परिपूर्ण क्षेत्र
बीजगणित में, क्षेत्र (गणित) k 'परिपूर्ण' है यदि निम्नलिखित समतुल्य स्थिति में से कोई भी एक हो:
- k से अधिक प्रत्येक अलघुकरणीय बहुपद की अलग-अलग आधार होती हैं।
- k से अधिक प्रत्येक अलघुकरणीय बहुपद वियोज्य बहुपद है।
- k का प्रत्येक परिमित विस्तार वियोज्य विस्तार है।
- k का प्रत्येक बीजगणितीय विस्तार वियोज्य है।
- या तो k में विशेषता (बीजगणित) 0 है, या, जब k में विशेषता p > 0 है, k का प्रत्येक अवयव p वे घात (गणित) है।
- या तो k में विशेषता (बीजगणित) 0 है, या, जब k में विशेषता p > 0 है, फ्रोबेनियस अंतःरूपता x ↦ xp k का स्वसमाकृतिकता है।
- k का वियोज्य समापन बीजगणितीय रूप से बंद है।
- k-बीजगणित A एक अलग करने योग्य बीजगणित है; अर्थात, प्रत्येक क्षेत्र विस्तार f/k के लिए कम हो गई है। (नीचे देखें)
अन्यथा, k को 'अपूर्ण' कहा जाता है।
विशेष रूप से, विशेषता शून्य के सभी क्षेत्र और सभी परिमित क्षेत्र परिपूर्ण हैं।
परिपूर्ण क्षेत्र महत्वपूर्ण हैं क्योंकि इन क्षेत्रों पर गैलोज़ सिद्धांत सरल हो जाता है, क्योंकि क्षेत्र विस्तार के अलग होने की सामान्य गैलोज़ धारणा इन क्षेत्रों पर स्वचालित रूप से संतुष्ट होती है (ऊपर तीसरी स्थिति देखें)।
परिपूर्ण क्षेत्र की महत्वपूर्ण गुण यह है कि वे विट सदिश को स्वीकार करते हैं।
सामान्यतौर पर, विशेषता p (p एक अभाज्य संख्या) की वलय (गणित) को 'परिपूर्ण' कहा जाता है यदि फ्रोबेनियस अंतःरूपता एक स्वसमाकृतिकता है।[1] (जब अभिन्न डोमेन तक सीमित होता है, तो यह उपरोक्त स्थिति के बराबर होता है कि k का प्रत्येक अवयव p वे घात है।)
उदाहरण
उत्तम क्षेत्रों के उदाहरण हैं:
- विशेषता शून्य का प्रत्येक क्षेत्र, इसलिए और सभी परिमित विस्तार है;[2]
- प्रत्येक परिमित क्षेत्र है;[3]
- प्रत्येक बीजगणितीय रूप से बंद क्षेत्र है;
- विस्तार द्वारा पूरी तरह से क्रमबद्ध परिपूर्ण क्षेत्रों के समूह का संघ है;
- आदर्श क्षेत्र पर बीजगणितीय क्षेत्र है।
व्यवहार में सामने आने वाले अधिकांश क्षेत्र उत्तम हैं। अपूर्ण अर्थ मुख्य रूप से बीजगणितीय ज्यामिति में विशेषता p > 0 में उत्पन्न होता है | प्रत्येक अपूर्ण क्षेत्र आवश्यक रूप से अपने परिमित उपक्षेत्र (न्यूनतम उपक्षेत्र) है, क्योंकि बाद वाला सही है। अपूर्ण क्षेत्र का उदाहरण क्षेत्र है, चूंकि फ्रोबेनियस भेजता है और इसलिए यह विशेषण नहीं है. यह सही क्षेत्र में निहित होता है
इसकी पूर्णता कहा जाता है. अपूर्ण क्षेत्र तकनीकी कठिनाइयों का कारण बनते हैं क्योंकि आधार क्षेत्र के बीजगणितीय समापन में अलघुकरणीय बहुपद कम करने योग्य बन सकते हैं। उदाहरण के लिए,[4] के लिए विशेषता का अपूर्ण क्षेत्र और f में p वें घात नहीं है। फिर इसके बीजगणितीय समापन में , निम्नलिखित समानता रखती है:
जहाँ bp = a और b इस बीजगणितीय समापन में उपस्थित है। ज्यामितीय रूप से, इसका अर्थ यह है में एफ़िन समतल वक्र को परिभाषित नहीं करता है |
आदर्श क्षेत्र पर क्षेत्र विस्तार
परिपूर्ण क्षेत्र k पर कोई भी सूक्ष्म रूप से उत्पन्न क्षेत्र विस्तार K अलग-अलग रूप से उत्पन्न होता है, अर्थात उत्कृष्ट का आधार Γ जैसे कि K, k (Γ) पर अलग-अलग बीजगणितीय है।[5]
परिपूर्ण समापन और पूर्णता
समतुल्य स्थिति में से कहती है कि, विशेषता p में, सभी pr वे आधार (r ≥ 1) से जुड़ीं हैं; इसे k का परिपूर्ण समापन कहा जाता है और सामान्यतौर पर इसे इसके द्वारा दर्शाया जाता है |
परिपूर्ण समापन का उपयोग पृथक्करण के परीक्षण में किया जा सकता है। सही प्रकार से, वलय A का सही बंद होना आदर्श वलय Ap है | वलय समरूपता के साथ विशेषता p की u : A → Ap समरूपता के साथ विशेषता p की किसी भी अन्य परिपूर्ण वलय B के लिए v : A → B अद्वितीय समरूपता है| f : Ap → B जैसे कि v, u के माध्यम से गुणनखंड करता है (अर्थात् v = fu). परिपूर्ण समापन निरंतर उपस्थित रहता है; प्रमाण मे क्षेत्र के अर्थ के समान, A के अवयवों की आसन्न p वें आधार सम्मिलित हैं।[6]
विशेषता p की वलय A की पूर्णता दोहरी धारणा है (चूँकि इस शब्द का उपयोग कभी-कभी परिपूर्ण समापन के लिए किया जाता है)। दूसरे शब्दों में, A की पूर्णता R(A) मानचित्र के साथ विशेषता p की आदर्श वलय θ : R(A) → A ऐसा कि किसी भी आदर्श वलय B के लिए विशेषता p मानचित्र φ : B → A से सुसज्जित है, अनोखा f : B → R(A) मानचित्र है | ऐसा कि φ, θ से होकर गुजरता है (अर्थात φ = θf). A की पूर्णता का निर्माण निम्नानुसार किया जा सकता है। प्रक्षेप्य प्रणाली पर विचार करते हैं।
जहां परिवर्तन मानचित्र फ्रोबेनियस अंतःरूपता हैं। इस प्रणाली की व्युत्क्रम सीमा R(A) है और इसमें अनुक्रम (x0, x1..... सम्मिलित हैं) A के अवयव है जैसे कि सभी i के लिए होता है। मानचित्र θ : R(A) → A (xi) से x0 भेजता है |[7]
यह भी देखें
- p-वलय
- परिपूर्ण वलय
- अर्ध-सीमित क्षेत्र
टिप्पणियाँ
- ↑ Serre 1979, Section II.4
- ↑ Examples of fields of characteristic zero include the field of rational numbers, the field of real numbers or the field of complex numbers.
- ↑ Any finite field of order q may be denoted , where q = pk for some prime p and positive integer k.
- ↑ Milne, James. अण्डाकार वक्र (PDF). p. 6.
- ↑ Matsumura, Theorem 26.2
- ↑ Bourbaki 2003, Section V.5.1.4, page 111
- ↑ Brinon & Conrad 2009, section 4.2
संदर्भ
- Bourbaki, Nicolas (2003), Algebra II, Springer, ISBN 978-3-540-00706-7
- Brinon, Olivier; Conrad, Brian (2009), CMI Summer School notes on p-adic Hodge theory (PDF), retrieved 2010-02-05
- Cohn, P.M. (2003), Basic Algebra: Groups, Rings and Fields
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556, Zbl 0984.00001
- Matsumura, H (2003), Commutative ring theory, Translated from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics, vol. 8 (2nd ed.)
- Serre, Jean-Pierre (1979), Local fields, Graduate Texts in Mathematics, vol. 67 (2 ed.), Springer-Verlag, ISBN 978-0-387-90424-5, MR 0554237
बाहरी संबंध
- "Perfect field", Encyclopedia of Mathematics, EMS Press, 2001 [1994]