रेडियल इंजन

From Vigyanwiki
एक बीप्लैन में रेडियल इंजन

रेडियल इंजन एक प्रत्यागामी प्रकार का आंतरिक दहन इंजन विन्यास है जिसमें सिलेंडर (इंजन) "केंद्रीय क्रैंककेस" से एक पहिया के स्पोक्स की प्रकार बाहर की ओर विकीर्ण होता है। सामने से देखने पर यह एक स्टाइलिश सितारा जैसा दिखता है, और कुछ अन्य भाषाओं में "स्टार इंजन" के नाम से जाना जाता है।

गैस टर्बाइन इंजनों के प्रमुख होने से पहले रेडियल कॉन्फ़िगरेशन का उपयोग सामान्यतः विमान इंजनों के लिए किया जाता था।

इंजन ऑपरेशन

एक विशिष्ट छोटे 5 सिलेंडर रेडियल के संचालन को दिखाते हुए चलने वाले भाग।
पिस्टन सोने में और वाल्व गुलाबी रंग में, मास्टर रॉड हल्के बैंगनी रंग में, स्लेव कनेक्टिंग रॉड नीले रंग में, क्रैंकशाफ्ट / काउंटरबैलेंस ग्रे और टाइमिंग रिंग में और कैम लाल रंग में होते हैं।< ब्र>
दो-पंक्ति, चौदह-सिलेंडर प्रैट एंड व्हिटनी R-1535 ट्विन वास्प जूनियर से मास्टर रॉड (सीधा) और स्लेव्ड कनेक्टिंग रॉड

चूँकि सिलिंडर के अक्ष समतलीय होते हैं, इसलिए कनेक्टिंग छड़ को सीधे क्रैंकशाफ्ट से नहीं जोड़ा जा सकता है जब तक कि यंत्रवत् रूप से जटिल फोर्क कनेक्टिंग रॉड्स का उपयोग नहीं किया जाता है, जिनमें से कोई भी सफल नहीं हुआ है। इसके अतिरिक्त, पिस्टन एक मास्टर-एंड-आर्टिकुलेटिंग-रॉड असेंबली के साथ क्रैंकशाफ्ट से जुड़े होते हैं। एनीमेशन में सबसे ऊपर वाला एक पिस्टन, क्रैंकशाफ्ट से सीधे लगाव के साथ एक मास्टर रॉड है। शेष पिस्टन अपने कनेक्टिंग रॉड्स के अटैचमेंट को मास्टर रॉड के किनारे के चारों ओर के छल्ले में पिन करते हैं। इंजन के व्यास को बढ़ाए बिना इंजन की क्षमता बढ़ाने के लिए रेडियल सिलेंडरों की अतिरिक्त पंक्तियों को जोड़ा जा सकता है।

चार-स्ट्रोक चक्र इंजनों में प्रति पंक्ति विषम संख्या में सिलेंडर होते हैं, ताकि एक संयमित हर-दूसरे-पिस्टन बाहर निकालने के आदेश को बनाए रखा जा सके जो सुगम संचालन प्रदान करता है। उदाहरण के लिए, पांच-सिलेंडर इंजन पर फायरिंग क्रम 1, 3, 5, 2, 4 होता है और फिर सिलेंडर 1 पर वापस आ जाता है। सक्रिय स्ट्रोक सीधे अगले सिलेंडर को आग लगाने में मदद करता है, जिससे गति अधिक समान हो जाती है। यदि समान संख्या में सिलेंडरों का उपयोग किया जाता है, तो समान समय पर फायरिंग चक्र संभव नहीं होगा।[1] प्रोटोटाइप रेडियल ज़ोचे एयरो-डीज़ल (नीचे) में सिलेंडरों की संख्या समान होती है, या तो चार या आठ; किन्तु यह समस्याग्रस्त नहीं है, क्योंकि वे दो स्ट्रोक इंजन हैं, प्रति क्रैंकशाफ्ट रोटेशन चार-स्ट्रोक इंजन के रूप में पावर स्ट्रोक की दोगुनी संख्या के साथ होते है।[2]

अधिकांश चार-स्ट्रोक की प्रकार , प्रत्येक पिस्टन के चार स्ट्रोक (अंतर्ग्रहण, संपीड़न, दहन, निकास) को पूरा करने के लिए क्रैंकशाफ्ट को दो चक्कर लगाने पड़ते हैं। कैंषफ़्ट रिंग को धीमी गति से और क्रैंकशाफ्ट के विपरीत दिशा में घूमने के लिए तैयार किया जाता है। इसके कैम लोब को दो पंक्तियों में रखा गया है; एक सेवन वाल्व के लिए और एक निकास वाल्व के लिए। रेडियल इंजन सामान्य रूप से अन्य प्रकारों की समानता में कम कैम लोब का उपयोग करता है। उदाहरण के लिए, एनिमेटेड चित्रण में इंजन में, चार कैम लोब पांच सिलेंडरों में सभी 10 वाल्वों की सेवा करते हैं, जबकि समान संख्या में सिलेंडरों और वाल्वों के साथ एक विशिष्ट इनलाइन इंजन के लिए 10 की आवश्यकता होती है।

अधिकांश रेडियल इंजन एक कैम प्लेट पर पुशरोड्स और टैपटि द्वारा संचालित ओवरहेड पॉपट वॉल्व का उपयोग करते हैं, जो क्रैंकशाफ्ट के साथ गाढ़ा होता है, जिसमें कुछ छोटे रेडियल होते हैं, जैसे किनर बी -5 और रूसी श्वेत्सोव एम -11, प्रत्येक के लिए क्रैंककेस के भीतर अलग-अलग कैमशाफ्ट का उपयोग करते हैं। कुछ इंजनों में ब्रिस्टल हरक्यूलिस जैसे 14-सिलेंडर स्लीव वाल्व और 18-सिलेंडर ब्रिस्टल सेंटोरस जैसे आस्तीन वाल्व का उपयोग करते हैं, जो शांत और सुचारू रूप से चलते हैं, किन्तु बहुत सख्त निर्माण सहनशीलता की आवश्यकता होती है।[citation needed]


इतिहास

विमान

प्रैट एंड व्हिटनी R-1340 रेडियल सिकोरस्की एच -19 हेलीकॉप्टर में लगाया गया

सी. एम. मैनली ने 1901 में वाटर-कूल्ड पांच-सिलेंडर रेडियल इंजन का निर्माण किया, जो सैमुअल पियरपॉन्ट लैंगली के एयरोड्रम विमान के लिए स्टीफन बाल्ज़र के घूर्णी इंजन में से एक का रूपांतरण था। मैनली-बाल्ज़र इंजन | मैनली का इंजन 950 आरपीएम पर 52 hp (39 kW) का उत्पादन करता था।[3]

1903-1904 में जैकब एलेहैमरने अपने मोटरसाइकिल निर्माण के अनुभव का उपयोग करके दुनिया का पहला हवा-शीतलित रेडियल इंजन निर्माण किया, जिसमें तीन सिलेंडर थे, और उसे 1907 में अधिक शक्तिशाली पांच सिलेंडर मॉडल के आधार के रूप में उपयोग किया गया था। यह उनके ट्रिपलप्लेन में स्थापित किया गया था और कई छोटी फ्री-फ्लाइट हॉप्स बनाईं।[4]

एक और प्रारंभिक रेडियल इंजन तीन-सिलेंडर अंजनी था, जिसे मूल रूप से W3 "फैन" कॉन्फ़िगरेशन के रूप में बनाया गया था, जिसमें से एक अंग्रेजी चैनल में लुई ब्लेयर के ब्लेयर XI को संचालित करता था। 1914 से पहले, एलेसेंड्रो अंजनी ने 3 सिलेंडरों (120° की दूरी पर) से लेकर रेडियल इंजन विकसित किए थे - मूल ब्लेयर फैक्ट्री से प्रसिद्ध ब्लेयर XI के कुछ फ्रेंच-निर्मित उदाहरणों पर उपयोग किए जाने के लिए काफी पहले - बड़े पैमाने पर 20-सिलेंडर के लिए का इंजन 200 hp (150 kW), इसके सिलिंडरों को पाँच सिलिंडरों की चार पंक्तियों में व्यवस्थित किया गया है।[3]

अधिकांश रेडियल इंजन वातानुकूलित होते हैं, किन्तु प्रारंभिक रेडियल इंजनों में सबसे सफल में से एक (और प्रथम विश्व युद्ध के लड़ाकू विमानों के लिए निर्मित सबसे प्रारंभिक स्थिर डिजाइन) सैल्मसन वाटर-कूल्ड एयरो-इंजन थे। नौ-सिलेंडर की सैल्मसन 9Z श्रृंखला वाटर-कूल्ड रेडियल इंजन जो बड़ी संख्या में निर्मित किए गए थे। जार्ज कैंटन और पियरे उन्ने ने 1909 में मूल इंजन डिजाइन का पेटेंट कराया, इसे साल्मसन कंपनी को प्रस्तुत किया; इंजन को अधिकांशतः कैंटन-उने के नाम से जाना जाता था।[5]

1909 से 1919 तक रेडियल इंजन को उसके करीबी रिश्तेदार, रोटरी इंजन द्वारा ओवरशैड किया गया था, जो तथाकथित स्थिर रेडियल से भिन्न था जिसमें क्रैंककेस और सिलेंडर प्रोपेलर के साथ घूमते थे। यह बाद के रेडियल की अवधारणा के समान था, मुख्य अंतर यह था कि प्रोपेलर को इंजन से और क्रैंकशाफ्ट को एयरफ्रेम से जोड़ा गया था। प्रारंभिक स्थिर रेडियल के साथ एक प्रमुख कारक, सिलेंडरों के ठंडा होने की समस्या को इंजन द्वारा अपने स्वयं के शीतलन एयरफ्लो उत्पन्न करने से कम किया गया था।[6]

प्रथम विश्व युद्ध में कई फ्रांसीसी और अन्य मित्र देशों के विमानों ने गनोम इंजन कंपनी, ले रोन, क्लेर्गेट -ब्लिन और बेंटले BR2 रोटरी इंजन के साथ उड़ान भरी, जिसके अंतिम उदाहरण पहुंचे 250 hp (190 kW) चूंकि उनमें से कोई भी खत्म नहीं हुआ 160 hp (120 kW) सफल थे। 1917 तक रोटरी इंजन का विकास नए इनलाइन और वी-टाइप इंजनों से पिछड़ रहा था, जो 1918 तक जितना उत्पादन कर रहे थे 400 hp (300 kW), और लगभग सभी नए फ्रांसीसी और ब्रिटिश लड़ाकू विमानों को शक्ति प्रदान कर रहे थे।

उस समय के अधिकांश जर्मन विमानों ने वाटर-कूल्ड इनलाइन 6-सिलेंडर इंजन का उपयोग किया। मोटरेनफ़ैब्रिक ओबेरुर्सेल ने ग्नोम और ले रोन रोटरी पॉवरप्लांट की लाइसेंस प्राप्त प्रतियां बनाईं, और सीमेंस-हाल्स्के ने अपने स्वयं के डिज़ाइन बनाए, जिसमें सीमेंस-हाल्स्के Sh.III|सीमेंस-हाल्स्के Sh.III ग्यारह-सिलेंडर रोटरी इंजन सम्मलित था, जो उस अवधि के लिए असामान्य था क्रैंककेस के पिछले सिरे में एक आड़ी गरारी के माध्यम से गियर किए जाने के बिना क्रैंकशाफ्ट को मजबूती से विमान के एयरफ्रेम पर चढ़ाया जाता है, जिससे इंजन के आंतरिक काम करने वाले घटक (पूरी प्रकार से आंतरिक क्रैंकशाफ्ट अपने क्रैंककेस बीयरिंगों में तैरते हुए, इसके कॉनरोड्स और पिस्टन के साथ) घूमे क्रैंककेस और सिलेंडरों के विपरीत दिशा में, जो अभी भी प्रोपेलर के रूप में घूमता था क्योंकि यह अभी भी क्रैंककेस के सामने की ओर मजबूती से जकड़ा हुआ था, जैसा कि नियमित उमलौफमोटर जर्मन रोटरी के साथ होता है।

युद्ध के अंत तक रोटरी इंजन डिजाइन की सीमा तक पहुंच गया था, विशेष रूप से ईंधन और हवा की मात्रा के संबंध में जो खोखले क्रैंकशाफ्ट के माध्यम से सिलेंडर में खींची जा सकती थी, जबकि धातु विज्ञान और सिलेंडर कूलिंग दोनों में प्रगति ने अंततः स्थिर रहने की अनुमति दी थी। रेडियल इंजन रोटरी इंजनों को सुपरसीड करने के लिए। 1920 के दशक की प्रारंभिक में ले रोन ने अपने कई रोटरी इंजनों को स्थिर रेडियल इंजनों में परिवर्तित किया था।

1918 तक वाटर-कूल्ड इनलाइन इंजन (विमानन) एविएशन) और एयर-कूल्ड रोटरी इंजन की समानता में एयर-कूल्ड रेडियल्स के संभावित लाभ, जो प्रथम विश्व युद्ध के विमानों को संचालित करते थे, की सराहना की गई थी किन्तु अचेतन थे। ब्रिटिश डिजाइनरों ने 1917 में एबीसी ड्रैगनफ्लाई रेडियल का उत्पादन किया था, किन्तु शीतलन समस्याओं को हल करने में असमर्थ थे, और यह 1920 के दशक तक नहीं था कि ब्रिस्टल हवाई जहाज कंपनी और आर्मस्ट्रांग सिडली ने ब्रिस्टल जुपिटर जैसे विश्वसनीय एयर-कूल्ड रेडियल का उत्पादन किया।[7] और आर्मस्ट्रांग सिडले जगुआर ने किया था।[citation needed]

संयुक्त राज्य अमेरिका में एयरोनॉटिक्स के लिए राष्ट्रीय सलाहकार समिति (एनएसीए) ने 1920 में नोट किया कि एयर-कूल्ड रेडियल पावर-टू-वेट अनुपात और विश्वसनीयता में वृद्धि की भेंट कर सकते हैं; 1921 तक अमेरिकी नौसेना ने घोषणा की थी कि वह एकमात्र एयर-कूल्ड रेडियल और अन्य नौसैनिक हवाई हथियारों से लैस विमानों का ही आदेश देगी। चार्ल्स लॉरेंस का लॉरेंस जे -1|J-1 इंजन 1922 में नेवी फंडिंग के साथ विकसित किया गया था, और स्टील लाइनर्स के साथ एल्यूमीनियम सिलेंडर का उपयोग अभूतपूर्व 300 घंटे तक चला, उस समय जब 50 घंटे की सहनशक्ति सामान्य थी। सेना और नौसेना के आग्रह पर राइट वैमानिकी निगम ने लॉरेंस की कंपनी खरीदी, और बाद के इंजन राइट नाम के तहत बनाए गए। रेडियल इंजनों ने नौसेना के पायलटों को लंबी दूरी की ओवरवाटर उड़ानें करने का विश्वास दिलाया था।[8]

राइट का 225 hp (168 kW) 1925 के राइट J-5 बवंडर|जे-5 व्हर्लविंड रेडियल इंजन का व्यापक रूप से पहले सही मायने में विश्वसनीय विमान इंजन के रूप में प्रमाणित किया गया था।[9] राइट ने ग्यूसेप मारियो बेलांका को इसे प्रदर्शित करने के लिए एक विमान डिजाइन करने के लिए नियोजित किया, और परिणाम राइट-बेलंका WB-1 -1 था, जिसने पहली बार उस वर्ष बाद में उड़ान भरी थी। J-5 का उपयोग दिन के कई उन्नत विमानों में किया गया था, जिसमें चार्ल्स लिंडबर्ग की स्पिरिट ऑफ सेंट लुइस भी सम्मलित है, जिसमें उन्होंने पहली एकल ट्रांस-अटलांटिक उड़ान भरी थी।[10]

1925 में राइट के रेडियल इंजन के साथ प्रतिस्पर्धा करते हुए अमेरिकन प्रैट एंड व्हिटनी कंपनी की स्थापना की गई थी। प्रैट एंड व्हिटनी की प्रारंभिक भेंट , प्रैट एंड व्हिटनी आर-1340|आर-1340 वास्प, उस वर्ष बाद में परीक्षण किया गया था, अगले 25 वर्षों में इंजनों की एक पंक्ति प्रारंभ हुई जिसमें 14-सिलेंडर, ट्विन-पंक्ति प्रैट एंड व्हिटनी आर सम्मलित थी। -1830 जुड़वां ततैया। उड्डयन के प्राचीन में किसी भी अन्य एविएशन पिस्टन इंजन की समानता में अधिक ट्विन वास्प्स का उत्पादन किया गया; लगभग 175,000 बनाए गए थे।[11]

यूनाइटेड किंगडम में ब्रिस्टल एयरप्लेन कंपनी ज्यूपिटर, ब्रिस्टल पारा और स्लीव वाल्व ब्रिस्टल हरक्यूलिस रेडियल जैसे रेडियल विकसित करने पर ध्यान केंद्रित कर रही थी। जर्मनी, जापान और सोवियत संघ ने आर्मस्ट्रांग सिडली, ब्रिस्टल, राइट, या प्रैट एंड व्हिटनी रेडियल के लाइसेंस प्राप्त संस्करणों के निर्माण के साथ अपने स्वयं के उन्नत संस्करणों का उत्पादन प्रारंभ किया।[citation needed] फ़्रांस ने विभिन्न रोटरी इंजनों के अपने विकास को जारी रखा किन्तु ब्रिस्टल डिज़ाइनों, विशेष रूप से बृहस्पति से प्राप्त इंजनों का भी उत्पादन किया।

चूंकि अन्य पिस्टन कॉन्फ़िगरेशन और टर्बोप्रॉप ने आधुनिक पावर्ड एयरक्राफ्ट प्रोपेलर एयरक्राफ्ट | प्रोपेलर से चलने वाले एयरक्राफ्ट में ले लिया है, रेयर बियर, जो राइट R-3350 डुप्लेक्स-चक्रवात रेडियल इंजन से लैस एक F8F बेयरकट है, अभी भी प्रोपेलर से चलने वाला सबसे तेज एयरक्राफ्ट है। पिस्टन इंजन|सबसे तेज़ पिस्टन-संचालित विमान है।[12][13]

125,334 अमेरिकन ट्विन-रो, 18-सिलेंडर प्रैट एंड व्हिटनी R-2800 डबल वास्प, 2,800 in³ (46 L) के विस्थापन के साथ और 2,000 और 2,400 hp (1,500-1,800 kW) के बीच, अमेरिकी सिंगल-इंजन वॉट को संचालित करता है F4U कोरसेयर, ग्रमन F6F हेलकैट, गणतंत्र पी-47 वज्र, ट्विन-इंजन मार्टिन बी -26 लुटेरा, डगलस ए-26 आक्रमणकारी, नॉर्थ्रॉप पी-61 ब्लैक विडो, आदि। एक ही फर्म का उपरोक्त छोटा-विस्थापन (30 लीटर पर), प्रैट एंड व्हिटनी R-1830 ट्विन ततैया 14-सिलेंडर ट्विन-पंक्ति रेडियल का उपयोग बी -24 लिबरेटर, PBY कैटालिना और डगलस सी-47 के लिए मुख्य इंजन डिज़ाइन के रूप में किया गया था, प्रत्येक डिज़ाइन सबसे अधिक उत्पादित विमानों की सूची में है। प्रत्येक प्रकार के एयरफ्रेम डिजाइन के लिए समय उत्पादन संख्या होती है।

अमेरिकन राइट चक्रवात श्रृंखला ट्विन-पंक्ति रेडियल्स ने अमेरिकी युद्धक विमानों को संचालित किया: लगभग -43 लीटर विस्थापन, 14-सिलेंडर राइट आर -2600 ने सिंगल-इंजन ग्रुम्मन टीबीएफ बदला लेने वाला, ट्विन-इंजन उत्तर अमेरिकी बी-25 मिशेल मिशेल और कुछ संस्करणों को संचालित किया। डगलस ए-20 कहर, विशाल जुड़वां-पंक्ति, लगभग 55-लीटर विस्थापन, 18-सिलेंडर राइट आर-3350 द्वैध-चक्रवात चार इंजन वाले बोइंग बी-29 सुपरफोर्ट्रेस और अन्य को शक्ति प्रदान करता है।

सोवियत श्वेत्सोव OKB | OKB-19 डिज़ाइन ब्यूरो सोवियत सरकार के सभी फ़ैक्टरी-निर्मित रेडियल इंजनों के लिए डिज़ाइन का एकमात्र स्रोत था, जो इसके द्वितीय विश्व युद्ध के विमानों में उपयोग किया गया था, जिसकी प्रारंभिक श्वेत्सोव एम -25 (स्वयं अमेरिकी राइट आर पर आधारित) से हुई थी। -1820 का डिज़ाइन) और लड़ाकू विमानों के लिए 41-लीटर विस्थापन श्वेत्सोव ऐश -82 चौदह सिलेंडर रेडियल और 1946 में विशाल, 58-लीटर विस्थापन श्वेत्सोव ऐश -73 अठारह-सिलेंडर रेडियल डिज़ाइन करने जा रहा है - सबसे छोटा-विस्थापन रेडियल डिज़ाइन युद्ध के समय श्वेत्सोव ओकेबी स्वदेशी रूप से डिजाइन किया गया था, 8.6 लीटर विस्थापन श्वेत्सोव एम-11 पांच सिलेंडर रेडियल होता है।

जर्मन 42-लीटर विस्थापन के 28,000 से अधिक, 14-सिलेंडर, दो-पंक्ति बीएमडब्ल्यू 801, 1,560 और 2,000 PS (1,540-1,970 hp, या 1,150-1,470 kW) के बीच, जर्मन सिंगल-सीट, सिंगल-इंजन फ़ॉके संचालित वुल्फ एफ़डब्ल्यू 190 वुर्गर, और ट्विन-इंजन जंकर्स जू 88 होता है।

जापान में, अधिकांश हवाई जहाजों को 14-सिलेंडर मित्सुबिशी आलंकारिक (11,903 यूनिट, जैसे कावासाकी कुंजी 45), मित्सुबिशी आधुनिक समय (12,228 यूनिट, जैसे आइची डी3ए), मित्सुबिशी मार्स (16,486 यूनिट, जैसे कवानिशी) जैसे एयर-कूल्ड रेडियल इंजन द्वारा संचालित किया गया था। H8K), शक नकाजिमा (30,233 यूनिट्स, जैसे मित्सुबिशी A6M और नकाजिमा कुंजी 43), और 18-सिलेंडर होमारे नकाजिमा (9,089 यूनिट्स, जैसे नकाजिमा की 84)। कावासाकी कुंजी 61 और योकोसुका D4Y उस समय जापानी तरल-ठंडा इनलाइन इंजन विमान के दुर्लभ उदाहरण थे, किन्तु बाद में, उन्हें कावासाकी कुंजी 100 और योकोसुका डी4वाई3 के रूप में रेडियल इंजन फिट करने के लिए फिर से डिजाइन किया गया।

ब्रिटेन में, ब्रिस्टल ने स्लीव वाले वाल्व वाले और पारंपरिक पॉपपेट वाल्व वाले रेडियल दोनों का उत्पादन किया: स्लीव वाल्व वाले डिज़ाइनों में, 57,400 से अधिक हरक्यूलिस इंजनों ने विकर्स वेलिंगटन, लघु स्टर्लिंग, हैंडले पेज हैलिफ़ैक्स और एवरो लैंकेस्टर के कुछ संस्करणों को संचालित किया, जिनमें से 8,000 से अधिक अग्रणी थे स्लीव-वेल्व्ड ब्रिस्टल पर्सियस का उपयोग विभिन्न प्रकारों में किया गया था, और स्लीव वाल्विंग का उपयोग करने के लिए ब्रिस्टल फर्म से 2,500 से अधिक सबसे बड़े विस्थापन उत्पादन ब्रिटिश रेडियल, ब्रिस्टल सेंटॉरस का उपयोग हॉकर तूफ़ान और हॉकर सी फ्यूरी को शक्ति देने के लिए किया गया था। उसी फर्म के पॉपपेट-वेल्व्ड रेडियल्स में सम्मलित हैं: लघु सुंदरलैंड, हैंडले पेज हैम्पडेन, और फैरी स्वोर्डफ़िश में लगभग 32,000 ब्रिस्टल पेगासस का उपयोग किया गया था और फर्म के 1925-मूल के नौ-सिलेंडर पारा के 20,000 से अधिक उदाहरणों का उपयोग वेस्टलैंड लाइसैंडर, ब्रिस्टल को बिजली देने के लिए किया गया था।

टैंक

द्वितीय विश्व युद्ध से पहले के वर्षों में, जैसे ही बख्तरबंद वाहनों की आवश्यकता महसूस की गई, डिजाइनरों को इस समस्या का सामना करना पड़ा कि वाहनों को कैसे शक्ति प्रदान की जाए, और विमान के इंजनों का उपयोग करने लगे, उनमें रेडियल प्रकार भी सम्मलित हैं। रेडियल विमान इंजनों ने अधिक शक्ति-से-भार अनुपात प्रदान किया और उस समय उपलब्ध पारंपरिक इनलाइन वाहन इंजनों की समानता में अधिक विश्वसनीय थे। चूंकि इस निर्भरता का एक नकारात्मक पहलू था: यदि इंजनों को लंबवत रूप से लगाया जाता था, जैसा कि मेरे साथ और माउंट शर्मन में होता है, तो उनके समानता त्मक रूप से बड़े व्यास ने टैंक को इनलाइन इंजनों का उपयोग करने वाले डिजाइनों की समानता में एक उच्च सिल्हूट दिया।

महाद्वीपीय R-670, एक 7-सिलेंडर रेडियल एयरो इंजन, जिसने पहली बार 1931 में उड़ान भरी थी, एक व्यापक रूप से उपयोग किया जाने वाला टैंक पॉवरप्लांट बन गया, जिसे M1 लड़ाकू कार, एम 2 लाइट टैंक, स्टुअर्ट के साथ, M3 ली और लैंडिंग वाहन ट्रैक किया गया | LVT में स्थापित किया जा रहा है। -2 जल भैंस।

गीबरसन T-1020, एक 9-सिलेंडर रेडियल डीजल एयरो इंजन, M1 कॉम्बैट कार में उपयोग किया गया था, जबकि राइट आर-975 ने M4 शेरमेन, M7 प्रीस्ट, M18 हेलकैट टैंक नाशक और M44 सेल्फ प्रोपेल्ड हॉवित्जर में सर्विस देखी। .



आधुनिक रेडियल

फोर-स्ट्रोक एयरक्राफ्ट रेडियल इंजन स्कारलेट मिनी 5

कई कंपनियां आज रेडियल का निर्माण जारी रखे हुए हैं। वेदिनीव M-14P रेडियल का उत्पादन करता है 360–450 hp (270–340 kW) जैसा कि याकोवलेव और सुखोई एरोबैटिक विमानों पर उपयोग किया जाता है। M-14P का उपयोग घरेलू विमान के बिल्डरों द्वारा भी किया जाता है, जैसे कि कल्प स्पेशल, और कल्प सॉपविथ पप,[14] पिट्स स्पेशल S12 मॉन्स्टर एंड द मर्फी मूस|मर्फी मूस। रोटेक R2800 |110 hp (82 kW)7-सिलेंडर और रोटेक R3600 |150 hp (110 kW)9-सिलेंडर इंजन ऑस्ट्रेलिया के रोटेक एरोस्पोर्ट से उपलब्ध हैं। HCI एविएशन R180 5-सिलेंडर प्रदान करता है (75 hp (56 kW)) और R220 7-सिलेंडर (110 hp (82 kW)), उड़ने के लिए तैयार और स्वयं निर्मित किट के रूप में उपलब्ध है। चेक गणराज्य की वर्नर मोटर कई रेडियल इंजनों का निर्माण करती है जिनकी शक्ति 25 to 150 hp (19 to 112 kW).[15] रेडियो-नियंत्रित विमानों के लिए लघु रेडियल इंजन O. S. इंजन, जापान के सैटो सीसाकुशो, और चीन के शिजियाझुआंग, और विकास (जर्मनी के वोल्फगैंग सीडेल द्वारा डिज़ाइन किया गया, और भारत में निर्मित) और अमेरिका में टेक्नोपॉवर से उपलब्ध हैं।


इनलाइन इंजन के साथ समानता

1935 की मोनाको-ट्रॉसी रेस कार, ऑटोमोबाइल उपयोग का एक दुर्लभ उदाहरण।[16]

लिक्विड कूलिंग प्रणाली सामान्यतः युद्ध क्षति के प्रति अधिक संवेदनशील होते हैं। यहां तक ​​​​कि सामान्य छर्रे की क्षति आसानी से शीतलक की हानि और परिणामी इंजन के अधिक गरम होने का परिणाम हो सकती है, जबकि एक एयर-कूल्ड रेडियल इंजन सामान्य क्षति से अप्रभावित हो सकता है।[17] रेडियल में छोटे और कठोर क्रैंकशाफ्ट होते हैं, एक सिंगल-बैंक रेडियल इंजन को एकमात्र दो क्रैंकशाफ्ट बियरिंग्स की आवश्यकता होती है, जबकि लिक्विड-कूल्ड, सिक्स-सिलेंडर, समान कठोरता के इनलाइन इंजन के लिए आवश्यक सात के विपरीत होता है।[18]

जबकि एकल-बैंक रेडियल सभी सिलेंडरों को समान रूप से ठंडा करने की अनुमति देता है, यह बहु-पंक्ति इंजनों के लिए सही नहीं है, जहां पीछे के सिलेंडरों को सामने की पंक्ति से आने वाली गर्मी से प्रभावित किया जा सकता है, और वायु प्रवाह को मास्क किया जा सकता है।[19]

रेडियल इंजनों का एक संभावित नुकसान यह है कि एयरफ्लो के संपर्क में आने वाले सिलेंडरों से ड्रैग (भौतिकी) में काफी वृद्धि होती है। इसका उत्तर सिलेंडरों के बीच हवा को मजबूर करने के लिए विशेष रूप से डिज़ाइन किए गए काउलिंग्स को जोड़ना था। पहला प्रभावी ड्रैग-रिड्यूसिंग काउलिंग जो इंजन कूलिंग को ख़राब नहीं करता था, वह ब्रिटिश टाउनेंड रिंग या ड्रैग रिंग थी, जिसने इंजन के चारों ओर एक संकीर्ण बैंड बनाया, जो सिलेंडर हेड्स को कवर करता था, ड्रैग को कम करता था। एयरोनॉटिक्स के लिए राष्ट्रीय सलाहकार समिति ने समस्या का अध्ययन किया, एनएसीए काउलिंग का विकास किया जिसने ड्रैग को और कम किया और कूलिंग में सुधार किया। लगभग सभी विमान रेडियल इंजनों ने एनएसीए-प्रकार के काउलिंग का उपयोग किया है।[Note 1]

जबकि द्वितीय विश्व युद्ध के अंत तक नए डिजाइनों में इनलाइन तरल-ठंडा इंजन सामान्य बने रहे, रेडियल इंजन बाद में हावी हो गए जब तक कि जेट इंजनों से आगे नहीं निकल गए, युद्ध के अंत में हॉकर सी फ्यूरी और ग्रुम्मन F8F बेयरकैट के साथ, दो सबसे तेज़ उत्पादन पिस्टन- रेडियल इंजन का उपयोग करते हुए कभी भी निर्मित इंजन वाले विमान होते है।

हाइड्रोलॉक

जब भी कोई रेडियल इंजन कुछ मिनटों से अधिक समय तक बंद रहता है, तो तेल या ईंधन निचले सिलेंडरों के दहन कक्षों में बह सकता है या निचले सेवन पाइपों में जमा हो सकता है, जो इंजन प्रारंभ होने पर सिलेंडरों में खींचे जाने के लिए तैयार होता है। जैसे ही पिस्टन कंप्रेशन स्ट्रोक के डेड सेंटर (इंजीनियरिंग) के पास पहुंचता है, यह तरल, असम्पीडित होने के कारण, पिस्टन की गति को रोक देता है। ऐसी स्थिति में इंजन को चालू करने या चालू करने का प्रयास करने से कनेक्टिंग रॉड मुड़ी हुई या टूटी हुई हो सकती है।[22]


अन्य प्रकार के रेडियल इंजन

बहु-पंक्ति रेडियल

प्रैट एंड व्हिटनी R-4360 ततैया मेजर, एक चार-पंक्ति रेडियल

मूल रूप से रेडियल इंजन में सिलेंडरों की एक पंक्ति होती थी, किन्तु जैसे-जैसे इंजन के आकार में वृद्धि हुई, अतिरिक्त पंक्तियों को जोड़ना आवश्यक हो गया। ट्विन-पंक्ति डिज़ाइन का उपयोग करने के लिए जाना जाने वाला पहला रेडियल-कॉन्फ़िगरेशन इंजन 1912 का 160 hp गनोम डबल लैम्ब्डा रोटरी इंजन था, जिसे फर्म के 80 hp जीनोम लैम्ब्डा सिंगल-पंक्ति सात-सिलेंडर रोटरी के 14-सिलेंडर ट्विन-पंक्ति संस्करण के रूप में डिज़ाइन किया गया था। चूंकि, विश्वसनीयता और शीतलन समस्याओं ने इसकी सफलता को सीमित कर दिया।

1930 के दशक के समय दो-पंक्ति डिजाइन बड़ी संख्या में दिखाई देने लगे, जब विमान का आकार और वजन उस बिंदु तक बढ़ गया जहां आवश्यक शक्ति के एकल-पंक्ति इंजन व्यावहारिक होने के लिए बहुत बड़े थे। दो-पंक्ति डिज़ाइनों में अधिकांशतः सिलेंडरों के पिछले किनारे के साथ शीतलन समस्याएँ होती थीं, किन्तु विभिन्न प्रकार के बाफ़ल और पंख प्रस्तुत किए गए थे जो इन समस्याओं को काफी हद तक समाप्त कर देते थे। नकारात्मक पक्ष एक अपेक्षाकृत बड़ा ललाट क्षेत्र था जिसे पर्याप्त वायु प्रवाह प्रदान करने के लिए खुला छोड़ना पड़ा, जिससे ड्रैग में वृद्धि हुई। इसने 1930 के दशक के अंत में आधुनिक लड़ाकू विमानों की प्रकार उच्च गति वाले विमानों के लिए रेडियल का उपयोग करने की संभावना के बारे में उद्योग में महत्वपूर्ण तर्क दिए।

समाधान बीएमडब्ल्यू 801 14-सिलेंडर ट्विन-पंक्ति रेडियल के साथ प्रस्तुत किया गया था। कर्ट टैंक ने इस इंजन के लिए एक नया कूलिंग प्रणाली तैयार किया, जो बैंकों के मध्य तक हवा ले जाने वाले चैनलों में संपीड़ित हवा को उड़ाने के लिए एक उच्च गति वाले पंखे का उपयोग करता था, जहां बाफलों की एक श्रृंखला ने सभी सिलेंडरों पर हवा को निर्देशित किया। इसने काउलिंग को इंजन के चारों ओर कसकर फिट करने की अनुमति दी, ड्रैग को कम किया, जबकि अभी भी (कई प्रयोगों और संशोधनों के बाद) पीछे की ओर पर्याप्त ठंडी हवा प्रदान की। इस मूल अवधारणा को जल्द ही कई अन्य निर्माताओं द्वारा कॉपी किया गया था, और कई देर-द्वितीय विश्व युद्ध के विमान रेडियल डिजाइन में लौट आए क्योंकि नए और बहुत बड़े डिजाइन प्रस्तुत किए जाने लगे। उदाहरणों में सम्मलित हैं हॉकर सी फ्यूरी में ब्रिस्टल सेंटोरस, और लावोचिन ला-श में श्वेत्सोव एएसएच-82।

और भी अधिक शक्ति के लिए, पीछे के बैंकों को आवश्यक वायु प्रवाह प्रदान करने में कठिनाई के कारण आगे की पंक्तियों को जोड़ना व्यवहार्य नहीं माना गया। बड़े इंजनों को डिजाइन किया गया था, अधिकतर वाटर कूलिंग का उपयोग करते हुए, चूंकि इसने जटिलता को बहुत बढ़ा दिया और रेडियल एयर-कूल्ड डिज़ाइन के कुछ लाभों को समाप्त कर दिया। इस अवधारणा का एक उदाहरण बीएमडब्ल्यू 803 है, जिसने कभी भी सेवा में प्रवेश नहीं किया।

एक प्रमुख अध्ययन अमेरिका में पवन सुरंगों और अन्य प्रणालियों का उपयोग करके रेडियल के चारों ओर एयरफ्लो में किया गया था, और यह प्रदर्शित किया कि सावधानीपूर्वक डिजाइन के साथ पर्याप्त एयरफ्लो उपलब्ध था। इसने प्रैट एंड व्हिटनी आर -4360 | आर -4360 का नेतृत्व किया, जिसमें 28 सिलेंडरों को 4 पंक्ति भुट्टा कॉन्फ़िगरेशन में व्यवस्थित किया गया है। R-4360 ने द्वितीय विश्व युद्ध के बाद की अवधि में बड़े अमेरिकी विमानों पर सेवा देखी। यूएस और सोवियत संघ ने बड़े रेडियल के साथ प्रयोग जारी रखा, किन्तु यूके ने सेंटोरस के नए संस्करणों के पक्ष में ऐसे डिजाइनों को छोड़ दिया और आर्मस्ट्रांग सिडली पायथन और ब्रिस्टल प्रोटीन जैसे टर्बोप्रॉप के उपयोग के लिए तेजी से आंदोलन किया, जो आसानी से रेडियल की समानता में अधिक शक्ति का उत्पादन वजन या जटिलता के बिना करता था।[citation needed]

अन्य उपयोगों के लिए बड़े रेडियल का निर्माण जारी रहा, चूंकि अब वे आम नहीं हैं। एक उदाहरण 5-टन ज़्वेज़्डा M503 डीजल इंजन है जिसमें 7 की 6 पंक्तियों में 42 सिलेंडर होते हैं, जो विस्थापित होते हैं 143.6 litres (8,760 cu in) और उत्पादन 3,942 hp (2,940 kW). इनमें से तीन का उपयोग तेज ओसा क्लास मिसाइल बोट पर किया गया था।[citation needed] एक अन्य आगामी XR-7755 था जो संयुक्त राज्य अमेरिका में निर्मित अब तक का सबसे बड़ा पिस्टन विमान इंजन था जिसमें कुल 7,750 in³ (127 L) विस्थापन के कुल 36 सिलेंडर और 5,000 हॉर्सपावर (3,700 किलोवाट) का बिजली उत्पादन था।

डीजल रेडियल

पैकर्ड DR-980 डीजल रेडियल विमान इंजन
बिजली उत्पादन और पंप ड्राइव उद्देश्यों के लिए एक नॉर्डबर्ग मैन्युफैक्चरिंग कंपनी टू-स्ट्रोक डीजल रेडियल इंजन

जबकि अधिकांश रेडियल इंजनों का उत्पादन गैसोलीन के लिए किया गया है, डीजल रेडियल इंजन भी हुए हैं। दो प्रमुख लाभ डीजल इंजन के पक्ष में हैं - ईंधन की कम खपत और आग का कम संकट नहीं होता है।[citation needed]

पैकर्ड

पैकार्ड ने 9-सिलेंडर 980 क्यूबिक इंच (16.06 लीटर) विस्थापन डीजल रेडियल एयरक्राफ्ट इंजन का डिजाइन और निर्माण किया। 225 horsepower (168 kW) पैकर्ड DR-980|DR-980, 1928 में। 28 मई 1931 को, वाल्टर एडविन लीस और फ्रेडरिक ब्रॉसी द्वारा संचालित 481 गैलन ईंधन के साथ DR-980 संचालित बेलांका CH-300 ने 84 घंटे तक ऊपर रहने का रिकॉर्ड बनाया। और बिना ईंधन भरे 32 मिनट।[23] यह रिकॉर्ड 55 साल तक बना रहा जब तक कि रतन मल्लाह ने तोड़ा नहीं था।[24]

ब्रिस्टल

1928-1932 के प्रायोगिक ब्रिस्टल फीनिक्स का वेस्टलैंड वैपिटी में सफलतापूर्वक उड़ान परीक्षण किया गया और 1934 में ऊंचाई रिकॉर्ड स्थापित किया जो द्वितीय विश्व युद्ध तक चला था।[citation needed]

क्लेर्गेट

1932 में फ्रांसीसी कंपनी क्लेर्गेट ने 14D, एक 14-सिलेंडर दो स्ट्रोक डीजल इंजन | दो-स्ट्रोक डीजल रेडियल इंजन विकसित किया। कई सुधारों के बाद, 1938 में 14F2 मॉडल का उत्पादन किया गया 520 hp (390 kW) 1910 आरपीएम क्रूज पावर पर, समकालीन गैसोलीन इंजनों के पास पावर-टू-वेट अनुपात और लगभग 80% की ब्रेक विशिष्ट ईंधन खपत के बराबर गैसोलीन इंजन के लिए। WWII के समय अनुसंधान जारी रहा, किन्तु नाज़ी अधिकार के कारण कोई बड़े पैमाने पर उत्पादन नहीं हुआ। 1943 तक इंजन का उत्पादन बढ़ गया था 1,000 hp (750 kW) टर्बो सुपरचार्जर के साथ। युद्ध के बाद, क्लेर्गेट कंपनी को एसएनईसीएमए कंपनी में एकीकृत किया गया था और 32-सिलेंडर डीजल इंजन की योजना थी 4,000 hp (3,000 kW), किन्तु 1947 में कंपनी ने उभरते टरबाइन इंजनों के पक्ष में पिस्टन इंजन के विकास को छोड़ दिया था।[citation needed]

नॉर्डबर्ग

संयुक्त राज्य अमेरिका की नोर्डबर्ग मैन्युफैक्चरिंग कंपनी ने 1940 के दशक के अंत से मुख्य रूप से अल्युमीनियम स्मेल्टर और पानी पंप करने के लिए बड़े टू-स्ट्रोक इंजन | टू-स्ट्रोक रेडियल डीजल इंजन की एक श्रृंखला का विकास और उत्पादन किया। वे अधिकांश रेडियल से भिन्न थे कि उनके पास एक ही बैंक (या पंक्ति) में सिलेंडरों की एक समान संख्या थी और एक असामान्य डबल मास्टर कनेक्टिंग रॉड थी। वेरिएंट बनाए गए थे जिन्हें डीजल तेल या गैसोलीन या दोनों के मिश्रण पर चलाया जा सकता था। इन इंजनों की बड़ी संख्या का उपयोग करने वाले कई बिजलीघर प्रतिष्ठान यू.एस. में बनाए गए थे।[25]

ईएमडी

इलेक्ट्रो-मोटिव डीजल (ईएमडी) ने समुद्री उपयोग के लिए पैनकेक इंजन 16-184 और 16-338 बनाए गए थे।[26]

कंप्रेस्ड एयर रेडियल इंजन

संपीड़ित हवा पर चलने वाले कई रेडियल मोटर्स को डिजाइन किया गया है, अधिकतर मॉडल हवाई जहाज और गैस कंप्रेशर्स में उपयोग के लिए होता है।[27]

मॉडल रेडियल इंजन

रेडियल कॉन्फ़िगरेशन में कई मल्टी-सिलेंडर 4-स्ट्रोक मॉडल इंजन व्यावसायिक रूप से उपलब्ध हैं, जिसकी प्रारंभिक जापानी ओएस से हुई थी। मैक्स फर्म का FR5-300 पांच-सिलेंडर, 3.0 cu.in। (50 सें.मी3) 1986 में विस्थापन सीरियस रेडियल। अमेरिकन टेक्नोपॉवर फर्म ने 1976 की प्रारंभिक में छोटे-विस्थापन पांच- और सात-सिलेंडर मॉडल रेडियल इंजन बनाए थे, किन्तु ओएस फर्म का इंजन 1976 में पहला बड़े पैमाने पर उत्पादित रेडियल इंजन डिजाइन था। जापान में प्रतिद्वंद्वी सैटो सीसाकुशो फर्म ने ओएस डिजाइन के प्रत्यक्ष प्रतिद्वंद्वी के रूप में उसी प्रकार के आकार के पांच-सिलेंडर रेडियल चार-स्ट्रोक मॉडल इंजन का उत्पादन किया है, साथ ही सैटो ने तीन-सिलेंडर मेथनॉल और गैसोलीन-ईंधन मॉडल की एक श्रृंखला भी बनाई है। रेडियल इंजन 0.90 cu.in से लेकर। (15 सें.मी3) से 4.50 cu.in। (75 cm3) विस्थापन में, अब सभी स्पार्क-इग्निशन प्रारूप में 84 cm3 तक उपलब्ध हैं गैसोलीन के साथ उपयोग के लिए विस्थापन।[28] जर्मन सेडेल फर्म ने पूर्व में सात और नौ-सिलेंडर दोनों बड़े (35 cm3 से प्रारंभ ) बनाए थे विस्थापन) रेडियो नियंत्रण मॉडल रेडियल इंजन, अधिकतर ग्लो प्लग इग्निशन के लिए, प्रायोगिक चौदह-सिलेंडर ट्विन-पंक्ति रेडियल के साथ परखना जा रहा है - अमेरिकन विकास फर्म अब सेडेल-डिज़ाइन किए गए रेडियल बेचती है, उनका निर्माण भारत में किया जा रहा है।


यह भी देखें

टिप्पणियाँ

  1. It has been claimed that the NACA cowling generated extra thrust due to the Meredith Effect, whereby the heat added to the air being forced through the ducts between the cylinders expanded the exhausting cooling air, producing thrust when forced through a nozzle. The Meredith effect requires high airspeed and careful design to generate a suitable high speed exhaust of the heated air – the NACA cowling was not designed to achieve this, nor would the effect have been significant at low airspeeds.[20] The effect was put to use in the radiators of several mid-1940s aircraft that used liquid-cooled engines such as the Spitfire and Mustang,[21] and it offered a minor improvement in later radial-engined aircraft, including the Fw 190.


संदर्भ

  1. "Firing order: Definition from". Answers.com. 2009-02-04. Retrieved 2011-12-06.
  2. "zoche aero-diesels homepage". zoche.de. Retrieved 30 May 2016.
  3. Jump up to: 3.0 3.1 Vivian, E. Charles (1920). A History of Aeronautics. Dayton History Books Online. Archived from the original on 2009-05-23. Retrieved 2008-07-05.
  4. Day, Lance; Ian McNeil (1996). Biographical Dictionary of the History of Technology. Taylor & Francis. p. 239. ISBN 0-415-06042-7.
  5. Lumsden 2003, p. 225.
  6. Nahum, Andrew (1999). The Rotary Aero Engine. NMSI Trading Ltd. ISBN 1-900747-12-X.
  7. Gunston, Bill (1989). World Encyclopedia of Aero Engines. Cambridge, UK: Patrick Stephens Ltd. pp. 29, 31 & 44. ISBN 1-85260-163-9.
  8. Bilstein, Roger E. (2008). Flight Patterns: Trends of Aeronautical Development in the United States, 1918–1929. University of Georgia Press. p. 26. ISBN 978-0-8203-3214-7.
  9. Herrmann, Dorothy (1993). Anne Morrow Lindbergh: A Gift for Life. Ticknor & Fields. p. 28. ISBN 0-395-56114-0.
  10. "The Spirit of St. Louis". Charles Lindergh: An American Aviator, Retrieved 21 August 2015.
  11. - Archived (Nov. 11, 2013) manufacturer's product page, R-1830 Retrieved: 7 February 2019
  12. Lewis Vintage Collection (2018), "'Rare Bear' web site." Archived 2013-10-27 at the Wayback Machine. Retrieved: 6 January 2018.
  13. Aerospaceweb, "Aircraft speed records." AeroSpaceWeb.org. Retrieved: 6 January 2018.
  14. "Aircraft". Culp Specialties. Retrieved 2013-12-22.
  15. "Verner Motor range of engines". Verner Motor. Archived from the original on 6 October 2014. Retrieved 23 April 2013.
  16. "MONACO - TROSSI mod. da competizione". museoauto.it. Retrieved 10 November 2016.
  17. Thurston, David B. (2000). The World's Most Significant and Magnificent Aircraft: Evolution of the Modern Airplane. SAE. p. 155. ISBN 0-7680-0537-X.
  18. Some six-cylinder inline engines used as few as three bearings, but at the cost of heavier crankshafts, or crankshaft whipping.
  19. Fedden, A.H.R. (28 February 1929). "Air-cooled Engines in Service". Flight. XXI (9): 169–173.
  20. Becker, J.; The high-speed frontier: Case histories of four NACA programs, 1920- SP-445, NASA (1980), Chapter 5: High-speed Cowlings, Air Inlets and Outlets, and Internal-Flow Systems: The ramjet investigation
  21. Price 1977, p. 24.
  22. Powerplant Maintenance for Reciprocating Engines. Department of the Air Force. 1953. pp. 53–54.
  23. Chapter 1: Development of the Diesel Aircraft Engine" Archived 2012-02-12 at the Wayback Machine Aircraft Engine Historical Society — Diesels p.4 Retrieved: 30 January 2009.
  24. Aviation Chronology Retrieved: 7 February 2009.
  25. "Nordberg Diesel Engines". OldEngine. Archived from the original on 2018-09-19. Retrieved 2006-11-20.
  26. Pearce, William (18 August 2014). "General Motors / Electro-Motive 16-184 Diesel Engine". oldmachinepress.com. Retrieved 30 May 2016.
  27. "Bock radial piston compressor". Bock.de. 2009-10-19. Archived from the original on 2011-10-08. Retrieved 2011-12-06.
  28. Saito Seisakusho Worldwide E-book catalog, pages 9, 17 & 18


बाहरी कड़ियाँ