दृढ़ पिण्ड गतिकी
Part of a series on |
चिरसम्मत यांत्रिकी |
---|
गतिशीलता के भौतिक विज्ञान में, दृढ़ पिण्ड की गतिशीलता बाह्य बल की कार्रवाई के अनुसार परस्पर जुड़े भौतिक निकाय की प्रणालियों के संचलन का अध्ययन करती है। यह धारणा कि निकाय दृढ़ हैं (अर्थात वे लागू बलों की कार्रवाई के अनुसार विरूपण (भौतिकी) नहीं करते हैं) विश्लेषण को सरल बनाता है, उन मापदंडों को कम करके जो संदर्भ विन्यास के अनुवाद और घूर्णन के लिए प्रणाली के समाकृति का वर्णन करते हैं। प्रत्येक पिण्ड से जुड़ा हुआ है।[1][2] यह तरल पदार्थ, अत्यधिक लोच (भौतिकी) , और प्लास्टिसिटी (भौतिकी) व्यवहार प्रदर्शित करने वाले निकायों को बाहर करता है।
दृढ़ पिण्ड प्रणाली की गतिशीलता का वर्णन गतिकी के नियमों और न्यूटन के दूसरे नियम (न्यूटन के गति के नियम) या उनके व्युत्पन्न रूप, लैग्रैंगियन यांत्रिकी के अनुप्रयोग द्वारा किया जाता है। गति के इन समीकरणों का समाधान समय-भिन्न प्रणाली के रूप में स्थिति, गति और प्रणाली के अलग-अलग घटकों के त्वरण का विवरण समग्र प्रणाली ही प्रदान करता है। यांत्रिक प्रणालियों के कंप्यूटर अनुकरण में दृढ़ पिण्ड की गतिशीलता का निर्माण और समाधान एक महत्वपूर्ण उपकरण है।
समतलक दृढ़ पिण्ड गतिकी
यदि कणों की प्रणाली निश्चित समतल के समानांतर चलती है, तो प्रणाली को तलीय संचलन के लिए बाधित कहा जाता है। इस मामले में, N कणों की दृढ़ प्रणाली के लिए न्यूटन के नियम (काइनेटिक्स), Pi, i=1,...,N, सरल करें क्योंकि k दिशा में कोई गति नहीं है। प्राप्त करने के लिए संदर्भ बिंदु R पर परिणामी बल और आघूर्ण बल निर्धारित करें
दृढ़ पिंड की शुद्धगतिकी से कण Pi के त्वरण का सूत्र प्राप्त होता है संदर्भ कण की स्थिति R और त्वरण A के साथ-साथ कोणीय वेग सदिश ω और कणों की दृढ़ प्रणाली के कोणीय त्वरण सदिश α के रूप में,
इससे प्रणाली पर परिणामी बल उत्पन्न होता है
संहति-केन्द्र C को संदर्भ बिंदु के रूप में उपयोग करें, इसलिए न्यूटन के नियमों के लिए ये समीकरण सरल हो जाते हैं
तीन आयामों में दृढ़ पिण्ड
अभिविन्यास या दृष्टिकोण विवरण
तीन आयामों में दृढ़ पिण्ड के झुकाव का वर्णन करने के लिए कई तरीके विकसित किए गए हैं। उन्हें निम्नलिखित खंडों में संक्षेपित किया गया है।
यूलर कोण
अभिविन्यास का प्रतिनिधित्व करने का पहला प्रयास लियोनहार्ड यूलर को दिया गया है। उन्होंने तीन संदर्भ विन्यास की कल्पना की जो एक को दूसरे के चारों ओर घुमा सकते हैं, और महसूस किया कि निश्चित संदर्भ विन्यास के साथ शुरू करके और तीन घूर्णन का प्रदर्शन करके, वह समष्टि में कोई अन्य संदर्भ विन्यास प्राप्त कर सकते हैं (ऊर्ध्वाधर अक्ष को ठीक करने के लिए दो घूर्णन का उपयोग करके और दूसरे को अन्य दो अक्ष को ठीक करें)। इन तीन घूर्णन के मानो को यूलर कोण कहा जाता है। सामान्यतः, अग्रगमन, पोषण, और आंतरिक घूर्णन को निरूपित करने के लिए प्रयोग किया जाता है।
टैट-ब्रायन एंगल्स
ये तीन कोण हैं, जिन्हें यव, पिच और रोल, नेविगेशन कोण और कार्डन कोण भी कहा जाता है। गणितीय रूप से वे यूलर कोणों के बारह स्थितिज समुच्चय के अंदर छह संभावनाओं के समुच्चय का गठन करते हैं, जो हवाई जहाज जैसे वाहन के उन्मुखीकरण का वर्णन करने के लिए सबसे अच्छा उपयोग किया जाता है। एयरोस्पेस इंजीनियरिंग में उन्हें सामान्यतः यूलर कोण कहा जाता है।
अभिविन्यास सदिश
यूलर ने यह भी महसूस किया कि दो घूर्णन की संरचना अलग निश्चित अक्ष (यूलर के घूर्णन प्रमेय) के एक ही घूर्णन के बराबर है। इसलिए, पूर्व के तीन कोणों की संरचना केवल एक घूर्णन के बराबर होनी चाहिए, जिसका अक्ष लांबिक विकसित होने तक गणना करने के लिए जटिल था।
इस तथ्य के आधार पर उन्होंने घूर्णन अक्ष पर सदिश और कोण के मान के बराबर मापांक के साथ किसी भी घूर्णन का वर्णन करने के लिए सदिश तरीका पेश किया। इसलिए, किसी भी अभिविन्यास को घूर्णन सदिश (जिसे यूलर सदिश भी कहा जाता है) द्वारा दर्शाया जा सकता है जो इसे संदर्भ विन्यास से ले जाता है। जब अभिविन्यास का प्रतिनिधित्व करने के लिए उपयोग किया जाता है, तो घूर्णन सदिश को सामान्यतः अभिविन्यास सदिश या अभिवृत्ति सदिश कहा जाता है।
एक समान विधि, जिसे अक्ष-कोण प्रतिनिधित्व कहा जाता है, घूर्णन अक्ष के साथ संरेखित एकांक सदिश का उपयोग करके घूर्णन या अभिविन्यास और कोण को इंगित करने के लिए अलग मान (चित्र देखें) का वर्णन करता है।
अभिविन्यास आव्यूह
आव्यूहों की शुरुआत के साथ यूलर प्रमेयों को फिर से लिखा गया। घूर्णन को लांबिक आव्यूह द्वारा वर्णित किया गया था जिसे घूर्णन लांबिक या दिशा कोसाइन लांबिक कहा जाता है। जब किसी अभिविन्यास का प्रतिनिधित्व करने के लिए उपयोग किया जाता है, तो घूर्णन आव्यूह को सामान्यतः अभिविन्यास आव्यूह या अभिवृत्ति आव्यूह कहा जाता है।
उपर्युक्त यूलर सदिश एक घूर्णन आव्यूह का अभिलक्षणिक सदिश है (घूर्णन आव्यूह का अद्वितीय वास्तविक अभिलक्षणिक मान है)। दो घूर्णन आव्यूह का उत्पाद घूर्णन की संरचना है। इसलिए, पहले की तरह, जिस फ्रेम का हम वर्णन करना चाहते हैं, उसे प्राप्त करने के लिए प्रारंभिक फ्रेम से घूर्णन के रूप में अभिविन्यास दिया जा सकता है।
n-विमीय समिष्ट में गैर-समरूपता वस्तु का विन्यास समिष्ट (भौतिकी) SO(n) × Rn है | किसी निकाय को स्पर्शरेखा समिष्ट के आधार को जोड़कर अभिविन्यास की कल्पना की जा सकती है। जिस दिशा में प्रत्येक सदिश इंगित करता है वह अपना अभिविन्यास निर्धारित करता है।
अभिविन्यास चतुर्भुज
घूर्णन का वर्णन करने का अन्य तरीका चतुर्भुज और स्थानिक घूर्णन का उपयोग कर रहा है, जिसे वर्सर्स भी कहा जाता है। वे घूर्णन आव्यूह और घूर्णन सदिश के बराबर हैं। घूर्णन सदिश के संबंध में, उन्हें अधिक आसानी से आव्यूह में और से परिवर्तित किया जा सकता है। जब अभिविन्यास का प्रतिनिधित्व करने के लिए उपयोग किया जाता है, तो घूर्णन चतुर्भुज को सामान्यतः अभिविन्यास चतुर्भुज या अभिवृत्ति चतुर्भुज कहा जाता है।
तीन आयामों में न्यूटन का दूसरा नियम
त्रि-आयामी अंतरिक्ष में दृढ़ पिण्ड की गतिशीलता पर विचार करने के लिए, न्यूटन के दूसरे नियम को दृढ़ पिण्ड की गति और उस पर कार्य करने वाली बल और बलाघूर्णों के बीच संबंध को परिभाषित करने के लिए विस्तारित किया जाना चाहिए।
न्यूटन ने कण के लिए अपना दूसरा नियम तैयार किया, किसी निकाय की गति का परिवर्तन प्रभावित बल के समानुपाती होता है और उस सीधी रेखा की दिशा में होता है जिसमें बल लगाया जाता है।[3] क्योंकि न्यूटन सामान्यतः कण की गति के रूप में बड़े पैमाने पर वेग को संदर्भित करता है, गति का वाक्यांश परिवर्तन कण के बड़े पैमाने पर त्वरण को संदर्भित करता है, और इसलिए इस नियम को सामान्यतः इस रूप में लिखा जाता है
कणों की दृढ़ व्यवस्था
यदि N कणों की प्रणाली, Pi, i=1,...,N, एक दृढ़ पिंड में इकट्ठे होते हैं, तो न्यूटन का दूसरा नियम पिण्ड के प्रत्येक कण पर लागू किया जा सकता है। यदि Fi कण Pi पर लगाया गया द्रव्यमान mi के साथ बाह्य बल है, तब
इन बल समीकरणों के लिए महत्वपूर्ण सरलीकरण परिणामी बल और बलाघूर्ण को प्रस्तुत करके प्राप्त किया जाता है जो दृढ़ प्रणाली पर कार्य करता है। यह परिणामी बल और बलाघूर्ण प्रणाली में किसी एक कण को संदर्भ बिंदु, R के रूप में चुनकर प्राप्त किया जाता है, जहां प्रत्येक बाहरी बल को संबंधित बल आघूर्ण के साथ लगाया जाता है। परिणामी बल F और बल आघूर्ण T सूत्रों द्वारा दिए गए हैं,
किसी कण के लिए न्यूटन का दूसरा नियम परिणामी बल और बल आघूर्ण के लिए इन सूत्रों के साथ संयोजन करता है,
द्रव्यमान गुण
दृढ़ पिण्ड के द्रव्यमान गुणों को उसके संहति-केन्द्र और जड़त्वाघूर्ण द्वारा दर्शाया जाता है। संदर्भ बिंदु R चुनें जिससे कि यह शर्त को पूरा करे
जड़त्वाघूर्ण आव्यूह [IR] प्रणाली के संदर्भ बिंदु R के सापेक्ष परिभाषित किया गया है
का अदिश गुणनफल खुद के साथ है, जबकि का टेन्सर उत्पाद खुद के साथ है।
बल-आघूर्ण बल समीकरण
द्रव्यमान और जड़त्वाघूर्ण आव्यूह के केंद्र का उपयोग करते हुए, दृढ़ पिण्ड के लिए बल और आघूर्ण बल समीकरण रूप लेते हैं
दृढ़ निकायों की परस्पर प्रणाली की गतिशीलता, Bi, j = 1, ..., M, प्रत्येक दृढ़ पिण्ड को अलग करके और अंतःक्रियात्मक बलों को पेश करके तैयार किया जाता है। प्रत्येक पिंड पर बाहरी और अंतःक्रियात्मक बलों का परिणाम, बल-आघूर्ण समीकरण उत्पन्न करता है
तीन आयामों में घूर्णन
एक घूर्णी निकाय, चाहे आघूर्ण बल के प्रभाव में हो या नहीं, अयन और अक्षविचलन के व्यवहार को प्रदर्शित कर सकती है। एक घूर्णी ठोस पिंड के व्यवहार का वर्णन करने वाला मूलभूत समीकरण यूलर की गति का समीकरण है:
इस समीकरण का समाधान जब कोई अनुप्रयुक्त बलाघूर्ण नहीं होता है तो लेख यूलर की गति के समीकरण और पॉइन्सॉट के दीर्घवृत्त में चर्चा की जाती है।
यूलर के समीकरण से यह पता चलता है कि आघूर्ण बल τ घूर्णन की धुरी के लिए लंबवत लागू होता है, और इसलिए L के लंबवत होता है, जिसके परिणामस्वरूप τ और L दोनों के लंबवत अक्ष के बारे में घूर्णन होता है। इस गति को 'अयन' कहा जाता है। अयन का कोणीय वेग ΩP सदिश गुणनफल द्वारा दिया गया है:

स्पिनिंग टॉप (घूर्णी लट्टू) को उसकी धुरी के साथ क्षैतिज और एक सिरे पर शिथिल (पूर्वसरण की ओर घर्षण रहित) समर्थित रखकर अयन प्रदर्शित किया जा सकता है। गिरने के अतिरिक्त, जैसा कि उम्मीद की जा सकती है, शीर्ष अपनी धुरी क्षैतिज के साथ रहकर गुरुत्वाकर्षण को अवहेलना करता प्रतीत होता है, जब अक्ष के दूसरे छोर को असमर्थित छोड़ दिया जाता है और अक्ष का मुक्त अंत धीरे-धीरे क्षैतिज तल में चक्र का वर्णन करता है, जिसके परिणामस्वरूप अग्रगमन मोड़ होता है।। इस प्रभाव को उपरोक्त समीकरणों द्वारा समझाया गया है। शीर्ष पर आघूर्ण बल कुछ बलों द्वारा आपूर्ति की जाती है: गुरुत्वाकर्षण उपकरण के संहति-केन्द्र पर नीचे की ओर काम करता है, और समान बल उपकरण के छोर का समर्थन करने के लिए ऊपर की ओर काम करता है। इस आघूर्ण बल से उत्पन्न घूर्णन नीचे की ओर नहीं है, जैसा कि सहज रूप से उम्मीद की जा सकती है, जिससे उपकरण गिर सकता है, लेकिन दोनों गुरुत्वाकर्षण आघूर्ण बल (क्षैतिज और लंबवत घूर्णन की धुरी) और घूर्णन की धुरी (क्षैतिज और बाहर की ओर) दोनों के लिए लंबवत है। समर्थन का बिंदु), अर्थात, एक ऊर्ध्वाधर अक्ष के बारे में, जिससे उपकरण सहायक बिंदु के बारे में धीरे-धीरे घूमता है।
परिमाण τ के निरंतर आघूर्ण बल के अनुसार, अग्रगमन की गति ΩP, L के व्युत्क्रमानुपाती है, इसके कोणीय संवेग का परिमाण:
अधिवेशन के अनुसार, ये तीन सदिश - आघूर्ण बल, घूर्णी और अयन - सभी एक दूसरे के संबंध में दाहिने हाथ के नियम के अनुसार उन्मुख हैं।
दृढ़ पिंड पर कार्य करने वाली बल का आभासी कार्य
दृढ़ पिण्ड गतिकी का वैकल्पिक सूत्रीकरण जिसमें कई सुविधाजनक विशेषताएं हैं, एक दृढ़ पिण्ड पर कार्य करने वाली बल के आभासी कार्य पर विचार करके प्राप्त किया जाता है।
दृढ़ पिंड पर विभिन्न बिंदुओं पर कार्यरत बलों के आभासी कार्य की गणना उनके अनुप्रयोग के बिंदु और परिणामी बल के वेगों का उपयोग करके की जा सकती है। इसे देखने के लिए, मान लीजिए कि दृढ़ पिण्ड में बल F1, F2 ... Fn बिंदु R1, R2 ... Rn पर कार्य करें।
Ri, i = 1, ..., n के प्रक्षेपवक्र दृढ़ पिण्ड के गति द्वारा परिभाषित किया गया है। बिंदुओं का वेग Ri उनके पथ के साथ हैं
आभासी कार्य
कार्य की गणना प्रत्येक बल के अदिश गुणनफल से उसके संपर्क बिंदु के विस्थापन के साथ की जाती है
सामान्यीकृत बल
सरलता के लिए दृढ़ पिण्ड के प्रक्षेपवक्र पर विचार करें जो सामान्यीकृत निर्देशांक q द्वारा निर्दिष्ट किया जाता है, जैसे घूर्णन कोण, फिर सूत्र बन जाता है
डी'अलेम्बर्ट के आभासी कार्य के सिद्धांत का रूप
दृढ़ निकायों की यांत्रिक प्रणाली के लिए गति के समीकरण आभासी कार्य के सिद्धांत के डी'अलेम्बर्ट के रूप का उपयोग करके निर्धारित किए जा सकते हैं। आभासी कार्य के सिद्धांत का उपयोग दृढ़ पिंडों की प्रणाली के स्थिर संतुलन का अध्ययन करने के लिए किया जाता है, चूंकि न्यूटन के नियमों में त्वरण की शर्तें पेश करके इस दृष्टिकोण को गतिशील संतुलन को परिभाषित करने के लिए सामान्यीकृत किया जाता है।
स्थैतिक संतुलन
यांत्रिक प्रणाली दृढ़ निकायों के स्थिर संतुलन को इस शर्त से परिभाषित किया जाता है कि प्रणाली के किसी भी आभासी विस्थापन के लिए लागू बलों का आभासी कार्य शून्य है। इसे आभासी कार्य के सिद्धांत के रूप में जाना जाता है।[5] यह आवश्यकता के बराबर है कि किसी भी आभासी विस्थापन के लिए सामान्यीकृत बल शून्य हैं, अर्थात Qi=0।
n दृढ़ पिण्ड से एक यांत्रिक प्रणाली का निर्माण करने दें, Bi, i = 1, ..., n, और प्रत्येक पिंड पर लागू बलों का परिणाम बल-आघूर्ण बल जोड़े, Fi और Ti, i = 1, ..., n, होने दें। ध्यान दें कि इन लागू बलों में उन प्रतिक्रिया बलों को सम्मलित नहीं किया गया है जहां निकाय जुड़े हुए हैं। अंत में, मान लें कि वेग Vi और कोणीय वेग ωi, i = 1, ..., n, प्रत्येक दृढ़ पिण्ड के लिए, एक सामान्यीकृत निर्देशांक q द्वारा परिभाषित किया गया है। कहा जाता है कि दृढ़ निकायों की ऐसी प्रणाली में एक स्वातंत्र्य कोटि (यांत्रिकी) होती है।
बलों और बलाघूर्णों का आभासी कार्य, Fi और Ti, इस पर लागू एक स्वातंत्र्य कोटि प्रणाली द्वारा दी गई है
यदि यांत्रिक प्रणाली को एम सामान्यीकृत निर्देशांक द्वारा परिभाषित किया गया है, qj, j = 1, ..., m, तब प्रणाली में स्वतंत्रता की m डिग्री होती है और आभासी कार्य द्वारा दिया जाता है,
सामान्यीकृत जड़त्वाघूर्ण बल
एकल दृढ़ पिंड पर विचार करें जो परिणामी बल F और आघूर्ण बल T की क्रिया के अनुसार चलता है, सामान्यीकृत निर्देशांक q द्वारा परिभाषित एक स्वातंत्र्य कोटि के साथ है। परिणामी बल के लिए संदर्भ बिंदु मान लें और आघूर्ण बल पिण्ड के द्रव्यमान का केंद्र है, फिर सामान्यीकृत जड़त्वाघूर्ण बल Q* सामान्यीकृत निर्देशांक q से जुड़ा हुआ है द्वारा दिया गया है
गतिशील संतुलन
आभासी कार्य के सिद्धांत के डी'अलेम्बर्ट के रूप में कहा गया है कि दृढ़ निकायों की प्रणाली गतिशील संतुलन में है जब लागू बलों के योग का आभासी कार्य और जड़त्वीय बल प्रणाली के किसी भी आभासी विस्थापन के लिए शून्य है। इस प्रकार, m सामान्यीकृत निर्देशांक वाले n दृढ़ निकायों की प्रणाली के गतिशील संतुलन की आवश्यकता है
लैग्रेंज के समीकरण
यदि सामान्यीकृत बल Qj स्थितिज ऊर्जा V(q1, ..., qm) से व्युत्पन्न हैं , तो गति के ये समीकरण रूप ले लेते हैं
रैखिक और कोणीय गति
कणों की प्रणाली
संहति-केन्द्र के सापेक्ष कणों की स्थिति और वेग को मापकर कणों की दृढ़ प्रणाली की रैखिक और कोणीय गति तैयार की जाती है। माना कणों का निकाय Pi, i = 1, ..., n निर्देशांक ri पर और वेग vi स्थित हो, संदर्भ बिंदु R का चयन करें और सापेक्ष स्थिति और वेग सदिश की गणना करें,
कणों की दृढ़ व्यवस्था
इन सूत्रों को दृढ़ पिण्ड के लिए विशिष्ट बनाने के लिए, मान लें कि कण एक दूसरे से सख्ती से जुड़े हुए हैं इसलिए Pi, i=1,...,n निर्देशांक ri और वेग vi द्वारा स्थित हैं। संदर्भ बिंदु R का चयन करें और सापेक्ष स्थिति और वेग सदिश की गणना करें,
द्रव्यमान R के केंद्र के सापेक्ष मापी गई इस दृढ़ प्रणाली का रैखिक संवेग और कोणीय संवेग है
अनुप्रयोग
- रोबोटिक प्रणाली के विश्लेषण के लिए
- जानवरों, मनुष्यों या ह्यूमनॉइड प्रणाली के बायोमैकेनिकल विश्लेषण के लिए
- अंतरिक्ष वस्तुओं के विश्लेषण के लिए
- दृढ़ पिंडों की विचित्र गतियों को समझने के लिए।[10]
- जाइरोस्कोपिक सेंसर जैसे गतिकी-आधारित सेंसर के डिजाइन और विकास के लिए।
- ऑटोमोबाइल में विभिन्न स्थिरता वृद्धि अनुप्रयोगों के डिजाइन और विकास के लिए।
- दृढ़ निकायों वाले वीडियो गेम के ग्राफिक्स में सुधार के लिए
यह भी देखें
- विश्लेषणात्मक यांत्रिकी
- विश्लेषणात्मक गतिशीलता
- विविधताओं की गणना
- चिरसम्मत यांत्रिकी
- गतिकी (भौतिकी)
- चिरसम्मत यांत्रिकी का इतिहास
- लाग्रांजीय यांत्रिकी
- लाग्रांजीय यांत्रिकी
- हैमिल्टनियन यांत्रिकी
- सख्त शरीर
- कठोर रोटर
- कोमल शरीर की गतिशीलता
- [[ मल्टीबॉडी डायनामेक्स ]]
- आधा फेंको
- रेपोल प्रमुख
- रियायत
- पॉइन्सॉट का निर्माण
- जाइरोस्कोप
- भौतिकी इंजन
- भौतिकी प्रसंस्करण इकाई
- पाल (सॉफ्टवेयर) - एकीकृत मल्टीबॉडी सिम्युलेटर
- डायनेमेच - रिजिड-बॉडी सिमुलेटर
- कठोर चिप्स - जापानी कठोर शरीर सिम्युलेटर
- यूलर का समीकरण
संदर्भ
- ↑ B. Paul, Kinematics and Dynamics of Planar Machinery, Prentice-Hall, NJ, 1979
- ↑ L. W. Tsai, Robot Analysis: The mechanics of serial and parallel manipulators, John-Wiley, NY, 1999.
- ↑ Encyclopædia Britannica, Newtons laws of motion.
- ↑ K. J. Waldron and G. L. Kinzel, Kinematics and Dynamics, and Design of Machinery, 2nd Ed., John Wiley and Sons, 2004.
- ↑ Torby, Bruce (1984). "Energy Methods". इंजीनियरों के लिए उन्नत गतिशीलता. HRW Series in Mechanical Engineering. United States of America: CBS College Publishing. ISBN 0-03-063366-4.
- ↑ T. R. Kane and D. A. Levinson, Dynamics, Theory and Applications, McGraw-Hill, NY, 2005.
- ↑ Marion, JB; Thornton, ST (1995). सिस्टम और कणों की शास्त्रीय गतिशीलता (4th ed.). Thomson. ISBN 0-03-097302-3..
- ↑ Symon, KR (1971). यांत्रिकी (3rd ed.). Addison-Wesley. ISBN 0-201-07392-7..
- ↑ Tenenbaum, RA (2004). एप्लाइड डायनेमिक्स की बुनियादी बातों. Springer. ISBN 0-387-00887-X..
- ↑ Gomez, R W; Hernandez-Gomez, J J; Marquina, V (25 July 2012). "झुके हुए तल पर उछलता हुआ बेलन". Eur. J. Phys. IOP. 33 (5): 1359–1365. arXiv:1204.0600. Bibcode:2012EJPh...33.1359G. doi:10.1088/0143-0807/33/5/1359. S2CID 55442794. Retrieved 25 April 2016.
अग्रिम पठन
- E. Leimanis (1965). The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. (Springer, New York).
- W. B. Heard (2006). Rigid Body Mechanics: Mathematics, Physics and Applications. (Wiley-VCH).
बाहरी कड़ियाँ
- Chris Hecker's Rigid Body Dynamics Information Archived 12 March 2007 at the Wayback Machine
- Physically Based Modeling: Principles and Practice
- DigitalRune Knowledge Base Archived 20 November 2008 at the Wayback Machine contains a master thesis and a collection of resources about rigid body dynamics.
- F. Klein, "Note on the connection between line geometry and the mechanics of rigid bodies" (English translation)
- F. Klein, "On Sir Robert Ball's theory of screws" (English translation)
- E. Cotton, "Application of Cayley geometry to the geometric study of the displacement of a solid around a fixed point" (English translation)