप से छोटे सकारात्मक स्थिरांक . . . . के साथ सेक्टर में उच्च तर्क () के लिए।
डायगामा फलन को सदैव इस रूप में दर्शाया जाता है या Ϝ[6] (पुरातन ग्रीक व्यंजन डायगामा का अपरकेस रूप जिसका अर्थ है गामा डबल-गामा) के रूप में दर्शाया जाता है।।
फलन संपूर्ण फलन है,[11] और इसे अनंत उत्पाद द्वारा दर्शाया जा सकता है
यहां , का kth शून्य है (नीचे देखें), और यूलर-माशेरोनी स्थिरांक है।
नोट: डायगामा फलन की परिभाषा के कारण यह भी के समान है.
श्रृंखला प्रतिनिधित्व
श्रृंखला सूत्र
गामा फलन के लिए यूलर का उत्पाद सूत्र, फलन समीकरण और यूलर-माशेरोनी स्थिरांक के लिए पहचान के साथ मिलकर, डायगामा फलन के लिए निम्नलिखित अभिव्यक्ति उत्पन्न करता है, जो नकारात्मक पूर्णांक (अब्रामोविट्ज़ और स्टेगन 6.3.16) के बाहर जटिल विमान में मान्य है:[1]:
समान रूप से,
तर्कसंगत फलन के योग का मूल्यांकन
उपरोक्त पहचान का उपयोग फॉर्म के योग का मूल्यांकन करने के लिए किया जा सकता है
जहाँ p(n) और q(n) के बहुपद n हैं .
जटिल क्षेत्र में un पर आंशिक अंश निष्पादित करना, उस स्थिति में जब q(n) की सभी जड़ें सरल जड़ें हों,
ग्रेगरी के गुणांक, कॉची संख्या और दूसरे प्रकार के बर्नौली बहुपद के साथ श्रृंखला
इस प्रकार से केवल तर्कसंगत तर्कों के लिए तर्कसंगत गुणांक वाले डायगामा के लिए विभिन्न श्रृंखलाएं उपस्तिथ हैं। विशेष रूप से, ग्रेगरी गुणांक वाली श्रृंखला ग्रेगरी के गुणांक Gn है
जहाँ (v)n गिरती और बढ़ती फैक्टोरियल है (v)n =
v(v+1)(v+2) ... (v+n-1), Gn(k) उच्च क्रम के ग्रेगरी गुणांक हैं Gn(1) = Gn, Γ गामा फलन है और ζ हर्विट्ज़ ज़ेटा फलन है।[14][13] दूसरी तरह की कॉची संख्याओं के साथ समान श्रृंखला Cn पढ़ता है[14][13]:
इस प्रकार इसे दूरबीन 1 / x, कहा जा सकता है के लिए है
जहाँ Δफॉरवर्ड डिफरेंस ऑपरेटर है। यह हार्मोनिक श्रृंखला (गणित) के आंशिक योग के पुनरावृत्ति संबंध को संतुष्ट करता है, इस प्रकार सूत्र का अर्थ है
जहाँ γ यूलर-माशेरोनी स्थिरांक है।
अधिक सामान्यतः, किसी के समीप होता है
के लिए . अन्य शृंखला विस्तार है:
,
जहाँ बर्नौली संख्याएँ हैं। यह शृंखला सभी z के लिए विचलन करती है और इसे स्टर्लिंग श्रृंखला के रूप में जाना जाता है।
वास्तव में, ψ फलन समीकरण का एकमात्र समाधान है
यह R+ पर मोनोटोनिक है और F(1) = −γ को संतुष्ट करता है। यह तथ्य इसके पुनरावृत्ति समीकरण और उत्तलता प्रतिबंध को देखते हुए Γ फलन की विशिष्टता का तुरंत अनुसरण करता है। इसका तात्पर्य उपयोगी अंतर समीकरण से है:
डायगामा फलन से जुड़े कुछ सीमित योग
डायगामा फलन के लिए कई परिमित योग सूत्र हैं। मूल योग सूत्र, जैसे
धनात्मक पूर्णांकों के लिए r और m (r < m), डायगामा फलन को यूलर के स्थिरांक और प्रारंभिक फलन की सीमित संख्या के संदर्भ में व्यक्त किया जा सकता है[19]
जो, अपने पुनरावृत्ति समीकरण के कारण, सभी तर्कसंगत तर्कों के लिए मान्य है।
स्पर्शोन्मुख विस्तार
डायगामा फलन में स्पर्शोन्मुख विस्तार होता है
जहाँ Bk है kth बर्नौली संख्या और ζ रीमैन ज़ेटा फलन है। इस विस्तार की प्रथम कुछ नियम इस प्रकार से हैं:
चूंकि अनंत योग किसी भी z के लिए अभिसरित नहीं होता है, जैसे-जैसे z बढ़ता है, कोई भी परिमित आंशिक योग तीव्र से स्पष्ट हो जाता है।
योग में यूलर-मैकलॉरिन फॉर्मूला प्रयुक्त करके विस्तार पाया जा सकता है[20]
विस्तार को गामा फलन के लिए बिनेट के दूसरे अभिन्न सूत्र से आने वाले अभिन्न प्रतिनिधित्व से भी प्राप्त किया जा सकता है। विस्तार ज्यामितीय श्रृंखला के रूप में और बर्नौली संख्याओं के अभिन्न प्रतिनिधित्व को प्रतिस्थापित करने से उपरोक्त के समान ही स्पर्शोन्मुख श्रृंखला बनती है। इसके अतिरिक्त , श्रृंखला के केवल सीमित रूप से कई पदों का विस्तार करने से स्पष्ट त्रुटि पद के साथ सूत्र मिलता है:
असमानताएं
कब x > 0, फलन
पूर्ण रूप से एकरस और विशेष रूप से सकारात्मक है। यह गामा फलन के लिए बिनेट के पहले इंटीग्रल से आने वाले इंटीग्रल प्रतिनिधित्व पर प्रयुक्त मोनोटोन फ़ंक्शंस पर बर्नस्टीन के प्रमेय का परिणाम है। इसके अतिरिक्त, उत्तलता असमानता , द्वारा इस प्रतिनिधित्व में समाकलन . द्वारा ऊपर से घिरा हुआ होता है
पूर्णतः एकरस भी है। यह इस प्रकार है कि, सभी x > 0, के लिए अनुसरण करता है,
यह होर्स्ट अल्ज़र के एक प्रमेय को पुनः प्राप्त करता है।[21] एल्ज़र ने यह भी प्रमाणित किया कि s ∈ (0, 1) के लिए,
संबंधित सीमाएँ एलेज़ोविक, जिओर्डानो और पेकारिक द्वारा प्राप्त की गईं, जिन्होंने यह प्रमाणित किया x > 0 , के लिए,
जहाँ यूलर-माशेरोनी स्थिरांक है।[22] स्थिरांक ( और ) इन सीमाओं में प्रदर्शित होना सर्वोत्तम संभव होती है।[23]
इस प्रकार से माध्य मान प्रमेय गौत्शी की असमानता के निम्नलिखित अनुरूप का तात्पर्य करता है: यदि x > c, जहाँ c ≈ 1.461 डायगामा फलन का अद्वितीय सकारात्मक वास्तविक मूल है, और यदि s > 0, तब
इसके अतिरिक्त , समानता केवल यदि और केवल यदि ही मान्य s = 1 है .[24]
शास्त्रीय गामा फलन के लिए हार्मोनिक माध्य-मूल्य असमानता से प्रेरित होकर, होर्ज्ट अल्ज़र और ग्राहम जेमिसन ने अन्य संवाद के अतिरिक्त , डायगामा फलन के लिए हार्मोनिक माध्य-मूल्य असमानता प्रमाणित की:
जब x, का वास्तविक भाग बड़ा होता है तो स्पर्शोन्मुख विस्तार ψ(x) की गणना करने का एक सरल विधि देता है। छोटे x के लिए ψ(x) की गणना करने के लिए, पुनरावृत्ति संबंध
इस प्रकार से x के मान को उच्च मान पर स्थानांतरित करने के लिए उपयोग किया जा सकता है। बील [26]उपरोक्त पुनरावृत्ति का उपयोग करके x को 6 से अधिक मान पर स्थानांतरित करने और फिर उपरोक्त विस्तार को x14 कट ऑफ से ऊपर के शब्दों के साथ प्रस्तुत करने का सुझाव देता है, जो "पर्याप्त से अधिक स्पष्टतः " (शून्य के समीप को छोड़कर कम से कम 12 अंक) उत्पन्न करता है
जैसे ही x अनंत तक जाता है, ψ(x) मनमाने ढंग से ln(x − 1/2) और ln x. दोनों के समीप आ जाता है। x + 1 से x तक नीचे जाने पर, ψ1 / x से घटता है, ln (x + 1/2) / (x − 1/2), से घटता है, जो 1 / x, से अधिक है , और ln xln (1 + 1 / x) से घटता है, जो 1 / x. से कम है। इससे हम देखते हैं कि 1/2, से अधिक किसी भी धनात्मक x के लिए,
या, किसी भी सकारात्मक के लिए x,
इस प्रकार से उच्च x के लिए घातीय व्यय ψ(x) लगभग x − 1/2 है, जिससे छोटे x, पर x, के समीप हो जाता है ,x = 0. पर 0 के समीप पहुंच जाता है। x < 1 के लिए, हम इस तथ्य के आधार पर सीमा की गणना कर सकते हैं कि 1 और 2 के मध्य , ψ(x) ∈ [−γ, 1 − γ] इसलिए
या
इस प्रकार से ψ, के लिए उपरोक्त एसिम्प्टोटिक श्रृंखला से, कोई व्यक्ति exp(−ψ(x)) के लिए एक एसिम्प्टोटिक श्रृंखला प्राप्त कर सकता है। श्रृंखला समग्र व्यवहार से अच्छी तरह मेल खाती है, यानी, यह बड़े तर्कों के लिए असम्बद्ध रूप से व्यवहार करती है, और मूल में असीमित बहुलता का शून्य भी है।
यह टेलर के विस्तार के समान है exp(−ψ(1 / y)) पर y = 0, जिससे यह अभिसरण नहीं होता है।[27] (फलन अनंत पर विश्लेषणात्मक फलन नहीं है।) समान श्रृंखला उपस्तिथ है exp(ψ(x)) जो शुरू होता है
यदि कोई इसके लिए स्पर्शोन्मुख श्रृंखला की गणना करता है ψ(x+1/2) इससे पता चलता है कि कोई विषम शक्तियाँ नहीं हैं x (कोई नहीं है x−1पद). इससे निम्नलिखित असममित विस्तार होता है, जो सम क्रम की कंप्यूटिंग शर्तों को बचाता है।
विशेष मूल्य
गॉस के डायगामा प्रमेय|गॉस के डायगामा प्रमेय के परिणामस्वरूप, डायगामा फलन में तर्कसंगत संख्याओं के लिए बंद रूप में मान होते हैं। कुछ नीचे सूचीबद्ध हैं:
इसके अतिरिक्त , का लघुगणकीय व्युत्पन्न लेकर या जहाँ वास्तविक मूल्य है, इसका अनुमान सरल ी से लगाया जा सकता है
गॉस के डायगामा प्रमेय के अतिरिक्त , सामान्य रूप से वास्तविक भाग के लिए ऐसा कोई बंद सूत्र ज्ञात नहीं है। उदाहरण के लिए, हमारे समीप काल्पनिक इकाई पर संख्यात्मक सन्निकटन है
डायगामा फलन की जड़ें
डायगामा फलन के मूल कॉम्प्लेक्स-मूल्यवान गामा फलन के सैडल बिंदु हैं। इस प्रकार वे सभी वास्तविक रेखाएँ या वास्तविक बीजगणित में स्थित हैं। सकारात्मक वास्तविक अक्षर पर वास्तविक वास्तविक-मूल्यवान गामा फलन R+ का अद्वितीय न्यूनतम है x0 = 1.46163214496836234126.... अन्य सभी ऋणात्मक अक्ष पर ध्रुवों के मध्य एकल होते हैं:
स्पर्शोन्मुख रूप से धारण करता है। जड़ों के स्थान का उत्तम अनुमान इसके द्वारा दिया गया है
और और शब्द का प्रयोग करने पर यह और भी उत्तम हो जाता है
जो दोनों प्रतिबिंब सूत्र से निकलते हैं
और ψ(xn) प्रतिस्थापित करना इसके अभिसारी स्पर्शोन्मुख विस्तार द्वारा नहीं। इस विस्तार का सही दूसरा पद 1 / 2n है , जहां दिया गया छोटा n के साथ जड़ों का अनुमान लगाने में अच्छा काम करता है .
हर्माइट के सूत्र का और सुधार दिया जा सकता है:[11] :
शून्य के संबंध में, निम्नलिखित अनंत योग पहचान वर्तमान समय में इस्तवान मेज़ो और माइकल हॉफमैन द्वारा सिद्ध की गई थीं[11][29]
सामान्यतः , फलन
निर्धारित किया जा सकता है और उद्धृत लेखकों द्वारा इसका विस्तार से अध्ययन किया गया है।
↑ Jump up to: 1.01.1
Abramowitz, M.; Stegun, I. A., eds. (1972). "6.3 psi (Digamma) Function.". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (10th ed.). New York: Dover. pp. 258–259.
↑R. Campbell. Les intégrales eulériennes et leurs applications, Dunod, Paris, 1966.
↑H.M. Srivastava and J. Choi. Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, the Netherlands, 2001.
↑Blagouchine, Iaroslav V. (2014). "तर्कसंगत तर्कों और कुछ संबंधित योगों पर पहले सामान्यीकृत स्टिल्टजेस स्थिरांक के बंद-रूप मूल्यांकन के लिए एक प्रमेय". Journal of Number Theory. 148: 537–592. arXiv:1401.3724. doi:10.1016/j.jnt.2014.08.009.
↑If it converged to a function f(y) then ln(f(y) / y) would have the same Maclaurin series as ln(1 / y) − φ(1 / y). But this does not converge because the series given earlier for φ(x) does not converge.
↑Hermite, Charles (1881). "Sur l'intégrale Eulérienne de seconde espéce". Journal für die reine und angewandte Mathematik (90): 332–338. doi:10.1515/crll.1881.90.332. S2CID118866486.
↑
Mező, István (2014). "A note on the zeros and local extrema of Digamma related functions". arXiv:1409.2971 [math.CV].