डायनमो सिद्धांत

From Vigyanwiki
डायनेमो तंत्र का चित्रण जो पृथ्वी के चुंबकीय क्षेत्र का निर्माण करता है: पृथ्वी के बाहरी कोर में द्रव धातु की संवहन धाराएं, आंतरिक कोर से गर्मी प्रवाह द्वारा संचालित, कोरिओलिस बल द्वारा रोल में व्यवस्थित, परिसंचारी विद्युत धाराएं बनाती हैं, जो चुंबकीय क्षेत्र उत्पन्न करती हैं .[1]

भौतिकी में, डायनेमो सिद्धांत एक तंत्र का प्रस्ताव करता है जिसके द्वारा एक खगोलीय पिंड जैसे कि पृथ्वी या तारा चुंबकीय क्षेत्र उत्पन्न करता है। डायनेमो सिद्धांत उस प्रक्रिया का वर्णन करता है जिसके माध्यम से एक घूर्णन, संवहन और विद्युत प्रवाहकीय द्रव खगोलीय समय के पैमाने पर एक चुंबकीय क्षेत्र बनाए रख सकता है। डायनेमो सिद्धांत उस प्रक्रिया का वर्णन करता है जिसके माध्यम से एक घूर्णन, संवहन और विद्युत प्रवाहकीय द्रव खगोलीय समय के पैमाने पर एक चुंबकीय क्षेत्र बनाए रख सकता है।एक डायनेमो को पृथ्वी के चुंबकीय क्षेत्र के बुध और जोवियन ग्रहों के चुंबकीय क्षेत्र का स्रोत माना जाता है।

सिद्धांत का इतिहास

जब विलियम गिल्बर्ट (खगोलविद) ने 1600 में डी मैग्नेट को प्रकाशित किया, तो उन्होंने निष्कर्ष निकाला कि पृथ्वी चुंबकीय है और इस चुंबकत्व की उत्पत्ति के लिए पहली परिकल्पना प्रस्तावित की: स्थायी चुंबकत्व जैसे कि लॉस्टस्टोन में पाया जाता है। 1919 में, जोसेफ लारमोर ने प्रस्तावित किया एक डायनेमो क्षेत्र उत्पन्न कर सकता है।[2][3] चूँकि, अपनी परिकल्पना को आगे बढ़ाने के बाद भी, कुछ प्रमुख वैज्ञानिकों ने वैकल्पिक व्याख्याओं को आगे बढ़ाया। नोबेल पुरस्कार विजेता पैट्रिक ब्लैकेट ने कोणीय संवेग और चुंबकीय आघूर्ण के बीच मूलभूत संबंध की खोज के लिए कई प्रयोग किए, किन्तु उन्हें कोई नहीं मिला।[4][5]

पृथ्वी के चुंबकत्व की व्याख्या के रूप में वर्तमान में स्वीकृत डायनेमो सिद्धांत के "पिता" माने जाने वाले वाल्टर एम. एल्सेसर ने प्रस्तावित किया कि यह चुंबकीय क्षेत्र पृथ्वी के द्रव बाहरी कोर में प्रेरित विद्युत धाराओं से उत्पन्न होता है। उन्होंने चट्टानों में खनिजों के चुंबकीय अभिविन्यास के अध्ययन का नेतृत्व करते हुए पृथ्वी के चुंबकीय क्षेत्र के इतिहास का खुलासा किया।

ओमिक क्षय (जो 20,000 वर्षों में द्विध्रुव क्षेत्र के लिए होगा) के खिलाफ चुंबकीय क्षेत्र को बनाए रखने के लिए, बाहरी कोर संवहन होना चाहिए। संवहन की संभावना थर्मल और रचनात्मक संवहन के कुछ संयोजन है। मेंटल उस दर को नियंत्रित करता है जिस पर कोर से गर्मी निकाली जाती है। ऊष्मा स्रोतों में कोर के संपीड़न द्वारा जारी गुरुत्वाकर्षण ऊर्जा, आंतरिक कोर सीमा पर प्रकाश तत्वों (संभवता सल्फर, ऑक्सीजन, या सिलिकॉन) की अस्वीकृति द्वारा जारी गुरुत्वाकर्षण ऊर्जा, आंतरिक कोर सीमा पर क्रिस्टलीकरण की गुप्त गर्मी, और पोटेशियम, यूरेनियम और थोरियम की रेडियोधर्मिता। [6]

21वीं सदी की शुरुआत में, पृथ्वी के चुंबकीय क्षेत्र के संख्यात्मक मॉडलिंग का सफलतापूर्वक प्रदर्शन नहीं किया गया है। प्रारंभिक मॉडल ग्रह के द्रव बाहरी कोर में संवहन द्वारा क्षेत्र निर्माण पर केंद्रित हैं। जब मॉडल ने एक समान कोर-सतह तापमान और कोर द्रव के लिए असाधारण रूप से उच्च चिपचिपाहट ग्रहण की, तो एक मजबूत, पृथ्वी जैसे क्षेत्र की पीढ़ी को दिखाना संभव था। जिन संगणनाओं में अधिक यथार्थवादी पैरामीटर मान चूँकि थे, वे चुंबकीय क्षेत्र उत्पन्न करते थे जो पृथ्वी की तरह कम थे, किन्तु संकेत दिया कि मॉडल शोधन [जो?] अंततः एक त्रुटिहीन विश्लेषणात्मक मॉडल का नेतृत्व कर सकते हैं। कोर-सतह के तापमान में कुछ मिलीकेल्विन की सीमा में मामूली बदलाव, संवहन प्रवाह में उल्लेखनीय वृद्धि और अधिक यथार्थवादी चुंबकीय क्षेत्र उत्पन्न करते हैं।[7][8]

औपचारिक परिभाषा

डायनमो सिद्धांत उस प्रक्रिया का वर्णन करता है जिसके माध्यम से एक चुंबकीय क्षेत्र को बनाए रखने के लिए एक घूर्णन, संवहन और विद्युत प्रवाहकीय द्रव कार्य करता है। इस सिद्धांत का उपयोग खगोलीय पिंडों में असामान्य रूप से लंबे समय तक रहने वाले चुंबकीय क्षेत्रों की उपस्थिति की व्याख्या करने के लिए किया जाता है। जियोडाइनेमो में प्रवाहकीय द्रव बाहरी कोर में तरल लोहा है, और सौर डायनेमो में टैकोक्लाइन पर आयनित गैस है। खगोलभौतिकीय पिंडों का डायनेमो सिद्धांत मैग्नेटोहाइड्रोडायनामिक समीकरणों का उपयोग यह जांचने के लिए करता है कि द्रव कैसे चुंबकीय क्षेत्र को लगातार पुन: उत्पन्न कर सकता है।[9]

एक बार यह माना जाता था कि द्विध्रुव, जिसमें पृथ्वी के अधिकांश चुंबकीय क्षेत्र चूँकि हैं और 11.3 डिग्री तक घूर्णन अक्ष के साथ गलत संरेखित है, पृथ्वी में सामग्री के स्थायी चुंबकीयकरण के कारण होता है। इसका मतलब यह है कि डायनेमो सिद्धांत मूल रूप से सूर्य के चुंबकीय क्षेत्र को पृथ्वी के साथ इसके संबंध में समझाने के लिए इस्तेमाल किया गया था। चूँकि, यह परिकल्पना, जिसे प्रारंभिक में 1919 में जोसेफ लार्मर द्वारा प्रस्तावित किया गया था, को चुंबकीय धर्मनिरपेक्ष भिन्नता , पुराचुम्बकत्व ( भू-चुंबकीय उत्क्रमण सहित), सीस्मोलॉजी और सौर प्रणाली के तत्वों की प्रचुरता के व्यापक अध्ययन के कारण संशोधित किया गया है। इसके अलावा, कार्ल फ्रेडरिक गॉस के सिद्धांतों को चुंबकीय प्रेक्षणों पर लागू करने से पता चलता है कि पृथ्वी के चुंबकीय क्षेत्र की उत्पत्ति बाहरी के बजाय आंतरिक थी।

डायनेमो को संचालित करने के लिए तीन आवश्यक शर्तें हैं:

  • एक विद्युत प्रवाहकीय द्रव माध्यम
  • ग्रहीय घूर्णन द्वारा प्रदान की जाने वाली गतिज ऊर्जा
  • द्रव के भीतर संवहन गति को चलाने के लिए एक आंतरिक ऊर्जा स्रोत।[10]

पृथ्वी के स्थितियों में, बाहरी कोर में तरल लोहे के संवहन द्वारा चुंबकीय क्षेत्र को प्रेरित और लगातार बनाए रखा जाता है। क्षेत्र को चूँकि करने के लिए एक घूर्णन द्रव की आवश्यकता होती है। बाहरी कोर में घूर्णन की आपूर्ति पृथ्वी के घूर्णन के कारण होने वाले कोरिओलिस प्रभाव द्वारा की जाती है। कोरिओलिस बल द्रव गतियों और विद्युत धाराओं को घूर्णन अक्ष के साथ संरेखित कॉलम (टेलर कॉलम भी देखें) में व्यवस्थित करता है। प्रेरण या चुंबकीय क्षेत्र का निर्माण प्रेरण समीकरण द्वारा वर्णित है:

जहां यू वेग है, बी चुंबकीय क्षेत्र है, टी समय है, और के साथ चुंबकीय विसारकता है विद्युत चालकता और पारगम्यता (विद्युत चुंबकत्व) । पहले पद के दाहिने हाथ की ओर दूसरे पद का अनुपात चुंबकीय रेनॉल्ड्स संख्या देता है, चुंबकीय क्षेत्र के संवहन का प्रसार के लिए एक आयाम रहित अनुपात।

टाइडल हीटिंग डायनेमो को सपोर्ट करता है

आकाशीय पिंडों के बीच ज्वारीय बल घर्षण उत्पन्न करते हैं जो उनके आंतरिक भाग को गर्म कर देता है। इसे टाइडल हीटिंग के रूप में जाना जाता है, और यह इंटीरियर को तरल अवस्था में रखने में सहायक करता है। डायनेमो बनाने के लिए एक तरल इंटीरियर की आवश्यकता होती है जो बिजली का संचालन कर सके। शनि के एन्सेलाडस और बृहस्पति के आयो में अपने आंतरिक कोर को द्रवित करने के लिए पर्याप्त ज्वारीय ताप है, किन्तु वे डायनेमो नहीं बना सकते क्योंकि वे बिजली का संचालन नहीं कर सकते।[11][12] पारा, अपने छोटे आकार के आतिरिक्त, एक चुंबकीय क्षेत्र रखता है, क्योंकि इसकी लोहे की संरचना और इसकी अत्यधिक अण्डाकार कक्षा से उत्पन्न घर्षण द्वारा निर्मित एक प्रवाहकीय तरल कोर है। [13] यह माना जाता है कि चंद्रमा के पास एक बार एक चुंबकीय क्षेत्र था, जो चुंबकीय चंद्र चट्टानों से साक्ष्य के आधार पर था, क्योंकि यह पृथ्वी से अल्पकालिक दूरी के कारण ज्वारीय ताप उत्पन्न करता था।[14] एक ग्रह की कक्षा और घूर्णन एक तरल कोर प्रदान करने में सहायक करता है, और गतिशील ऊर्जा को पूरक करता है जो डायनेमो क्रिया का समर्थन करता है।

किनेमेटिक डायनमो सिद्धांत

कीनेमेटिक डायनेमो सिद्धांत में गतिशील चर होने के बजाय वेग क्षेत्र निर्धारित है: मॉडल चुंबकीय क्षेत्र के जवाब में विकृत प्रवाह के लिए कोई प्रावधान नहीं करता है। यह विधि पूरी तरह से अरैखिक अराजक डायनेमो का समय चर व्यवहार प्रदान नहीं कर सकती है, लेकिन इसका अध्ययन करने के लिए इस्तेमाल किया जा सकता है कि प्रवाह संरचना और गति के साथ चुंबकीय क्षेत्र की ताकत कैसे भिन्न होती है।

ओम के नियम के कर्ल के साथ-साथ मैक्सवेल के समीकरणों का उपयोग करके, कोई भी चुंबकीय क्षेत्र (बी) के लिए मूल रूप से एक रैखिक आइगेनवेल्यू समीकरण प्राप्त कर सकता है, जो यह मानते हुए किया जा सकता है कि चुंबकीय क्षेत्र वेग क्षेत्र से स्वतंत्र है। एक एक महत्वपूर्ण चुंबकीय रेनॉल्ड्स संख्या पर आता है, जिसके ऊपर प्रवाह की शक्ति लगाए गए चुंबकीय क्षेत्र को बढ़ाने के लिए पर्याप्त है, और जिसके नीचे चुंबकीय क्षेत्र विलुप्त हो जाता है।

संभावित डायनेमो का व्यावहारिक उपाय

कीनेमेटिक डायनेमो सिद्धांत की सबसे कार्यात्मक विशेषता यह है कि इसका उपयोग यह परीक्षण करने के लिए किया जा सकता है कि वेग क्षेत्र डायनेमो क्रिया के लिए सक्षम है या नहीं। प्रयोगात्मक रूप से एक छोटे चुंबकीय क्षेत्र के लिए एक निश्चित वेग क्षेत्र को लागू करके, कोई यह देख सकता है कि लागू प्रवाह के उत्तर में चुंबकीय क्षेत्र बढ़ता है (या नहीं)। यदि चुंबकीय क्षेत्र बढ़ता है, तो प्रणाली या तो डायनेमो क्रिया करने में सक्षम है या डायनेमो है, किन्तु यदि चुंबकीय क्षेत्र नहीं बढ़ता है, तो इसे केवल "डायनेमो नहीं" कहा जाता है।

झिल्ली प्रतिमान नामक एक समान विधि ब्लैक होल को देखने का एक विधि है जो डायनेमो सिद्धांत की भाषा में उनकी सतहों के पास की सामग्री को व्यक्त करने की अनुमति देता है।

टोपोलॉजिकल सुपरसिमेट्री का स्वतःस्फूर्त टूटना

काइनेमैटिक डायनेमो को पृष्ठभूमि पदार्थ के प्रवाह से संबंधित संबंधित स्टोचैस्टिक डिफरेंशियल इक्वेशन के टोपोलॉजिकल सुपरसिमेट्री के सहज टूटने की घटना के रूप में भी देखा जा सकता है।[15] स्टोचैस्टिक गतिकी के सुपरसिमेट्रिक सिद्धांत के भीतर, यह सुपरसिमेट्री सभी स्टोचैस्टिक अंतर समीकरण का एक आंतरिक गुण है, इसकी व्याख्या यह है कि मॉडल का चरण स्थान निरंतर समय प्रवाह के माध्यम से निरंतरता को बरकरार रखता है। जब उस प्रवाह की निरंतरता अनायास टूट जाती है, तो सिस्टम कैओस सिद्धांत की स्टोकेस्टिक अवस्था में होता है।[16] दूसरे शब्दों में, अंतर्निहित पृष्ठभूमि पदार्थ में अराजक प्रवाह के कारण कीनेमेटिक डायनेमो उत्पन्न होता है।

नॉनलाइनियर डायनेमो सिद्धांत

तरल गति को प्रभावित करने के लिए चुंबकीय क्षेत्र पर्याप्त मजबूत होने पर कीनेमेटिक सन्निकटन अमान्य हो जाता है। उस स्थितियों में लोरेंत्ज़ बल से वेग क्षेत्र प्रभावित हो जाता है, और इसलिए चुंबकीय क्षेत्र में प्रेरण समीकरण अब रैखिक नहीं है। ज्यादातर मामलों में यह डायनेमो के आयाम की शमन की ओर जाता है। ऐसे डायनेमो को कभी-कभी हाइड्रोमैग्नेटिक डायनेमो भी कहा जाता है।[17]खगोल भौतिकी और भूभौतिकी में वस्तुतः सभी डायनेमो हाइड्रोमैग्नेटिक डायनेमो हैं।

सिद्धांत का मुख्य विचार यह है कि बाहरी कोर में उपस्थित कोई भी छोटा चुंबकीय क्षेत्र लोरेंत्ज़ बल के कारण वहां गतिमान द्रव में धाराएँ बनाता है। एम्पीयर के नियम के कारण ये धाराएँ और अधिक चुंबकीय क्षेत्र बनाती हैं। द्रव गति के साथ, धाराओं को इस तरह से ले जाया जाता है कि चुंबकीय क्षेत्र मजबूत हो जाता है (जितनी देर तक नकारात्मक है[18]).इस प्रकार एक "बीज" चुंबकीय क्षेत्र तब तक मजबूत और मजबूत हो सकता है जब तक कि यह उपस्थिता गैर-चुंबकीय बलों से संबंधित कुछ मूल्य तक नहीं पहुंच जाता।

संख्यात्मक मॉडल का उपयोग पूरी तरह से अरेखीय डायनेमो का अनुकरण करने के लिए किया जाता है। निम्नलिखित समीकरणों का उपयोग किया जाता है:

  • प्रेरण समीकरण, ऊपर प्रस्तुत किया गया।
  • नगण्य विद्युत क्षेत्र के लिए मैक्सवेल के समीकरण:
  • द्रव्यमान के संरक्षण के लिए निरंतरता समीकरण, जिसके लिए बूसिनईएसक्यू सन्निकटन अक्सर प्रयोग किया जाता है:
  • संवेग के संरक्षण के लिए नेवियर-स्टोक्स समीकरण, फिर से उसी सन्निकटन में, बाहरी बल के रूप में चुंबकीय बल और गुरुत्वाकर्षण बल के साथ:
कहाँ पे कीनेमेटिक विस्कोसिटी है, औसत घनत्व है और सापेक्ष घनत्व गड़बड़ी है जो उछाल प्रदान करता है (थर्मल संवहन के लिए जहां पे थर्मल विस्तार का गुणांक है), पृथ्वी की घूर्णन दर है, और विद्युत प्रवाह घनत्व है।
  • एक परिवहन समीकरण, सामान्यतः गर्मी का (कभी-कभी प्रकाश तत्व एकाग्रता का):
जहाँ पे T तापमान है, तापीय चालकता के साथ तापीय विसारकता है, k ऊष्मीय चालकता, ताप क्षमता, और घनत्व, और

एक वैकल्पिक ऊष्मा स्रोत है। अक्सर दबाव गतिशील दबाव होता है, जिसमें हाइड्रोस्टेटिक दबाव और केन्द्रापसारक क्षमता को हटा दिया जाता है।

ये समीकरण तब गैर-आयामी होते हैं, गैर-आयामी पैरामीटर प्रस्तुत करते हैं,

जहाँ पे Ra रेले संख्या है, E एकमान संख्या , Pr और Pm प्रांटल और चुंबकीय क्षेत्र संख्याएँ हैं। चुंबकीय क्षेत्र स्केलिंग अक्सर Elsasser संख्या इकाइयों में होती है।


चुंबकीय और गतिज ऊर्जा के बीच ऊर्जा रूपांतरण

के साथ नेवियर-स्टोक्स समीकरण के उपरोक्त रूप का अदिश गुणनफल गतिज ऊर्जा घनत्व में वृद्धि की दर देता है, , बाएं हाथ की ओर। दाहिनी ओर का अंतिम पद तब है , लोरेंत्ज़ बल निरंतर आवेश वितरण के कारण गतिज ऊर्जा में स्थानीय योगदान।

के साथ प्रेरण समीकरण का अदिश गुणनफल चुंबकीय ऊर्जा घनत्व में वृद्धि की दर देता है, , बाएं हाथ की ओर। दाहिनी ओर का अंतिम पद तब है चूंकि समीकरण वॉल्यूम-एकीकृत है, यह शब्द भागों द्वारा एकीकरण है (और ट्रिपल उत्पाद # स्केलर ट्रिपल उत्पाद पहचान के दोहरे उपयोग के साथ) (जहां मैक्सवेल के समीकरणों में से एक का उपयोग किया गया था)। द्रव गति के कारण चुंबकीय ऊर्जा में यह स्थानीय योगदान है।

इस प्रकार शब्द गतिज ऊर्जा के चुंबकीय ऊर्जा में रूपांतरण की दर है। डायनेमो द्वारा चुंबकीय क्षेत्र उत्पन्न करने के लिए यह कम से कम मात्रा के हिस्से में गैर-ऋणात्मक होना चाहिए।[18]

ऊपर दिए गए आरेख से यह स्पष्ट नहीं है कि यह पद धनात्मक क्यों होना चाहिए। शुद्ध प्रभावों के विचार पर एक साधारण तर्क आधारित हो सकता है। चुंबकीय क्षेत्र बनाने के लिए, शुद्ध विद्युत प्रवाह को ग्रह के घूर्णन के अक्ष के चारों ओर लपेटना चाहिए। उस स्थिति में, शब्द के सकारात्मक होने के लिए, संवाहक पदार्थ का शुद्ध प्रवाह घूर्णन के अक्ष की ओर होना चाहिए। आरेख केवल ध्रुवों से भूमध्य रेखा तक शुद्ध प्रवाह दिखाता है। चूँकि बड़े पैमाने पर संरक्षण के लिए भूमध्य रेखा से ध्रुवों की ओर एक अतिरिक्त प्रवाह की आवश्यकता होती है। यदि वह प्रवाह रोटेशन की धुरी के साथ था, तो इसका मतलब है कि वांछित प्रभाव उत्पन्न करने वाले रोटेशन के अक्ष की ओर दिखाए गए प्रवाह से परिसंचरण पूरा हो जाएगा।

पृथ्वी के डायनेमो द्वारा निर्मित चुंबकीय क्षेत्र के परिमाण का क्रम

गतिज ऊर्जा के चुंबकीय ऊर्जा में रूपांतरण की दर के लिए उपरोक्त सूत्र, बल द्वारा किए गए कार्य की दर के बराबर है बाह्य कोर पदार्थ पर, जिसका वेग है . यह कार्य द्रव पर कार्यरत गैर-चुंबकीय बलों का परिणाम है।

उनमें से, गुरुत्वाकर्षण बल और केन्द्रापसारक बल रूढ़िवादी वेक्टर क्षेत्र हैं और इसलिए बंद छोरों में चलने वाले द्रव में कोई समग्र योगदान नहीं है। एकमान संख्या (ऊपर परिभाषित), जो दो शेष बलों, अर्थात् चिपचिपाहट और कोरिओलिस बल के बीच का अनुपात है, पृथ्वी के बाहरी कोर के अंदर बहुत कम है, क्योंकि इसकी चिपचिपाहट कम है (1.2-1.5 × 10)−2 पास्कल-सेकंड [19] इसकी तरलता के कारण।

इस प्रकार कार्य में मुख्य समय-औसत योगदान कोरिओलिस बल का है, जिसका आकार है हालांकि यह मात्रा और केवल परोक्ष रूप से संबंधित हैं और सामान्य रूप से स्थानीय रूप से समान नहीं हैं (इस प्रकार वे एक दूसरे को प्रभावित करते हैं किन्तु एक ही स्थान और समय में नहीं)।

वर्तमान घनत्व J ओम के नियम#चुंबकीय प्रभाव|ओम के नियम के अनुसार स्वयं चुंबकीय क्षेत्र का परिणाम है। फिर से, पदार्थ की गति और धारा प्रवाह के कारण, यह जरूरी नहीं कि एक ही स्थान और समय पर क्षेत्र हो। चूँकि इन संबंधों का उपयोग अभी भी मात्राओं के परिमाण के क्रम को कम करने के लिए किया जा सकता है।

परिमाण के क्रम के संदर्भ में, और , दे रहा है या:

दोनों पक्षों के बीच त्रुटिहीन अनुपात Elsasser संख्या का वर्गमूल है।

ध्यान दें कि इस सन्निकटन से चुंबकीय क्षेत्र की दिशा का अनुमान नहीं लगाया जा सकता है (कम से कम इसका चिन्ह नहीं) क्योंकि यह वर्गाकार प्रतीत होता है, और वास्तव में, कभी-कभी पृथ्वी का चुंबकीय क्षेत्र#चुंबकीय क्षेत्र उत्क्रमण होता है, हालांकि सामान्यतः पर यह एक समान अक्ष पर स्थित होता है .

पृथ्वी के बाहरी कोर के लिए, ρ लगभग 104 kg/m3,[19] Ω = 2π/day = 7.3×10−5/ सेकंड और σ लगभग 107Ω−1m−1 .[20] यह 2.7×10−4 टेस्ला (यूनिट) है

एक चुंबकीय द्विध्रुव के चुंबकीय क्षेत्र की दूरी में व्युत्क्रम घनीय निर्भरता होती है, इसलिए पृथ्वी की सतह पर इसके परिमाण के क्रम को उपरोक्त परिणाम को गुणा करके अनुमानित किया जा सकता है {{{1}}} 2.5×10 दे रहा है−5 Tesla, 3×10 के मापे गए मान से ज़्यादा दूर नहीं है−5 टेस्ला भूमध्य रेखा पर।

संख्यात्मक मॉडल

द्विध्रुवीय उत्क्रमण से पहले Glatzmaier मॉडल का एक दृश्य प्रतिनिधित्व

मोटे तौर पर, जियोडाइनेमो के मॉडल ऊपर दिए गए अनुभागों में उल्लिखित कुछ शर्तों और समीकरणों को देखते हुए देखे गए डेटा के अनुरूप चुंबकीय क्षेत्र उत्पन्न करने का प्रयास करते हैं। मैग्नेटोहाइड्रोडायनामिक्स समीकरणों को सफलतापूर्वक लागू करना विशेष महत्व का था क्योंकि उन्होंने डायनेमो मॉडल को आत्म-संगति के लिए प्रेरित किया। हालांकि जियोडाइनेमो मॉडल विशेष रूप से प्रचलित हैं, डायनेमो मॉडल आवश्यक रूप से जियोडायनेमो तक ही सीमित नहीं हैं; सौर और सामान्य डायनेमो मॉडल भी रुचि के हैं। डायनेमो मॉडल का अध्ययन करने से भूभौतिकी के क्षेत्र में उपयोगिता होती है क्योंकि ऐसा करने से यह पता चल सकता है कि कैसे विभिन्न तंत्र चुंबकीय क्षेत्र बनाते हैं जैसे कि पृथ्वी जैसे खगोलीय पिंडों द्वारा उत्पादित और कैसे वे चुंबकीय क्षेत्र को कुछ विशेषताओं को प्रदर्शित करने का कारण बनाते हैं, जैसे ध्रुव उत्क्रमण।

डायनेमो के संख्यात्मक मॉडल में प्रयुक्त समीकरण अत्यधिक जटिल होते हैं। दशकों तक, सिद्धांतकार ऊपर वर्णित दो आयामी काइनेमेटिक डायनेमो मॉडल तक ही सीमित थे, जिसमें द्रव गति को पहले से चुना जाता है और चुंबकीय क्षेत्र पर प्रभाव की गणना की जाती है। डायनेमो के रैखिक से अरैखिक, तीन आयामी मॉडल की प्रगति मैग्नेटोहाइड्रोडायनामिक समीकरणों के समाधान की खोज से अधिक हद तक बाधित थी, जो कीनेमेटिक मॉडल में की गई कई मान्यताओं की आवश्यकता को समाप्त कर देती है और आत्म-स्थिरता की अनुमति देती है।

द्विध्रुवीय उत्क्रमण के दौरान Glatzmaier मॉडल का एक दृश्य प्रतिनिधित्व

पहले स्व-सुसंगत डायनेमो मॉडल, जो तरल गति और चुंबकीय क्षेत्र दोनों को निर्धारित करते हैं, 1995 में दो समूहों द्वारा विकसित किए गए थे, एक जापान में[21] और एक संयुक्त राज्य अमेरिका में है।[22][23] उत्तरार्द्ध को जियोडाइनेमो के संबंध में एक मॉडल के रूप में बनाया गया था और इसने महत्वपूर्ण ध्यान आकर्षित किया क्योंकि इसने पृथ्वी के क्षेत्र की कुछ विशेषताओं को सफलतापूर्वक पुन: प्रस्तुत किया।[18]इस सफलता के बाद, उचित, तीन आयामी डायनेमो मॉडल के विकास में बड़ी तेजी आई।[18]

हालांकि कई आत्म-संगत मॉडल अब उपस्थित हैं, मॉडल के बीच महत्वपूर्ण अंतर हैं, दोनों परिणामों में वे उत्पादन करते हैं और जिस तरह से वे विकसित किए गए थे।[18]एक जियोडाइनेमो मॉडल को विकसित करने की जटिलता को देखते हुए, ऐसे कई स्थान हैं जहां विसंगतियां हो सकती हैं जैसे डायनेमो के लिए ऊर्जा प्रदान करने वाले तंत्र को चूँकि करते समय, समीकरणों में उपयोग किए जाने वाले मापदंडों के लिए मान चुनते समय, या समीकरणों को सामान्य करते समय हो सकने वाले कई अंतरों के आतिरिक्त, अधिकांश मॉडलों में स्पष्ट अक्षीय द्विध्रुव जैसी साझा विशेषताएं होती हैं। इनमें से कई मॉडलों में, धर्मनिरपेक्ष भिन्नता और भू-चुंबकीय उत्क्रमण जैसी घटनाओं को भी सफलतापूर्वक पुन: निर्मित किया गया है।[18]

अवलोकन

द्विध्रुवीय उत्क्रमण के बाद Glatzmaier मॉडल का एक दृश्य प्रतिनिधित्व

डायनेमो मॉडल से कई अवलोकन किए जा सकते हैं। मॉडल का उपयोग यह अनुमान लगाने के लिए किया जा सकता है कि चुंबकीय क्षेत्र समय के साथ कैसे बदलते हैं और मॉडल और पृथ्वी के बीच समानता खोजने के लिए देखे गए पुराचुंबकत्व डेटा से तुलना की जा सकती है। पुराचुंबकीय प्रेक्षणों की अनिश्चितता के कारण, हालांकि, तुलना पूरी तरह से मान्य या उपयोगी नहीं हो सकती है।[18] सरलीकृत जियोडाइनेमो मॉडल ने डायनेमो संख्या (बाहरी कोर में विभेदक घुमाव और दर्पण-असममित संवहन द्वारा निर्धारित (उदाहरण के लिए जब संवहन उत्तर में एक दिशा और दक्षिण में दूसरी दिशा का पक्ष लेता है) और चुंबकीय ध्रुव उत्क्रमण के बीच संबंधों को दिखाया है। जियोडाइनेमो और सूर्य के डायनेमो के बीच समानताएं।कई[18] मॉडलों में, ऐसा प्रतीत होता है कि चुंबकीय क्षेत्रों में कुछ यादृच्छिक परिमाण होते हैं जो एक सामान्य प्रवृत्ति का अनुसरण करते हैं जो औसत से शून्य तक होता है।[18] इन अवलोकनों के अलावा, जियोडाइनेमो को शक्ति प्रदान करने वाले तंत्रों के बारे में सामान्य अवलोकन इस आधार पर किए जा सकते हैं कि मॉडल पृथ्वी से एकत्र किए गए वास्तविक डेटा को कितनी त्रुटिहीनता से दर्शाता है।

आधुनिक मॉडलिंग

डायनेमो मॉडलिंग की जटिलता इतनी अधिक है कि जियोडाइनेमो के मॉडल सुपर कंप्यूटर की वर्तमान शक्ति द्वारा सीमित हैं, विशेष रूप से क्योंकि बाहरी कोर के एकमैन नंबर और रेले संख्या संख्या की गणना करना अत्यंत कठिन है और इसके लिए बड़ी संख्या में संगणनाओं की आवश्यकता होती है।

1995 में आत्मनिर्भर सफलता के बाद से डायनेमो मॉडलिंग में कई सुधार प्रस्तावित किए गए हैं। जटिल चुंबकीय क्षेत्र परिवर्तनों का अध्ययन करने में एक सुझाव अभिकलन को सरल बनाने के लिए वर्णक्रमीय तरीकों को लागू करना है।[24] अंततः, जब तक कंप्यूटर की शक्ति में अधिक सुधार नहीं किया जाता है, यथार्थवादी डायनेमो मॉडल की गणना के तरीकों को और अधिक कुशल बनाना होगा, इसलिए संख्यात्मक डायनेमो मॉडलिंग की उन्नति के लिए मॉडल की गणना के तरीकों में सुधार करना बहुत महत्वपूर्ण है।

यह भी देखें

संदर्भ

  1. "How does the Earth's core generate a magnetic field?". USGS FAQs. United States Geological Survey. Archived from the original on 18 January 2015. Retrieved 21 October 2013.
  2. Larmor, J. (1919). "How could a rotating body such as the Sun become a magnet?". Reports of the British Association. 87: 159–160.
  3. Larmor, J. (1919). "Possible rotational origin of magnetic fields of sun and earth". Electrical Review. 85: 412ff. Reprinted in Engineering, vol. 108, pages 461ff (3 October 1919).
  4. Nye, Mary Jo (1 March 1999). "Temptations of theory, strategies of evidence: P. M. S. Blackett and the earth's magnetism, 1947–52". The British Journal for the History of Science. 32 (1): 69–92. doi:10.1017/S0007087498003495. S2CID 143344977.
  5. Merrill, McElhinny & McFadden 1996, page 17 claim that in 1905, shortly after composing his special relativity paper, Albert Einstein described the origin of the Earth's magnetic field as being one of the great unsolved problems facing modern physicists. However, they do not provide details on where he made this statement.
  6. Sanders, Robert (2003-12-10). "Radioactive potassium may be major heat source in Earth's core". UC Berkeley News. Retrieved 2007-02-28.
  7. Sakuraba, Ataru; Paul H. Roberts (4 October 2009). "Generation of a strong magnetic field using uniform heat flux at the surface of the core". Nature Geoscience. 2 (11): 802–805. Bibcode:2009NatGe...2..802S. doi:10.1038/ngeo643.
  8. Buffett, Bruce (2009). "Geodynamo: A matter of boundaries". Nature Geoscience. 2 (11): 741–742. Bibcode:2009NatGe...2..741B. doi:10.1038/ngeo673.
  9. Brandenburg, Axel (2007). "Hydromagnetic dynamo theory". Scholarpedia. 2 (3): 2309. Bibcode:2007SchpJ...2.2309B. doi:10.4249/scholarpedia.2309.
  10. E. Pallé (2010). The Earth as a Distant Planet: A Rosetta Stone for the Search of Earth-Like Worlds (Astronomy and Astrophysics Library). Berlin: Springer. pp. 316–317. ISBN 978-1-4419-1683-9. Retrieved 17 July 2010.
  11. Steigerwald, Bill (October 6, 2010). "Saturn's Icy Moon May Keep Oceans Liquid with Wobble". NASA. Retrieved August 14, 2012.
  12. Cassis, Nikki (March 19, 2012). "Geologic map of Jupiter's moon Io details an otherworldly volcanic surface". Astrogeology Science Center. Retrieved August 14, 2012.[permanent dead link]
  13. "Mercury's Surprising Core and Landscape Curiosities". MESSENGER. Carnegie Institution for Science. March 21, 2012. Retrieved August 14, 2012.
  14. Stevens, Tim (November 9, 2011). "Ancient lunar dynamo may explain magnetized moon rocks". University of California. Retrieved August 14, 2012.
  15. Ovchinnikov, I.V.; Ensslin, T.A. (April 2016). "Kinematic dynamo, supersymmetry breaking, and chaos". Physical Review D. 93 (8): 085023. arXiv:1512.01651. Bibcode:2016PhRvD..93h5023O. doi:10.1103/PhysRevD.93.085023. S2CID 59367815.
  16. Ovchinnikov, I.V. (March 2016). "Introduction to Supersymmetric Theory of Stochastics". Entropy. 18 (4): 108. arXiv:1511.03393. Bibcode:2016Entrp..18..108O. doi:10.3390/e18040108. S2CID 2388285.
  17. Parker, Eugene N. (September 1955). "Hydromagnetic Dynamo Models". The Astrophysical Journal. 122: 293–314. Bibcode:1955ApJ...122..293P. doi:10.1086/146087.
  18. Jump up to: 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 Kono, Masaru; Roberts, Paul H. (2002). "Recent geodynamo simulations and observations of the geomagnetic field". Reviews of Geophysics. 40 (4): 1–53. Bibcode:2002RvGeo..40.1013K. doi:10.1029/2000RG000102.
  19. Jump up to: 19.0 19.1 de Wijs, G. A., Kresse, G., Vočadlo, L., Dobson, D., Alfe, D., Gillan, M. J., & Price, G. D. (1998). The viscosity of liquid iron at the physical conditions of the Earth's core. Nature, 392(6678), 805.
  20. Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K., & Ohishi, Y. (2016). Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature, 534(7605), 95. Link to a summary
  21. Kageyama, Akira; Sato, Tetsuya (1 January 1995). "Computer simulation of a magnetohydrodynamic dynamo. II". Physics of Plasmas. 2 (5): 1421–1431. Bibcode:1995PhPl....2.1421K. doi:10.1063/1.871485.
  22. Glatzmaier, Gary A.; Roberts, Paul H. (1995). "A three-dimensional self-consistent computer simulation of a geomagnetic field reversal". Nature. 377 (6546): 203–209. Bibcode:1995Natur.377..203G. doi:10.1038/377203a0. S2CID 4265765.
  23. Glatzmaier, G; Roberts, Paul H. (1995). "A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle". Physics of the Earth and Planetary Interiors. 91 (1–3): 63–75. Bibcode:1995PEPI...91...63G. doi:10.1016/0031-9201(95)03049-3.
  24. Avery, Margaret S.; Constable, Catherine G.; Davies, Christopher J.; Gubbins, David (2019-01-01). "Spectral methods for analyzing energy balances in geodynamo simulations" (PDF). Physics of the Earth and Planetary Interiors. 286: 127–137. Bibcode:2019PEPI..286..127A. doi:10.1016/j.pepi.2018.10.002. ISSN 0031-9201.