बर्नसाइड रिंग
गणित में, परिमित समूह का बर्नसाइड रिंग बीजगणित का ऐसा संस्करण है जो विभिन्न विधियों को कूटबद्ध करता है, इस प्रकार यह समूह परिमित समुच्चयों पर समूह क्रिया कर सकता है। उन्नीसवीं शताब्दी के अंत में विलियम बर्नसाइड द्वारा यह विचार प्रस्तुत किया गया था। सोलोमन (1967) के कारण बीजगणितीय वलय गणित और प्रारंभिक विकास का मुख्य भाग है।
औपचारिक परिभाषा
परिमित समूह G को देखते हुए, इसके बर्नसाइड रिंग Ω(G) के जनरेटर परिमित समूह क्रिया या G-समुच्चय के समरूपता वर्गों के औपचारिक योग के बराबर है। इस रिंग के लिए, G-समुच्चय के असंयुक्त संयोजन और उनके कार्टेशियन उत्पाद से गुणन द्वारा योग करके इसका मान प्राप्त किया जाता है।
बर्नसाइड रिंग मुक्त 'जेड'-मॉड्यूल (गणित) है, जिसके जनरेटर G के समूह क्रिया (गणित) के समरूपता वर्ग के समान हैं।
यदि G परिमित समुच्चय X पर कार्य करता है, तो हम उक्त समीकरण (विच्छिन्न संघ) लिख सकते है, जहां प्रत्येक Xi एकल G-कक्ष को प्रदर्शित करता है। इस प्रकार किसी भी अवयव xi को चुनना Xi में समरूपता Gi/Gi → X बनाता है, जहां Gix पर Gi का स्टेबलाइज़र आइसोट्रॉपी उपसमूह है, इस प्रकार प्रतिनिधि Yi का अलग मान स्टेबलाइजर के रूप में Xi में Gi को संयुग्मित उपसमूह देता है। इससे पता चलता है कि 'जेड' मॉड्यूल के रूप में Ω(G) के जनरेटर G के उपसमूहों के संयुग्मन वर्ग पर H के रूप में G/H की कक्षाएँ हैं।
दूसरे शब्दों में, Ω(G) का विशिष्ट तत्व है-
जहाँ ai Z और G1, G2, ..., GN G के उपसमूहों के संयुग्मन वर्गों के प्रतिनिधि हैं।
मार्क्स
जितना करेक्टर सिद्धांत समूह अभ्यावेदन के साथ काम करना सरल करता है, इस प्रकार अंक क्रमचय अभ्यावेदन और बर्नसाइड रिंग के साथ काम करना सरल बनाता है।
यदि G X पर कार्य करता है, और H ≤ G (H G का उपसमूह है), तो H का चिह्न ऑन X X के तत्वों की संख्या है जो H के प्रत्येक तत्व द्वारा तय किए गए हैं: , जहाँ
यदि H और K संयुग्मी उपसमूह हैं, तो mX(H) = mX(K) किसी भी परिमित G-समुच्चय X के लिए वास्तव में, यदि K = GHG-1 फिर Xk= G · XH को निरूपित करती हैं,
यह देखना भी सरल हो जाता है कि प्रत्येक H ≤ G के लिए, मानचित्र Ω(G) → 'Z' : X ↦ mX(H) समरूपता है। इसका अर्थ यह है कि G के अंक को प्राप्त करने के लिए, उन्हें Ω(G) के जनरेटर पर मूल्यांकन करने के लिए पर्याप्त है, अर्थात कक्षा G/H का प्रमुख उदाहरण हैं।
उपसमूहों की प्रत्येक संयोजिन के लिए H, K ≤ G परिभाषित करते हैं-
ये MX(H) X = G / के लिए उपयोग किया जाता है। इस स्थिति के अनुसार HgK = gK, g−1Hg ≤ K के तुल्य है, इसलिए यदि H, K के उपसमूह से संयुग्मी नहीं है तो m(K, H) = 0 मान प्राप्त होता हैं।
सभी संभावित अंकों को रिकॉर्ड करने के लिए उचित सूची को बर्नसाइड के लिए 'मार्क्स सूची' इस प्रकार है: मान लीजिए G1 = उपसमूह G2, ..., GN = G, G के उपसमूहों के n संयुग्मी वर्गों के प्रतिनिधि हैं, इस प्रकार आदेश दिया गया है कि जब भी Gi Gj के उपसमूह के लिए संयुग्मी है, फिर I ≤ J के लिए अब N × N सूची (स्क्वायर आव्यूह) को परिभाषित करें जिसकी (i, j)वीं प्रविष्टि m(Gi, Gj). यह आव्यूह निचला त्रिकोणीय है, और विकर्ण पर तत्व गैर-शून्य हैं इसलिए यह व्युत्क्रम है।
यह इस प्रकार है कि यदि X G-समुच्चय है, और 'U' अंकों की इसकी पंक्ति सदिश है, तो Ui = MX(Gi), तो X, ai के असंयुक्त संघ के रूप में विघटित हो जाता है, इस प्रकार Gi की कक्षा की प्रतियां, जहां सदिश a संतुष्ट करता है,
- aM = U,
जहां 'M' अंकों की सूची का आव्यूह है। इस प्रमेय का कारण है।
उदाहरण
क्रम 6 के चक्रीय समूह के लिए अंकों की सूची इस प्रकार हैं:
Z6 | 1 | Z2 | Z3 | Z6 |
Z6 / 1 | 6 | . | . | . |
Z6 / Z2 | 3 | 3 | . | . |
Z6 / Z3 | 2 | 0 | 2 | . |
Z6 / Z6 | 1 | 1 | 1 | 1 |
सममित समूह S3 के लिए अंकों की सूची:
S3 | 1 | Z2 | Z3 | S3 |
S3 / 1 | 6 | . | . | . |
S3 / Z2 | 3 | 1 | . | . |
S3 / Z3 | 2 | 0 | 2 | . |
S3 / S3 | 1 | 1 | 1 | 1 |
दो सूचीओं में बिंदु सभी शून्य हैं, केवल इस तथ्य पर बल देते हैं कि सूचीएँ निम्न-त्रिकोणीय हैं।
कुछ लेखक सूची के स्थानान्तरण का उपयोग करते हैं, लेकिन इस प्रकार बर्नसाइड ने इसे मूल रूप से परिभाषित किया हैं।
तथ्य यह है कि अंतिम पंक्ति सभी 1s है क्योंकि [G/G] एकल बिंदु है। इस कारण विकर्ण पद m(H, H) = | nG(H)/H | हैं, इस प्रकार पहले कॉलम में संख्या प्रतिनिधित्व की डिग्री दिखाती है।
इन सारणियों से Ω(G) की वलय संरचना का अनुमान लगाया जा सकता है: वलय के जनरेटर ('Z'-मॉड्यूल के रूप में) सारणी की पंक्तियाँ हैं, और दो जनित्रों के गुणनफल को गुणनफल द्वारा चिन्हित किया गया है। इस प्रकार किसी चिह्न के लिए पंक्ति सदिशों का घटक-वार गुणन किया जाता हैं, जिसे तब सभी पंक्तियों के रैखिक संयोजन के रूप में विघटित किया जाता है। उदाहरण के लिए, S3 के साथ,
as (3, 1, 0, 0)। (2, 0, 2, 0) = (6, 0, 0, 0)।
क्रमपरिवर्तन प्रतिनिधित्व
किसी परिमित समुच्चय से संबद्ध X सदिश समष्टि V = VX है, जो आधार के रूप में X के तत्वों के साथ किसी निर्दिष्ट क्षेत्र का उपयोग करके सदिश स्थान देते हैं। इस प्रकार X पर परिमित समूह G की क्रिया V पर रैखिक क्रिया को प्रेरित करती है, जिसे क्रमचय समूह प्रतिनिधित्व कहा जाता है। G के सभी परिमित-आयामी अभ्यावेदन के समुच्चय में वलय की संरचना होती है, निरूपण वलय, जिसे R(G) निरूपित किया जाता है।
किसी दिए गए G-समुच्चय X के लिए, संबंधित प्रतिनिधित्व का करेक्टर सिद्धांत है
जहाँ द्वारा उत्पन्न चक्रीय समूह है .
परिणामी समीकरण
संबंधित प्रतिनिधित्व के लिए G-समुच्चय लेना सामान्य रूप से न तो इंजेक्शन है और न ही विशेषण हैं।
सबसे सरल उदाहरण दिखा रहा है कि β सामान्य इंजेक्शन में नहीं है G = S3 के लिए है, और इस प्रकार इसका मान उक्त समीकरण में द्वारा दिया गया है जो इस प्रकार हैं-
एक्टेंशन
कॉम्पैक्ट समूहों के लिए बर्नसाइड रिंग में वर्णित है।
सहगल अनुमान बर्नसाइड रिंग को होमोटॉपी से संबंधित करता है।
यह भी देखें
संदर्भ
- Burnside, William (1897), Theory of groups of finite order, Cambridge University Press
- tom Dieck, Tammo (1987), Transformation groups, de Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter, ISBN 978-3-11-009745-0, MR 0889050, OCLC 217014538
- Dress, Andreas (1969), "A characterization of solvable groups", Math. Z., 110 (3): 213–217, doi:10.1007/BF01110213
- Kerber, Adalbert (1999), Applied finite group actions, Algorithms and Combinatorics, vol. 19 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-65941-9, MR 1716962, OCLC 247593131
- Solomon, L. (1967), "The Burnside algebra of a finite group", J. Comb. Theory, 1: 603–615