फूरियर-रूपांतरण स्पेक्ट्रोस्कोपी
फूरियर-रूपांतरण स्पेक्ट्रोस्कोपी एक माप विधि है जिसके द्वारा स्पेक्ट्रम विकिरण, विद्युत चुम्बकीय या नहीं के समय-डोमेन या अंतरिक्ष-डोमेन माप का उपयोग करके विकिरण स्रोत के सुसंगतता के माप के आधार पर एकत्र किया जाता है। यह प्रकाशीय स्पेक्ट्रोस्कोपी अवरक्त स्पेक्ट्रोस्कोपी (एफटीआईआर, एफटी-एनआईआरएस) परमाणु चुंबकीय अनुनाद (एनएमआर) और चुंबकीय अनुनाद स्पेक्ट्रोस्कोपिक छवि (एमआरएसआई)[1] मास स्पेक्ट्रोमेट्री और इलेक्ट्रॉन स्पिन अनुनाद स्पेक्ट्रोस्कोपी सहित विभिन्न प्रकार के स्पेक्ट्रोस्कोपी पर प्रयुक्त किया जा सकता है।
प्रकाश की लौकिक सुसंगतता को मापने के लिए कई विधि हैं (देखें: प्रकाशीय ऑटोसहसंबंध या क्षेत्र ऑटोसहसंबंध|फ़ील्ड-ऑटोसहसंबंध), जिसमें निरंतर-तरंग और स्पंदित फूरियर-रूपांतरण स्पेक्ट्रोमीटर या फूरियर-रूपांतरण स्पेक्ट्रोग्राफ़ सम्मिलित हैं।
फूरियर-रूपांतरण स्पेक्ट्रोस्कोपी शब्द इस तथ्य को दर्शाता है कि इन सभी विधि में, कच्चे डेटा को वास्तविक आवृत्ति स्पेक्ट्रम में बदलने के लिए फूरियर रूपांतरण की आवश्यकता होती है, और कई स्थिति में प्रकाशिकी में व्यतिकरणमापी सम्मिलित होता है, जो वीनर-खिनचिन प्रमेय पर आधारित होता है। .
वैचारिक परिचय
उत्सर्जन स्पेक्ट्रम का मापन
स्पेक्ट्रोस्कोपी में सबसे मूलभूत कार्यों में से प्रकाश स्रोत के स्पेक्ट्रम को चिह्नित करना है: प्रत्येक अलग तरंग दैर्ध्य पर कितना प्रकाश उत्सर्जित होता है। स्पेक्ट्रम को मापने का सबसे सीधा विधि मोनोक्रोमेटर के माध्यम से प्रकाश को पारित करना है, उपकरण जो निश्चित तरंग दैर्ध्य पर प्रकाश को छोड़कर सभी प्रकाश को अवरुद्ध करता है (अन-अवरुद्ध तरंगदैर्घ्य मोनोक्रोमेटर पर समय द्वारा निर्धारित होता है)। फिर इस शेष (एकल-तरंगदैर्घ्य) प्रकाश की तीव्रता मापी जाती है। मापी गई तीव्रता सीधे इंगित करती है कि उस तरंग दैर्ध्य पर कितना प्रकाश उत्सर्जित होता है। मोनोक्रोमेटर की तरंग दैर्ध्य सेटिंग को बदलकर, पूर्ण स्पेक्ट्रम को मापा जा सकता है। यह सरल योजना वास्तव में वर्णन करती है कि कुछ स्पेक्ट्रोमीटर कैसे काम करते हैं।
फूरियर-रूपांतरण स्पेक्ट्रोस्कोपी समान जानकारी प्राप्त करने का कम सहज विधि है। समय में केवल तरंग दैर्ध्य को संसूचक से गुजरने की अनुमति देने के अतिरिक्त , यह विधि बार में प्रकाश के कई अलग-अलग तरंग दैर्ध्य वाले बीम के माध्यम से जाने देती है, और कुल बीम तीव्रता को मापती है। अगला, बीम को तरंग दैर्ध्य के अलग संयोजन को सम्मिलित करने के लिए संशोधित किया जाता है, जिससे दूसरा डेटा बिंदु मिलता है। यह प्रक्रिया कई बार दोहराई जाती है। बाद में, कंप्यूटर यह सारा डेटा लेता है और यह पता लगाने के लिए पीछे की ओर काम करता है कि प्रत्येक तरंग दैर्ध्य पर कितना प्रकाश है।
अधिक विशिष्ट होने के लिए, प्रकाश स्रोत और संसूचक के बीच, दर्पणों का निश्चित विन्यास होता है जो कुछ तरंग दैर्ध्य को पारित करने की अनुमति देता है किंतु दूसरों को अवरुद्ध करता है (तरंग हस्तक्षेप के कारण)। बीम को प्रत्येक नए डेटा बिंदु के लिए दर्पणों में से को स्थानांतरित करके संशोधित किया जाता है; यह तरंग दैर्ध्य के स्थिति को बदल देता है जिससे गुजर सकता है।
जैसा कि उल्लेख किया गया है, वांछित परिणाम (प्रत्येक तरंग दैर्ध्य के लिए प्रकाश की तीव्रता) में कच्चे डेटा (प्रत्येक दर्पण स्थिति के लिए प्रकाश की तीव्रता) को चालू करने के लिए कंप्यूटर प्रसंस्करण की आवश्यकता होती है। आवश्यक प्रसंस्करण फूरियर रूपांतरण नामक सामान्य एल्गोरिदम बन जाता है (इसलिए नाम, फूरियर-रूपांतरण स्पेक्ट्रोस्कोपी)। कच्चे डेटा को कभी-कभी इंटरफेरोग्राम कहा जाता है। वर्तमान कंप्यूटर उपकरण आवश्यकताओं और पदार्थ की बहुत कम मात्रा का विश्लेषण करने के लिए प्रकाश की क्षमता के कारण, नमूना तैयार करने के कई पहलुओं को स्वचालित करना अधिकांशतः फायदेमंद होता है। नमूने को बेहतर ढंग से संरक्षित किया जा सकता है और परिणामों को दोहराना बहुत आसान है। ये दोनों लाभ महत्वपूर्ण हैं, उदाहरण के लिए, उन परीक्षण स्थितियों में जिनमें बाद में नियमबद्ध कार्रवाई सम्मिलित हो सकती है, जैसे कि दवा के नमूने सम्मिलित हैं।[2]
एक अवशोषण स्पेक्ट्रम मापना
फूरियर-रूपांतरण स्पेक्ट्रोस्कोपी की विधि का उपयोग अवशोषण स्पेक्ट्रोस्कोपी के लिए भी किया जा सकता है। प्राथमिक उदाहरण फूरियर-रूपांतरण अवरक्त स्पेक्ट्रोस्कोपी है, जो रसायन विज्ञान में सामान्य विधि है।
सामान्यतः, अवशोषण स्पेक्ट्रोस्कोपी का लक्ष्य यह मापना है कि नमूना कितनी अच्छी तरह से प्रत्येक अलग तरंग दैर्ध्य पर प्रकाश को अवशोषित या प्रसारित करता है। किंतु अवशोषण स्पेक्ट्रोस्कोपी और उत्सर्जन स्पेक्ट्रोस्कोपी सिद्धांत रूप में भिन्न हैं, व्यवहार में वे निकटता से संबंधित हैं; उत्सर्जन स्पेक्ट्रोस्कोपी के लिए किसी भी विधि का उपयोग अवशोषण स्पेक्ट्रोस्कोपी के लिए भी किया जा सकता है। सबसे पहले, ब्रॉडबैंड लैंप के उत्सर्जन स्पेक्ट्रम को मापा जाता है (इसे पृष्ठभूमि स्पेक्ट्रम कहा जाता है)। दूसरा, नमूने के माध्यम से चमकने वाले उसी लैंप के उत्सर्जन स्पेक्ट्रम को मापा जाता है (इसे नमूना स्पेक्ट्रम कहा जाता है)। नमूना कुछ प्रकाश को अवशोषित करेगा, जिससे स्पेक्ट्रा अलग होगा। नमूना स्पेक्ट्रम और पृष्ठभूमि स्पेक्ट्रम का अनुपात सीधे नमूने के अवशोषण स्पेक्ट्रम से संबंधित है।
तदनुसार, फूरियर-रूपांतरण स्पेक्ट्रोस्कोपी की विधि का उपयोग उत्सर्जन स्पेक्ट्रा (उदाहरण के लिए, स्टार के उत्सर्जन स्पेक्ट्रम), और अवशोषण स्पेक्ट्रा (उदाहरण के लिए, तरल के अवशोषण स्पेक्ट्रम) को मापने के लिए किया जा सकता है।
सतत-तरंग माइकलसन या फूरियर-रूपांतरण स्पेक्ट्रोग्राफ
माइकलसन स्पेक्ट्रोग्राफ माइकलसन-मॉर्ले प्रयोग में प्रयुक्त उपकरण के समान है। स्रोत से प्रकाश आधा चांदी के दर्पण द्वारा दो बीमों में विभाजित होता है, निश्चित दर्पण से और चल दर्पण से परिलक्षित होता है, जो समय की देरी का परिचय देता है - फूरियर-रूपांतरण स्पेक्ट्रोमीटर चल दर्पण के साथ सिर्फ माइकलसन व्यतिकरणमापी है . बीम हस्तक्षेप करते हैं, जिससे प्रकाश के अस्थायी सुसंगतता (भौतिकी) को प्रत्येक अलग-अलग समय विलंब सेटिंग पर मापा जा सकता है, प्रभावी रूप से समय डोमेन को स्थानिक समन्वय में परिवर्तित कर सकता है। जंगम दर्पण के कई असतत पदों पर संकेत का मापन करते है, प्रकाश के लौकिक सुसंगतता (भौतिकी) के फूरियर रूपांतरण का उपयोग करके स्पेक्ट्रम का पुनर्निर्माण किया जा सकता है। माइकलसन स्पेक्ट्रोग्राफ बहुत उज्ज्वल स्रोतों के बहुत उच्च वर्णक्रमीय विभेदन अवलोकनों में सक्षम हैं।
माइकलसन या फूरियर-रूपांतरण स्पेक्ट्रोग्राफ इन्फ्रा-रेड अनुप्रयोगों के लिए उस समय लोकप्रिय था जब इन्फ्रा-रेड एस्ट्रोनॉमी में केवल एकल -पिक्सेल संसूचक थे। छवि माइकलसन स्पेक्ट्रोमीटर संभावना है, किंतु सामान्य रूप से फैब्री-पेरोट उपकरणों की छवि द्वारा प्रतिस्थापित किया गया है, जो कि निर्माण करना आसान है।
स्पेक्ट्रम निकालना
व्यतिकरणमापी में पथ लंबाई अंतर (जिसे मंदता भी कहा जाता है) के फलन के रूप में तीव्रता और तरंग संख्या है [3]
जहाँ निर्धारित किया जाने वाला स्पेक्ट्रम है। ध्यान दें कि यह आवश्यक नहीं है की के लिए यह आवश्यक नहीं है व्यतिकरणमापी से पहले नमूने द्वारा संशोधित किया जाना है। वास्तव में, अधिकांश फूरियर-रूपांतरित अवरक्त स्पेक्ट्रोस्कोपी प्रकाशीय पथ में व्यतिकरणमापी के बाद नमूना रखती है। संसूचक पर कुल तीव्रता है
यह सिर्फ ज्या और कोज्या रूपांतर है। व्युत्क्रम हमें मापी गई मात्रा के संदर्भ में हमारा वांछित परिणाम देता है :
स्पंदित फूरियर-रूपांतरण स्पेक्ट्रोमीटर
एक स्पंदित फूरियर-रूपांतरण स्पेक्ट्रोमीटर संप्रेषण विधि को नियोजित नहीं करता है. स्पंदित एफटी स्पेक्ट्रोमेट्री के सबसे सामान्य विवरण में, नमूना ऊर्जावान घटना के संपर्क में आता है जो आवधिक प्रतिक्रिया का कारण बनता है। आवधिक प्रतिक्रिया की आवृत्ति, जैसा कि स्पेक्ट्रोमीटर में क्षेत्र की स्थितियों द्वारा नियंत्रित होता है, विश्लेषण के मापा गुणों का संकेत है।
स्पंदित फूरियर-रूपांतरण स्पेक्ट्रोमेट्री के उदाहरण
चुंबकीय स्पेक्ट्रोस्कोपी (इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद , नाभिकीय चुबकीय अनुनाद ) में, शक्तिशाली परिवेश चुंबकीय क्षेत्र में माइक्रोवेव पल्स (ईपीआर) या रेडियो आवृत्ति पल्स (एनएमआर) का उपयोग ऊर्जावान घटना के रूप में किया जाता है। यह चुंबकीय कणों को कोण पर परिवेशी क्षेत्र में बदल देता है, जिसके परिणामस्वरूप परिभ्रमण होता है। गेयरिंग स्पिन तब संसूचक कॉइल में आवधिक धारा को प्रेरित करता है। प्रत्येक स्पिन परिभ्रमण की विशेषता आवृत्ति (क्षेत्र शक्ति के सापेक्ष) प्रदर्शित करता है जो विश्लेषण के बारे में जानकारी प्रकट करता है।
फूरियर-रूपांतरण मास स्पेक्ट्रोमेट्री में, ऊर्जावान घटना साइक्लोट्रॉन के शक्तिशाली विद्युत चुम्बकीय क्षेत्र में आवेशित नमूने का इंजेक्शन है। ये कण मंडलियों में यात्रा करते हैं, उनके चक्र में बिंदु पर निश्चित कुंडल में धारा को प्रेरित करते हैं। प्रत्येक यात्रा करने वाला कण विशिष्ट साइक्लोट्रॉन आवृत्ति-क्षेत्र अनुपात प्रदर्शित करता है जो नमूने में द्रव्यमान को प्रकट करता है।
मुक्त प्रेरण क्षय
स्पंदित एफटी स्पेक्ट्रोमेट्री एकल, समय-निर्भर माप की आवश्यकता का लाभ देती है जो समान किंतु अलग संकेतों के स्थिति को आसानी से विखंडित कर सकती है। परिणामी समग्र संकेत, मुक्त प्रेरण क्षय कहा जाता है, क्योंकि सामान्यतः संकेत नमूना आवृत्ति में असमानताओं के कारण क्षय हो जाएगा, या संपत्ति के एंट्रोपिक हानि के कारण संकेत की अप्राप्य हानि मापी जा रही है।
स्पंदित स्रोतों के साथ नैनोस्केल स्पेक्ट्रोस्कोपी
स्पंदित स्रोत निकट-क्षेत्र स्कैनिंग प्रकाशीय माइक्रोस्कोप में फूरियर-रूपांतरण स्पेक्ट्रोस्कोपी सिद्धांतों के उपयोग की अनुमति देते हैं। निकट-क्षेत्र प्रकाशीय माइक्रोस्कोपी विधि को स्कैन करना है। विशेष रूप से नैनो-एफटीआईआर में, जहां तेज जांच-टिप से बिखरने का उपयोग नैनोस्केल स्थानिक संकल्प के साथ नमूनों की स्पेक्ट्रोस्कोपी करने के लिए किया जाता है, स्पंदित अवरक्त लेजर से उच्च-शक्ति प्रकाश अपेक्षाकृत छोटे प्रकीर्णन वाले क्रॉस सेक्शन (अधिकांशतः <1%) जांच के लिए बनाती है।[4]
फूरियर-रूपांतरण स्पेक्ट्रोमीटर के स्थिर रूप
फूरियर-रूपांतरित स्पेक्ट्रोमीटर के स्कैनिंग रूपों के अतिरिक्त , कई स्थिर या स्व-स्कैन किए गए रूप हैं।[5] जबकि इंटरफेरोमेट्रिक आउटपुट का विश्लेषण विशिष्ट स्कैनिंग व्यतिकरणमापी के समान है, महत्वपूर्ण अंतर प्रयुक्त होते हैं, जैसा कि प्रकाशित विश्लेषणों में दिखाया गया है। कुछ स्थिर रूप फेलगेट मल्टीप्लेक्स लाभ को बनाए रखते हैं, और वर्णक्रमीय क्षेत्र में उनका उपयोग जहां संसूचक ध्वनि सीमाएं प्रयुक्त होती हैं, एफटीएस के स्कैनिंग रूपों के समान होती हैं। फोटॉन-ध्वनि सीमित क्षेत्र में, स्थिर व्यतिकरणमापी का अनुप्रयोग वर्णक्रमीय क्षेत्र और अनुप्रयोग के लिए विशिष्ट विचार द्वारा निर्धारित होता है।
फेलगेट लाभ
फूरियर-रूपांतरण स्पेक्ट्रोस्कोपी के सबसे महत्वपूर्ण लाभों में से पी. बी. फेलगेट द्वारा दिखाया गया था, जो इस विधि के प्रारंभिक समर्थक थे। फेलगेट लाभ, जिसे बहुभागी सिद्धांत के रूप में भी जाना जाता है, बताता है कि स्पेक्ट्रम प्राप्त करते समय जब माप ध्वनि संसूचक ध्वनि (जो संसूचक पर विकिरण घटना की शक्ति से स्वतंत्र होता है) का प्रभुत्व होता है, बहुभागी स्पेक्ट्रोमीटर जैसे फूरियर-रूपांतरण स्पेक्ट्रोमीटर एम के वर्गमूल के क्रम के समतुल्य स्कैनिंग मोनोक्रोमेटर की तुलना में संकेत-से -ध्वनि अनुपात में सापेक्ष सुधार उत्पन्न करेगा, जहां एम स्पेक्ट्रम के नमूना बिंदुओं की संख्या है। चूँकि , यदि संसूचक शॉट-ध्वनि का प्रभुत्व है, तो ध्वनि शक्ति के वर्गमूल के समानुपाती होगा, इस प्रकार व्यापक बॉक्सकार स्पेक्ट्रम (निरंतर ब्रॉडबैंड स्रोत) के लिए, ध्वनि ऍम के वर्गमूल के समानुपाती होता है, इस प्रकार ठीक ऑफसेट फेलगेट का लाभ होगा लाइन उत्सर्जन स्रोतों के लिए स्थिति और भी खराब है और विशिष्ट 'बहुभागी हानि' है क्योंकि शक्तिशाली उत्सर्जन घटक से शॉट ध्वनि स्पेक्ट्रम के अशक्त टकों को अभिभूत कर देगा। शॉट ध्वनि मुख्य कारण है फूरियर-रूपांतरण स्पेक्ट्रोमेट्री पराबैंगनी (यूवी) और दृश्यमान स्पेक्ट्रा के लिए कभी लोकप्रिय नहीं थी।
यह भी देखें
- एप्लाइड स्पेक्ट्रोस्कोपी
- फोरेंसिक रसायन
- फोरेंसिक पॉलिमर इंजीनियरिंग
- नाभिकीय चुबकीय अनुनाद
- टाइम स्ट्रेच डिस्पर्सिव फूरियर ट्रांसफॉर्म
- अवरक्त स्पेक्ट्रोस्कोपी
- धातु कार्बोनिल्स की इन्फ्रारेड स्पेक्ट्रोस्कोपी
- नैनो-एफटीआईआर
- फेलगेट का लाभ
संदर्भ
- ↑ Antoine Abragam. 1968. Principles of Nuclear Magnetic Resonance, Cambridge University Press: Cambridge, UK.
- ↑ Semiautomated depositor for infrared microspectrometry http://www.opticsinfobase.org/viewmedia.cfm?uri=as-57-9-1078&seq=0
- ↑ Peter Atkins, Julio De Paula. 2006. Physical Chemistry, 8th ed. Oxford University Press: Oxford, UK.
- ↑ Hegenbarth, R; Steinmann, A; Mastel, S; Amarie, S; Huber, A J; Hillenbrand, R; Sarkisov, S Y; Giessen, H (2014). "एस-एसएनओएम अनुप्रयोगों के लिए हाई-पावर फेमटोसेकंड मध्य-आईआर स्रोत". Journal of Optics. 16 (9): 094003. Bibcode:2014JOpt...16i4003H. doi:10.1088/2040-8978/16/9/094003. S2CID 49192831.
- ↑ William H. Smith U.S. Patent 4,976,542 Digital Array Scanned Interferometer, issued Dec. 11, 1990