सीज़ियम मानक

From Vigyanwiki
एक सीज़ियम परमाणु फव्वारा एक परमाणु घड़ी के हिस्से के रूप में प्रयोग किया जाता है

सीज़ियम-133 मानक एक प्राथमिक आवृत्ति मानक है जिसमें सीज़ियम -133 परमाणुओं के दो हाइपरफाइन स्तर के आधार अवस्था के बीच संक्रमण द्वारा अवशोषण (विद्युत चुम्बकीय विकिरण) का उपयोग आउटपुट आवृत्ति को नियंत्रित करने के लिए किया जाता है। पहली सीज़ियम घड़ी लुई एस्सेन द्वारा 1955 में यूके में राष्ट्रीय भौतिक प्रयोगशाला यूके में बनाई गई थी।[1] और संयुक्त अवस्था नौसेना वेधशाला के गर्नोट एमआर विंकलर द्वारा विश्व भर में प्रचारित किया गया।

सीज़ियम परमाणु घड़ियाँ सबसे स्पष्ट समय और आवृत्ति मानकों में से एक हैं और इकाइयों की अंतर्राष्ट्रीय प्रणाली (एसआई) (मीट्रिक प्रणाली का आधुनिक रूप) में दूसरे की परिभाषा के लिए प्राथमिक मानक के रूप में काम करती हैं। परिभाषा के अनुसार सीज़ियम (पृथ्वी के चुंबकीय क्षेत्र जैसे बाहरी प्रभावों की अनुपस्थिति में) के दो हाइपरफाइन आधार अवस्था के बीच संक्रमण से उत्पन्न विकिरण की आवृत्ति ΔνCs, पूर्ण रूप से 9192631770 Hz. उस मान को इसलिए चुना गया था जिससे 1960 में मानव मापन क्षमता की सीमा तक सीज़ियम सेकंड की समानता की जा सके जब इसे अपनाया गया था सूर्य के चारों ओर पृथ्वी की कक्षा के आधार पर आधुनिक मानक पंचांग दूसरा[2] क्योंकि समय को सम्मिलित करने वाला कोई अन्य माप इतना स्पष्ट नहीं था परिवर्तन का प्रभाव सभी आधुनिक मापों की प्रायोगिक अनिश्चितता से कम था।

जबकि दूसरा एकमात्र एसआई आधार इकाई है जिसे सीज़ियम मानक के संदर्भ में स्पष्ट रूप से परिभाषित किया गया है अधिकांश एसआई इकाइयों की परिभाषाएँ हैं जो या तो दूसरे का उल्लेख करती हैं या दूसरे का उपयोग करके परिभाषित अन्य इकाइयाँ परिणाम स्वरुप तिल को छोड़कर हर आधार इकाई और कूलम्ब, ओम, सीमेंस, वेबर, ग्रे, सीवर्ट, रेडियन और स्टेरेडियन को छोड़कर हर एसआई व्युत्पन्न इकाई के मान होते हैं जो सीज़ियम -133 हाइपरफाइन ट्रांज़िशन रेडिएशन के गुणों द्वारा स्पष्ट रूप से परिभाषित होते हैं। और इनमें से, तिल, कूलम्ब, और आयामहीन मात्रा रेडियन और स्टेरेडियन को छोड़कर सभी को विद्युत चुम्बकीय विकिरण के सामान्य गुणों द्वारा स्पष्ट रूप से परिभाषित किया गया है।

तकनीकी विवरण

दूसरे की आधिकारिक परिभाषा पहली बार 1967 में वजन और माप पर 13वें आम सम्मेलन में अंतर्राष्ट्रीय वजन और माप ब्यूरो द्वारा दी गई थी: दूसरी की अवधि है 9192631770 सीज़ियम 133 परमाणु की आधार अवस्था के दो हाइपरफाइन स्तरों के बीच संक्रमण के अनुरूप विकिरण की अवधि 1997 की अपनी बैठक में बीआईपीएम ने पिछली परिभाषा में निम्नलिखित विनिर्देश जोड़े: यह परिभाषा 0 K के तापमान पर एक सीज़ियम परमाणु को संदर्भित करती है।[3]

बीआईपीएम ने अपने 26वें सम्मेलन (2018) में इस परिभाषा को दोहराया दूसरी को सीज़ियम आवृत्ति ∆Cs के निश्चित संख्यात्मक मान सीज़ियम 133 परमाणु की अविचलित ग्राउंड-स्टेट हाइपरफ़ाइन ट्रांज़िशन आवृत्ति 9 192 631 770 होने के द्वारा परिभाषित किया गया है जब इकाई Hz में व्यक्त किया जाता है, जो s-1 के समान होता है[4]

पूर्ववर्ती परिभाषा का अर्थ इस प्रकार है। सीज़ियम परमाणु में इलेक्ट्रॉन विन्यास [Xe] 6s1 के साथ एक आधार अवस्था इलेक्ट्रॉन अवस्था होती है और परिणामस्वरूप पद चिह्न 2S1/2. इसका अर्थ यह है कि एक अयुग्मित इलेक्ट्रॉन है और परमाणु का कुल इलेक्ट्रॉन स्पिन 1/2 है। इसके अतिरिक्त सीज़ियम -133 के नाभिक में 7/2 के समान एक परमाणु स्पिन है। इलेक्ट्रॉन स्पिन और परमाणु स्पिन की एक साथ उपस्थिति हाइपरफाइन संरचना नामक एक तंत्र द्वारा सभी ऊर्जा स्तरों को दो उप-स्तरों में विभाजित करने के लिए (छोटे) विभाजन की ओर ले जाती है। उप-स्तरों में से एक इलेक्ट्रॉन और परमाणु स्पिन के समानांतर होने से मेल खाता है (अथार्थ एक ही दिशा में संकेत करते हुए) कुल स्पिन एफ के समान होता है F = 7/2 + 1/2 = 4; अन्य उप-स्तर एंटीपैरल समानांतर इलेक्ट्रॉन और परमाणु स्पिन (अथार्थ विपरीत दिशाओं में संकेत करते हुए) से मेल खाता है, जिससे कुल स्पिन होता है F = 7/2 − 1/2 = 3. सीज़ियम परमाणु में ऐसा होता है कि ऊर्जा में सबसे कम उप-स्तर वाला होता है F = 3, जब F = 4 उप-स्तर ऊर्जावान रूप से थोड़ा ऊपर होता है। जब परमाणु दो उप-स्तरों के बीच ऊर्जावान अंतर के अनुरूप ऊर्जा वाले विद्युत चुम्बकीय विकिरण से विकिरणित होता है, तो विकिरण अवशोषित हो जाता है और परमाणु उत्तेजित हो जाता है, F = 3 उप-स्तर से F = 4 एक सेकंड के एक छोटे से अंश के बाद परमाणु विकिरण को फिर से उत्सर्जित करेगा और अपने में वापस आ जाएगा F = 3 आधार अवस्था दूसरे की परिभाषा से यह इस प्रकार है कि प्रश्न में विकिरण की आवृत्ति ठीक है 9.19263177 GHz, लगभग 3.26 सेंटीमीटर के विद्युत चुम्बकीय स्पेक्ट्रम के अनुरूप है और इसलिए माइक्रोवेव दूरी से संबंधित है।

इस विशेष सीज़ियम अनुनाद पर ला कन्वेंशन डु मेत्रे के तहत सहमति हुई थी और वर्तमान समय तक विश्व समुदाय के लिए दूसरे की आधिकारिक परिभाषा के रूप में बनी हुई है।

ध्यान दें कि एक सामान्य भ्रम में कोणीय आवृत्ति से रूपांतरण सम्मिलित है () आवृत्ति के लिए (), या विपरीत। कोणीय आवृत्तियों को पारंपरिक रूप से s के रूप में दिया जाता है-1 वैज्ञानिक साहित्य में, किंतु यहाँ इकाइयों का अर्थ प्रति सेकंड रेडियन है। इसके विपरीत, इकाई Hz की व्याख्या प्रति सेकंड चक्र के रूप में की जानी चाहिए। रूपान्तरण सूत्र है , जिसका तात्पर्य है कि 1 हर्ट्ज लगभग 6.28 रेडियन प्रति सेकंड (या 6.28 सेकेंड) की कोणीय आवृत्ति के अनुरूप है।-1 जहां परंपरा के अनुसार संक्षिप्तता के लिए रेडियन छोड़े गए हैं)।

ध्यान दें कि एक सामान्य भ्रम में कोणीय आवृत्ति ( ) से आवृत्ति () या इसके विपरीत रूपांतरण सम्मिलित है। कोणीय आवृत्तियों को पारंपरिक रूप से वैज्ञानिक साहित्य में s–1 के रूप में दिया जाता है, किंतु यहाँ इकाइयों का अर्थ प्रति सेकंड रेडियन है। इसके विपरीत, इकाई Hz की व्याख्या प्रति सेकंड चक्र के रूप में की जानी चाहिए। रूपांतरण सूत्र है जिसका तात्पर्य है कि 1 हर्ट्ज लगभग 6.28 रेडियन प्रति सेकंड (या 6.28 s–1 जहां रेडियन को कन्वेंशन द्वारा संक्षिप्तता के लिए छोड़ा गया है) की कोणीय आवृत्ति के अनुरूप है।

दूसरी और अन्य एसआई इकाइयों में पैरामीटर और महत्व

मान लीजिए कि सीज़ियम मानक में पैरामीटर हैं:

  • प्लैंक स्थिरांक|ऊर्जा/आवृत्ति: h
  • समय सीमा: ΔtCs
  • आवृत्ति: ΔνCs
  • तरंग दैर्ध्य: ΔλCs
  • फोटॉन ऊर्जा: ΔECs
  • द्रव्यमान-ऊर्जा तुल्यता: ΔMCs

समय और आवृत्ति

सीज़ियम मानक का उपयोग करते हुए परिभाषित इकाइयों का पहला सेट समय से संबंधित था दूसरे को 1967 में 9 192 631 770 विकिरण की अवधि के रूप में परिभाषित किया गया था जो कि आधार अवस्था के दो हाइपरफाइन स्तरों के बीच संक्रमण के अनुरूप था। सीज़ियम 133 परमाणु का अर्थ है कि:

  • 1 सेकंड, s, = 9,192,631,770 ΔtCs
  • 1 हेटर्स , हर्ट्ज, = 1/s= ΔνCs/9,192,631,770
  • 1 Becquerel, Bq, = 1 परमाणु क्षय/एस = 1/9,192,631,770 परमाणु क्षय/ΔtCs

इसने बल और ऊर्जा (नीचे देखें) और एम्पीयर से संबंधित व्युत्पन्न इकाइयों की परिभाषाओं को भी जोड़ा जिसकी परिभाषा उस समय न्यूटन के संदर्भ में सीज़ियम मानक के लिए थी। 1967 से पहले समय और आवृत्ति की एसआई इकाइयों को उष्णकटिबंधीय वर्ष और 1960 से पहले सौर समय की लंबाई का उपयोग करके परिभाषित किया गया था।[5]


लंबाई

1983 में, मीटर को अप्रत्यक्ष रूप से सीज़ियम मानक के संदर्भ में औपचारिक परिभाषा के साथ परिभाषित किया गया था। यह निहित है:

  • 1 मीटर, m, = c s/299,792,458 = 9,192,631,770/299,792,458 cΔtCs = 9,192,631,770/299,792,458 ΔλCs
  • 1 कांति , रेडियन, = 1 m/m = ΔλCs/ΔλCs = 1 (कोण की विमाहीन इकाई)

1960 और 1983 के बीच, मीटर को क्रिप्टन के समस्थानिक से जुड़ी एक अलग संक्रमण आवृत्ति की तरंग दैर्ध्य द्वारा परिभाषित किया गया था। दृश्य स्पेक्ट्रम के अंदर गिरते हुए सीज़ियम मानक की तुलना में इसकी उच्च आवृत्ति और कम तरंग दैर्ध्य थी। 1889 और 1960 के बीच उपयोग की गई पहली परिभाषा अंतरराष्ट्रीय प्रोटोटाइप मीटर द्वारा की गई थी।[6]


द्रव्यमान, ऊर्जा और बल

एसआई आधार इकाइयों की 2019 की पुनर्परिभाषा के बाद सामान्य रूप से विद्युत चुम्बकीय विकिरण को स्पष्ट मापदंडों के लिए स्पष्ट रूप से परिभाषित किया गया था:

  • c = 299,792,458 m/s
  • h = {{val|6.62607015|e=-34} J s

सीज़ियम-133 हाइपरफाइन संक्रमण विकिरण को आवृत्ति के लिए स्पष्ट रूप से परिभाषित किया गया था:

  • ΔνCs = 9,192,631,770 हर्ट्ज[7]

चूँकि c और के लिए उपरोक्त मान ΔνCs पहले से ही स्पष्ट रूप से मीटर और सेकंड की परिभाषाओं में निहित थे। साथ में उनका तात्पर्य है:

  • ΔtCs = 1/ΔνCs = s/9,192,631,770
  • ΔλCs = cΔtCs = 299,792,458/9,192,631,770 एम
  • ΔECs = h ΔνCs = 9,192,631,770 हर्ट्ज × 6.62607015×10−34 जे एस = 6.09110229711386655×10−24 जे
  • ΔMCs = ΔECs/c2 = 6.09110229711386655×10−24 J/89,875,517,873,681,764 m2/s2 = 6.09110229711386655/8.9875517873681764×1040 किलोग्राम

विशेष रूप से तरंग दैर्ध्य का लगभग 3.26 सेंटीमीटर का एक मानव-आकार का मूल्य है और फोटॉन ऊर्जा आश्चर्यजनक रूप से औसत आणविक गतिज ऊर्जा प्रति डिग्री स्वतंत्रता (भौतिकी और रसायन विज्ञान) प्रति केल्विन के समीप है। इनसे यह पता चलता है कि:

  • 1 किलोग्राम, किग्रा, = 8.9875517873681764×1040/6.09110229711386655 ΔMCs
  • 1 जूल, J, = 1024/6.09110229711386655 ΔECs
  • 1 वाट, डब्ल्यू, = 1 J/s = 1014/5.59932604907689089550702935 ΔECs ΔνCs
  • 1 सीवर्ट, Sv, = आयनीकरण विकिरण की मात्रा गामा किरणों के 1 ग्रे के समान की मात्रा

संशोधन से पहले 1889 और 2019 के बीच, द्रव्यमान बल और ऊर्जा से संबंधित मीट्रिक (और बाद में एसआई) इकाइयों के वर्ग को कुछ सीमा तक कुख्यात रूप से किलोग्राम (आईपीके) के अंतर्राष्ट्रीय प्रोटोटाइप के द्रव्यमान द्वारा परिभाषित किया गया था, जो एक विशिष्ट वस्तु संग्रहीत है। पेरिस में वजन और माप के अंतर्राष्ट्रीय ब्यूरो के मुख्यालय में जिसका अर्थ है कि उस वस्तु के द्रव्यमान में कोई भी परिवर्तन किलोग्राम के आकार और कई अन्य इकाइयों के आकार में परिवर्तन के परिणामस्वरूप होता है, जिसका मान उस समय किलोग्राम पर निर्भर करता था।[8]


तापमान

1954 से 2019 तक एसआई तापमान मापदंड को पानी के त्रिगुण बिंदु और पूर्ण शून्य का उपयोग करके परिभाषित किया गया था।[9] 2019 के संशोधन ने इन्हें बोल्ट्जमैन स्थिरांक, k, के नियत मान से बदल दिया 1.380649×10−23 J/K जिसका अर्थ है:

  • 1 केल्विन, K, = 1.380649×10−23 J/2 प्रति स्वतंत्रता की डिग्री = 1.380649×10−23 × 1024/2/6.09110229711386655 ΔECs स्वतंत्रता की प्रति डिग्री = 1.380649/1.21822045942277331 ΔECs स्वतंत्रता की प्रति डिग्री
  • डिग्री सेल्सीयस में तापमान, डिग्री सेल्सियस, = केल्विन में तापमान - 273.15 = 1.21822045942277331 × kinetic energy per degree of freedom - 377.12427435 ΔECs/1.380649 ΔECs

पदार्थ की मात्रा

तिल प्राथमिक संस्थाओं (अथार्थ परमाणु, अणु, आयन, आदि) का अवोगाद्रो स्थिरांक है। 1969 से 2019 तक, यह संख्या आईपीके और कार्बन के समस्थानिक के बीच द्रव्यमान अनुपात 0.012 × थी।[10] 2019 के संशोधन ने अवोगाद्रो स्थिरांक को स्पष्ट मान निर्दिष्ट करके इसे सरल बना दिया 6.02214076×1023 मूल इकाइयां प्रति तिल इस प्रकार आधार इकाइयों के बीच विशिष्ट रूप से तिल ने सीज़ियम मानक से अपनी स्वतंत्रता बनाए रखी:

  • 1 मोल (इकाई), मोल, = 6.02214076×1023 प्राथमिक संस्थाएं
  • 1 कटल कैट = 1 तिल/s = 6.02214076×1014/9.19263177 प्राथमिक निकाय/ΔtCs

विद्युत चुम्बकीय इकाइयाँ

संशोधन से पहले, एम्पीयर को 0.2 न्यूटन (यूनिट) | μN प्रति मीटर के अतिरिक्त 2 समानांतर तारों के बीच एम्पीयर के बल कानून के लिए आवश्यक धारा के रूप में परिभाषित किया गया था। 2019 के संशोधन ने प्राथमिक प्रभार, ई, स्पष्ट मान देकर इस परिभाषा को बदल दिया 1.602176634×10−19 कुलम्ब कुछ सीमा तक असंगत रूप से कूलम्ब को अभी भी एक व्युत्पन्न इकाई माना जाता है और एम्पीयर एक आधार इकाई है अतिरिक्त इसके विपरीत।[11] किसी भी स्थिति में इस सम्मेलन में एसआई विद्युत चुम्बकीय इकाइयों प्राथमिक आवेश और सीज़ियम-133 हाइपरफाइन संक्रमण विकिरण के बीच निम्नलिखित स्पष्ट संबंधों को सम्मिलित किया गया है:

  • 1 कूलॉम, C, = 1019/1.602176634 e
  • 1 वाल्ट , V, = 1 J/C = 1.602176634×105/6.09110229711386655 ΔECs/e
  • 1 फैराड, F, = 1 C/V = 6.09110229711386655×1014/2.566969966535569956 e2ECs
  • 1 ओम (यूनिट), Ω, = 1 V/A = 2.359720966701071721258310212×10−4/6.09110229711386655 ΔECs/ΔνCs e2 = 2.359720966701071721258310212×10−4/6.09110229711386655 h/e2
  • 1 टेस्ला (यूनिट), T, = 1 Wb/m2 = 1.43996454705862285832702376×1012/5.59932604907689089550702935 ΔECs ΔtCse ΔλCs2 = 1.43996454705862285832702376×1012/5.59932604907689089550702935 E/e c ΔλCs

ऑप्टिकल इकाइयां

1967 से 1979 तक एसआई ऑप्टिकल इकाइयों, लुमेन, लक्स और कैंडेला को इसके गलनांक पर प्लैटिनम की गरमागरम चमक का उपयोग करके परिभाषित किया गया है। 1979 के बाद, कैंडेला को 540 Thz आवृत्ति के मोनोक्रोमैटिक विकिरण प्रकाश स्रोत की चमकदार तीव्रता के रूप में परिभाषित किया गया था (अर्थात 6000/1.02140353 सीज़ियम मानक की) और दीप्तिमान तीव्रता 1/683 वाट प्रति स्टेरेडियन इसने कैंडेला की परिभाषा को सीज़ियम मानक और 2019 तक आईपीके से जोड़ा द्रव्यमान, ऊर्जा, तापमान, पदार्थ की मात्रा और विद्युत चुंबकत्व से संबंधित इकाइयों के विपरीत ऑप्टिकल इकाइयों को 2019 में व्यापक रूप से पुनर्परिभाषित नहीं किया गया था चूँकि वे अप्रत्यक्ष रूप से प्रभावित थे क्योंकि उनके मूल्य वाट और इसलिए किलोग्राम पर निर्भर करते थे।[12] ऑप्टिकल इकाइयों को परिभाषित करने के लिए उपयोग की जाने वाली आवृत्ति में पैरामीटर होते हैं:

  • आवृत्ति: 540 THz
  • समय सीमा: 50/27 fs
  • तरंग दैर्ध्य: 14.9896229/27 μm
  • फोटॉन ऊर्जा: 5.4×1014 हर्ट्ज × 6.62607015×10−34 जे एस = 3.578077881×10−19 J
  • चमकदार ऊर्जा प्रति फोटॉन, , = 3.578077881×10−19 J × 683 lm/W = 2.443827192723×10−16 lm s

यह संकेत करता है:

  • 1 कैन्डेला , सीडी, = 1 lm/sr = 106/2.246520349221536260971 ΔνCs/sr
  • 1 लूक्रस , एलएक्स, = 1 lm/m2 =8.9875517873681764×102/1.898410313566852566340456048807087002459 ΔνCs/ΔλCs2

सारांश

एसआई इकाइयों में स्पष्ट रूप से व्यक्त किए गए सीज़ियम 133 हाइपरफ़ाइन संक्रमण विकिरण के पैरामीटर हैं:

  • आवृत्ति = 9,192,631,770 हर्ट्ज
  • समय काल = s/9,192,631,770
  • तरंग दैर्ध्य = 299,792,458/9,192,631,770 m
  • फोटॉन ऊर्जा = 6.09110229711386655×10−24 J
  • फोटॉन द्रव्यमान समतुल्य = 6.09110229711386655×10−40/8.9875517873681764 किलोग्राम

यदि एसआई की 7 आधार इकाइयाँ एसआई परिभाषित स्थिरांक के रूप में स्पष्ट रूप से व्यक्त की जाती हैं तो वे हैं:

  • 1 सेकंड = 9,192,631,770/ΔνCs
  • 1 मीटर = 9,192,631,770/299,792,458 c/ΔνCs
  • 1 किलोग्राम = 8.9875517873681764×1040/6.09110229711386655 h ΔνCs/c2
  • 1 एम्पीयर = 109/1.472821982686006218 e ΔνCs
  • 1 केल्विन = 13.80649/6.09110229711386655 hΔνCs/क
  • 1 तिल = 6.02214076×1023 प्राथमिक संस्थाएं
  • 1 कैंडेला = 1011/3.82433969151951648163130104605 h ΔνCs2 KCD/sr

अंततः, 7 आधार इकाइयों में से 6 में विशेष रूप से ऐसे मान होते हैं जो उस पर निर्भर करते हैं ΔνCs, जो किसी भी अन्य परिभाषित स्थिरांक की तुलना में कहीं अधिक बार प्रकट होता है।

यह भी देखें

संदर्भ

  1. L. Essen, J.V.L. Parry (1955). "An Atomic Standard of Frequency and Time Interval: A Caesium Resonator". Nature. 176 (4476): 280–282. Bibcode:1955Natur.176..280E. doi:10.1038/176280a0. S2CID 4191481.
  2. Markowitz, W.; Hall, R.; Essen, L.; Parry, J. (1958). "पंचांग समय के संदर्भ में सीज़ियम की आवृत्ति". Physical Review Letters. 1 (3): 105. Bibcode:1958PhRvL...1..105M. doi:10.1103/PhysRevLett.1.105.
  3. "Comité international des poids et mesures (CIPM): Proceedings of the Sessions of the 86th Meeting" (PDF) (in français and English). Paris: Bureau International des Poids et Mesures. 23–25 Sep 1997. p. 229. Archived from the original (PDF) on 4 December 2020. Retrieved 30 December 2019.
  4. "Resolution 1 of the 26th CGPM" (in français and English). Paris: Bureau International des Poids et Mesures. 2018. pp. 472 of the official French publication. Archived from the original on 2021-02-04. Retrieved 2019-12-29.
  5. "Second - BIPM".
  6. "Metre - BIPM".
  7. "Resolution 1 (2018) - BIPM".
  8. "Kilogram - BIPM".
  9. "Kelvin - BIPM".
  10. "Mole - BIPM".
  11. "Ampere - BIPM".
  12. "Candela - BIPM".


बाहरी संबंध