प्रतिबिंब चरण परिवर्तन

From Vigyanwiki

कभी-कभी तरंगें चरण परिवर्तन का गुण प्रदर्शित करती हैं जब विशेष रूप से तेज तरंग गति के एक माध्यम से धीमी तरंग गति वाले माध्यम की सीमा पर कोई तरंग परावर्तित होती है।[1][2]इस तरह के प्रतिबिंब कई प्रकार की तरंगों के लिए होते हैं, जिनमें प्रकाश तरंगें, ध्वनि तरंगें और कंपन तारों की तरंगें शामिल हैं।[3]

सामान्य सिद्धांत

एक माध्यम (जहां तरंग की गति c1 है ) से दूसरे माध्यम (जहाँ तरंग की गति c2 है ) में यात्रा करने वाली प्रेषित तरंग के लिए, तरंग का एक भाग दूसरे माध्यम में संचारित होगा, जबकि दूसरा भाग दूसरी दिशा में वापस परावर्तित होकर पहले माध्यम में रहेगा। सीमा पर निरंतरता की स्थिति का उपयोग करके प्रेषित तरंग और परावर्तित तरंग के आयाम की गणना की जा सकती है।

कोणीय आवृत्ति ω के साथ घटना तरंग के घटक पर विचार करें, जिसका तरंग रूप है

t = 0 पर, घटना x = 0 पर दो माध्यमों के बीच की सीमा तक पहुँचती है। इसलिए, संबंधित परावर्तित तरंग और प्रेषित तरंग में तरंग रूप होंगे
सीमा पर निरंतरता की स्थिति है
यह समीकरण देता है
और हमारे पास परावर्तन और संचारण है
जब c2 < c1, परावर्तित तरंग में 180 डिग्री का प्रतिबिंब चरण परिवर्तन होता है, क्योंकि B/A < 0. ऊर्जा संरक्षण द्वारा सत्यापित किया जा सकता है
उपरोक्त चर्चा किसी भी घटक के लिए सही है, इसकी कोणीय आवृत्ति ω की परवाह किए बिना| सीमित घटना c2 = 0 एक निश्चित अंत से मेल खाता है जो हिलता नहीं है, जबकि सीमित घटना c2 → ∞ एक मुक्त अंत के अनुरूप है।

प्रकाशिकी

प्रकाश तरंगें 180 डिग्री तक चरण बदलती हैं जब वे उस माध्यम की तुलना में उच्च अपवर्तक सूचकांक वाले माध्यम सतह से प्रतिबिंबित होती हैं जिसमें वे यात्रा कर रहे हैं।[1] हवा में यात्रा करने वाली एक प्रकाश तरंग जो एक कांच की बाधा से परावर्तित होती है, एक 180° चरण परिवर्तन से गुजरती है, जबकि कांच में यात्रा करने वाली प्रकाश एक चरण परिवर्तन से नहीं गुजरेगी यदि यह हवा के साथ एक सीमा से परिलक्षित होती है। इस कारण से, ऑप्टिकल सीमाओं को सामान्य रूप से एक आदेशित जोड़ी (एयर-ग्लास, ग्लास-एयर) के रूप में निर्दिष्ट किया जाता है; यह दर्शाता है कि प्रकाश क्रमशः किस सामग्री से बाहर और अंदर जा रहा है।

चरण यहाँ विद्युत क्षेत्र दोलनों का चरण है, चुंबकीय क्षेत्र दोलनों का नहीं (जबकि विद्युत क्षेत्र 180° चरण परिवर्तन से गुजरेगा, चुंबकीय क्षेत्र 0° चरण परिवर्तन से गुजरेगा। इसके विपरीत सत्य है जब प्रतिबिंब कम अपवर्तक सूचकांक इंटरफ़ेस पर होता है।.)[4] इसके अलावा, यह निकट-सामान्य (ज्यामिति) घटना की बात कर रहा है- पी-ध्रुवीकृत प्रकाश के लिए, ब्रूस्टर कोण से परे, शीशे से परावर्तित होने वाले प्रकाश के लिए, चरण परिवर्तन 0° है। प्रतिबिंब पर होने वाले चरण परिवर्तन पतली फिल्म के हस्तक्षेप में एक महत्वपूर्ण भूमिका निभाते हैं।

ध्वनि तरंगें

हवा में ध्वनि तरंगें, एक ट्यूब में

एक ठोस माध्यम में ध्वनि तरंगें एक चरण उत्क्रमण (180° परिवर्तन) का अनुभव करती हैं, जब वे हवा के साथ एक सीमा से परावर्तित होती हैं।[2] हवा में ध्वनि तरंगें ठोस से परावर्तित होने पर चरण परिवर्तन का अनुभव नहीं करती हैं, लेकिन कम ध्वनिक प्रतिबाधा वाले क्षेत्र से परावर्तित होने पर वे 180° परिवर्तन प्रदर्शित करती हैं। इसका एक उदाहरण है जब एक खोखली नली में एक ध्वनि तरंग का ट्यूब के खुले सिरे से सामना होता है। प्रतिबिंब पर चरण परिवर्तन वायु यंत्रों के भौतिकी में महत्वपूर्ण है।

स्ट्रिंग्स

एक तार पर खड़ी लहरें

स्ट्रिंग पर एक तरंग 180 डिग्री चरण परिवर्तन का अनुभव करती है जब यह उस बिंदु से प्रतिबिंबित होती है जहां स्ट्रिंग बंधी होती है।[2][3]एक स्ट्रिंग के मुक्त सिरे से प्रतिबिंब कोई चरण परिवर्तन प्रदर्शित नहीं करते हैं। एक निश्चित बिंदु से परावर्तित होने पर चरण परिवर्तन तार पर खड़ी तरंगों के निर्माण में योगदान देता है, जो तार वाले उपकरणों से ध्वनि उत्पन्न करता है।

वही 180° चरण परिवर्तन तब होता है जब एक लाइटर स्ट्रिंग (निम्न रैखिक द्रव्यमान घनत्व) में यात्रा करने वाली तरंग एक भारी स्ट्रिंग (उच्च रैखिक द्रव्यमान घनत्व) की सीमा से परावर्तित होती है। ऐसा इसलिए होता है क्योंकि भारी स्ट्रिंग तनाव बल को लाइटर स्ट्रिंग के रूप में जल्दी से प्रतिक्रिया नहीं देती है, और इसलिए सीमा बिंदु पर दोलन का आयाम आने वाली तरंग से कम है। सुपरपोज़िशन सिद्धांत द्वारा, परावर्तित तरंग को आने वाली लहर का हिस्सा निरस्त करना चाहिए, और इसलिए यह चरण स्थानांतरित हो गया है। ध्यान दें कि जब एक भारी स्ट्रिंग में यात्रा करने वाली लहर एक लाइटर स्ट्रिंग की सीमा से दूर परावर्तित होती है, चूंकि सीमा बिंदु को जितनी जल्दी हो सके स्थानांतरित करने की स्वतंत्रता होती है, परावर्तित लहर में ऐसा कोई चरण बदलाव नहीं होगा।

विद्युत संचरण लाइनें

संचालन लाइनों पर संकेतों के प्रतिबिंब आम तौर पर घटना संकेत से चरण परिवर्तन प्रदर्शित करते हैं। समाप्ति के दो चरम मामले हैं: शॉर्ट सर्किट (बंद लाइन) और ओपन सर्किट (टूटी हुई लाइन)। दोनों ही मामलों में तरंग का पूरा आयाम परिलक्षित होता है।

शॉर्ट सर्किट: शॉर्ट सर्किट के साथ समाप्त होने वाली लाइन पर वोल्टेज वेव रिफ्लेक्शन 180° फेज शिफ्ट होता है। यह एक स्ट्रिंग के अनुरूप (गतिशीलता सादृश्य द्वारा) है जहां अंत स्थिति में तय होता है, या एक अवरुद्ध बंद अंत के साथ एक ट्यूब में एक ध्वनि तरंग होती है। दूसरी ओर, वर्तमान लहर, चरण-स्थानांतरित नहीं है।

टूटी / खुली लाइन
एक खुले सर्किट के साथ समाप्त होने वाली ट्रांसमिशन लाइन द्वैत (विद्युत सर्किट) का मामला है; वोल्टेज तरंग को 0° से स्थानांतरित किया जाता है और वर्तमान तरंग को 180° से स्थानांतरित किया जाता है।
प्रतिक्रियाशील समाप्ति
एक शुद्ध समाई या अधिष्ठापन के साथ समाप्त होने वाली एक संचरण लाइन भी पूर्ण आयाम पर एक चरण स्थानांतरित तरंग को जन्म देगी। वोल्टेज फेज शिफ्ट द्वारा दिया जाता है[5]: 275 
जहाँ
  • Z0 लाइन की विशेषता प्रतिबाधा है
  • X अधिष्ठापन या धारिता की आशंका है, जो क्रमशः ωL या −1ωC द्वारा दी गई है
  • L और C, क्रमशः, अधिष्ठापन और समाई हैं, और
  • ω कोणीय आवृत्ति है।

प्रतिक्रियाशील समाप्ति के मामले में फेज शिफ्ट प्रारंभ करनेवाला ्स के लिए 0 और +180° के बीच और संधारित्र के लिए 0 और -180° के बीच होगा। फेज़ शिफ्ट ठीक ±90° होगा जब |X| = Z0.

सामान्य मामले के लिए जब रेखा को कुछ स्वैच्छिक विद्युत प्रतिबाधा, Z के साथ समाप्त किया जाता है, परावर्तित तरंग आम तौर पर घटना तरंग से कम होती है। चरण बदलाव के लिए पूर्ण अभिव्यक्ति का उपयोग करने की आवश्यकता है,[5]: 273 

यह व्यंजक मानता है कि विशेषता प्रतिबाधा विशुद्ध रूप से प्रतिरोधक है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Nave, C.R. "प्रतिबिंब चरण परिवर्तन". Hyperphysics. Georgia State University. Retrieved 2016-03-28.
  2. 2.0 2.1 2.2 Nave, C.R. "ध्वनि का परावर्तन". Hyperphysics. Georgia State University. Retrieved 2016-03-28.
  3. 3.0 3.1 Russell, Daniel A. "सीमाओं से तरंगों का परावर्तन". Graduate Program in Acoustics. Pennsylvania State University. Retrieved 2021-05-12.
  4. Byrnes, Steven J. (2016). "बहुपरत ऑप्टिकल गणना". arXiv:1603.02720 [physics.comp-ph]. Appendix A
  5. 5.0 5.1 Bleaney, B.I. & Bleaney, Brebis (2013). बिजली और चुंबकत्व. Vol. 1. Oxford University Press. ISBN 978-0199645428.