सेलेक्ट्रोन नलिका

From Vigyanwiki
4096-bit Selectron tube
256-bit Selectron tube

सेलेक्ट्रोन जन ए. राजचमन और उनके समूह द्वारा आरसीए (आरसीए) में व्लादिमीर के. ज़्वोरकिन के निर्देशन में विकसित डिजिटल मेमोरी का प्रारंभिक रूप था। यह वेक्यूम - ट्यूब थी जो विलियम्स ट्यूब संचयन उपकरण के समान विधि का उपयोग करके डिजिटल डेटा को इलेक्ट्रोस्टैटिक चार्ज के रूप में संग्रहीत करती थी। चुंबकीय-कोर मेमोरी के लगभग सार्वभौमिक होने से पहले टीम कभी भी सिलेक्ट्रोन के व्यावसायिक रूप से व्यवहार्य रूप का उत्पादन करने में सक्षम नहीं थी।

विकास

उन्नत अध्ययन संस्थान के जॉन वॉन न्यूमैन के कहने पर 1946 में सेलेक्ट्रोन का विकास प्रारंभिक हुआ।[1] जो आईएएस मशीन को डिजाइन करने के बीच में था और हाई-स्पीड मेमोरी के नए रूप की खोज कर रहा था।

आरसीए की मूल डिजाइन अवधारणा में 4096 बिट्स की क्षमता थी 1946 के अंत तक 200 के नियोजित उत्पादन के साथ उन्होंने उपकरण को अपेक्षा से अधिक कठिन पाया गया था, और वे अभी भी 1948 के मध्य तक उपलब्ध नहीं थे। विकास खींचा गया था आईएएस मशीन को संचयन के लिए विलियम्स ट्यूब पर स्विच करने के लिए विवश किया गया और सेलेक्ट्रोन के लिए प्राथमिक ग्राहक विलुप्त हो गया। आरसीए ने डिजाइन में रुचि खो दी और अपने इंजीनियरों को टेलीविजन में सुधार करने के लिए नियुक्त किया गया था [2]

अमेरिकी वायु सेना के अनुबंध ने 256-बिट फॉर्म में उपकरण की पुन: जांच की रैंड कॉर्पोरेशन ने अपनी स्वयं की आईएएस मशीन, जॉन्नियाक को सेलेक्ट्रोन के इस नए संस्करण में परिवर्तित इस परियोजना का लाभ उठाया, उनमें से 80 का उपयोग मुख्य मेमोरी के 512 40-बिट शब्द प्रदान करने के लिए किया। उन्होंने $500 प्रति ट्यूब ($500) की अनुमानित निवेश पर अपनी मशीन के लिए पर्याप्त ट्यूब बनाने के लिए आरसीए के साथ विकास अनुबंध पर हस्ताक्षर किए है।[2]

लगभग इसी समय आईबीएम ने सिलेक्ट्रोन में भी रुचि दिखाई किन्तु इससे अतिरिक्त उत्पादन नहीं हुआ। परिणाम स्वरुप,आरसीए ने अपने इंजीनियरों को रंगीन टेलीविजन विकास के लिए नियुक्त किया था और सेलेक्ट्रोन को दो योग्य कर्मचारियों (बोर्ड के अध्यक्ष और अध्यक्ष) की सास के हाथों में सौंप दिया गया है।[2]

1950 के दशक की प्रारंभ में सेलेक्ट्रोन और विलियम्स ट्यूब दोनों को कॉम्पैक्ट और निवेश प्रभावी चुंबकीय-कोर मेमोरी द्वारा बाजार में उतारा गया था। जॉन्नियाक डेवलपर्स ने पहले सिलेक्ट्रोन-आधारित संस्करण के पूरा होने से पहले ही कोर पर स्विच करने का निर्णय लिया था।[2]

संचालन का सिद्धांत

इलेक्ट्रोस्टैटिक संचयन

विलियम्स ट्यूब कैथोड रे ट्यूब (सीआरटी) उपकरणों के सामान्य वर्ग का उदाहरण था जिसे संचयन ट्यूब के रूप में जाना जाता है।

पारंपरिक सीआरटी का प्राथमिक कार्य ट्यूब के पीछे इलेक्ट्रॉन गन से फायर गए किए इलेक्ट्रॉनों के बीम का उपयोग करके भास्वर को प्रकाश देकर छवि प्रदर्शित करना है। विक्षेपण मैग्नेट या इलेक्ट्रोस्टैटिक प्लेटों के उपयोग के माध्यम से बीम का लक्ष्य बिंदु को ट्यूब के सामने के चारों ओर घुमाया जाता है।

संचयन ट्यूब सीआरटी पर आधारित थे, कभी-कभी असंशोधित रहते है। वे ट्यूबों में प्रयुक्त फॉस्फोर के सामान्य रूप से अवांछनीय दो सिद्धांतों पर निर्भर करते थे। यह था कि जब सीआरटी की इलेक्ट्रॉन गन से इलेक्ट्रॉनों ने फॉस्फोर को प्रकाश देने के लिए उस पर प्रहार किया, तो कुछ इलेक्ट्रॉन ट्यूब से चिपक गए और स्थानीय स्थिर विद्युत आवेश का निर्माण हुआ। दूसरा यह था कि फॉस्फोर कई सामग्रियों की तरह इलेक्ट्रॉन बीम से टकराकर नए इलेक्ट्रॉनों को भी छोड़ता है, प्रक्रिया जिसे द्वितीयक उत्सर्जन के रूप में जाना जाता है।[3]

माध्यमिक उत्सर्जन में उपयोगी विशेषता थी कि इलेक्ट्रॉन रिलीज की दर अधिक गैर-रैखिक थी। जब वोल्टेज लगाया गया जो निश्चित सीमा को पार कर गया, तो उत्सर्जन की दर नाटकीय रूप से बढ़ गई। इसने जले हुए स्थान को तेजी से क्षय करने का कारण बना दिया गया, जिससे किसी भी अटके हुए इलेक्ट्रॉनों को भी छोड़ दिया गया। विजुअल सिस्टम ने डिस्प्ले को मिटाने के लिए इस प्रक्रिया का उपयोग किया, जिससे कोई भी संग्रहित पैटर्न तेजी से फीका पड़ गया। कंप्यूटर उपयोग के लिए यह अटके हुए चार्ज का तेजी से रिलीज था जिसने इसे संचयन के लिए उपयोग करने की अनुमति दी थी।

विलियम्स ट्यूब में अन्यथा सामान्य सीआरटी के पीछे इलेक्ट्रॉन गन्स का उपयोग मेमोरी स्थानों का प्रतिनिधित्व करने वाले ग्रिड में फॉस्फोर पर 1 या 0 का प्रतिनिधित्व करने वाले छोटे पैटर्न की श्रृंखला जमा करने के लिए किया जाता है। डिस्प्ले को पढ़ने के लिए, बीम ने ट्यूब को फिर से स्कैन किया, इस बार द्वितीयक उत्सर्जन सीमा के बहुत निकट वोल्टेज पर सेट किया गया और ट्यूब को बहुत थोड़ा सकारात्मक या नकारात्मक पूर्वाग्रह करने के लिए पैटर्न का चयन किया गया था। जब संग्रहीत स्थैतिक विद्युत को बीम के वोल्टेज में जोड़ा गया, तो कुल वोल्टेज या तो द्वितीयक उत्सर्जन सीमा को पार कर गया या नहीं यदि यह प्रेवशद्वार पार कर गया, तो डॉट के क्षय के रूप में इलेक्ट्रॉनों का विस्फोट जारी किया गया है। और ट्यूब के डिस्प्ले साइड के ठीक सामने रखी धातु की प्लेट पर कैपेसिटिव रूप से पढ़ा गया था।[4]

संचयन ट्यूबों के चार सामान्य वर्ग थे; विलियम्स ट्यूब द्वारा प्रस्तुत सतह पुनर्वितरण प्रकार, बैरियर ग्रिड सिस्टम, जिसे आरसीए द्वारा राडेचोन ट्यूब के रूप में असफल रूप से व्यावसायीकृत किया गया था, स्टिकिंग पोटेंशियल टाइप जिसका व्यावसायिक रूप से उपयोग नहीं किया गया था, और होल्डिंग बीम अवधारणा, जिसमें से सेलेक्ट्रोन विशिष्ट उदाहरण है .[5]

होल्डिंग बीम कॉन्सेप्ट

सबसे मूलभूत कार्यान्वयन में, होल्डिंग बीम ट्यूब तीन इलेक्ट्रॉन गन का उपयोग करती है; लिखने के लिए, पढ़ने के लिए, और तीसरी होल्डिंग गन जो पैटर्न को बनाए रखती है। सामान्य ऑपरेशन अवधारणा में विलियम्स ट्यूब के समान है। मुख्य अंतर होल्डिंग गन था, जो निरंतर फायर करता था और फोकस नहीं करता था, इसलिए यह फॉस्फोर पर पूरे संचयन क्षेत्र को कवर करता था। इसके कारण फॉस्फोर को चयनित वोल्टेज पर निरंतर चार्ज किया जाता है, जो द्वितीयक उत्सर्जन सीमा से कुछ कम होता है।[6]

राइटिंग गन को विलियम्स ट्यूब के समान कम वोल्टेज पर फायर करके फॉस्फोर में और वोल्टेज जोड़कर लेखन पूरा किया गया है। इस प्रकार संचयन पैटर्न ट्यूब पर संग्रहीत दो वोल्टेज के बीच सामान्य अंतर था, सामान्यतः केवल कुछ दसियों वोल्ट भिन्न होते हैं।[6] तुलना में विलियम्स ट्यूब ने बहुत अधिक वोल्टेज का उपयोग किया, पैटर्न का निर्माण किया जो पठनीयता से नीचे क्षय होने से पहले केवल छोटी अवधि के लिए संग्रहीत किया जा सकता था।

रीडिंग गन को संचयन एरिया में स्कैन करके पूरा किया गया है। यह बंदूक वोल्टेज पर सेट की गई थी जो पूरे प्रदर्शन के लिए द्वितीयक उत्सर्जन सीमा को पार कर जाएगी। यदि स्कैन किए गए क्षेत्र में होल्डिंग गन की क्षमता होती है तो निश्चित संख्या में इलेक्ट्रॉनों को छोड़ा जाएगा, यदि इसमें राइटिंग गन की क्षमता होती है तो संख्या अधिक होगी। इलेक्ट्रॉनों को प्रदर्शन के पीछे रखे गए ठीक तारों के ग्रिड पर पढ़ा गया, जिससे सिस्टम पूरी तरह आत्मनिर्भर हो गया। इसके विपरीत विलियम्स ट्यूब की रीड प्लेट ट्यूब के सामने थी, और ठीक से काम करने के लिए निरंतर यांत्रिक समायोजन की आवश्यकता थी।[6] विलियम्स सिस्टम के तंग फोकस की आवश्यकता के बिना ग्रिड को अलग-अलग स्थानों में डिस्प्ले को तोड़ने का भी लाभ था।

सामान्य ऑपरेशन विलियम्स सिस्टम के समान था, किन्तु होल्डिंग कॉन्सेप्ट के दो प्रमुख लाभ थे। यह था कि यह बहुत कम वोल्टेज अंतर पर संचालित होता था और इस प्रकार डेटा को लंबे समय तक सुरक्षित रूप से संग्रहीत करने में सक्षम था। दूसरा यह था कि इलेक्ट्रॉनिक्स की जटिलता में कोई वृद्धि किए बिना ही बड़े उपकरण का उत्पादन करने के लिए ही विक्षेपण चुंबक चालकों को कई इलेक्ट्रॉन गन्स में भेजा जा सकता है।

डिजाइन

सिलेक्ट्रोन ने अलग-अलग मेटल आईलेट्स के उपयोग के माध्यम से मूलभूत होल्डिंग गन अवधारणा को और संशोधित किया जो कि अधिक पूर्वानुमानित और लंबे समय तक चलने वाले फैशन में अतिरिक्त चार्ज को संग्रहित के लिए उपयोग किया जाता था।

सीआरटी के विपरीत जहां इलेक्ट्रॉन गन एकल बिंदु स्रोत है जिसमें फिलामेंट और एकल आवेशित त्वरक होता है, सिलेक्ट्रोन में बंदूक प्लेट होती है और त्वरक तारों का ग्रिड होता है (इस प्रकार बैरियर-ग्रिड ट्यूब से कुछ डिज़ाइन नोट उधार लेता है) स्विचिंग परिपथ तारों को चालू या बंद करने के लिए वोल्टेज को प्रयुक्त करने की अनुमति देते हैं। जब बंदूक सुराखों के माध्यम से फायर करती है, तो यह थोड़ा डिफोकस हो जाता है। कुछ इलेक्ट्रॉन सुराख़ पर प्रहार करते हैं और उस पर आवेश जमा करते हैं।

मूल 4096-बिट सेलेक्ट्रोन[7] एक 10 इंच लंबी (250 मिमी) गुणा 3 इंच व्यास (76 मिमी) वैक्यूम ट्यूब थी जिसे 1024 गुणा 4 बिट के रूप में कॉन्फ़िगर किया गया था। इसके बीच में एक अप्रत्यक्ष रूप से गर्म कैथोड था जो बीच में ऊपर की ओर चल रहा था, जो तारों के दो अलग-अलग सेटों से घिरा हुआ था - रेडियल, अक्षीय - बेलनाकार ग्रिड सरणी बनाता है, और अंत में एक संलग्न धातु सिलेंडर के चार खंडों के अंदर परावैद्युत संचयन सामग्री कोटिंग करता है, सिग्नल प्लेट्स कहा जाता है। बिट्स को सिग्नल प्लेटों की चिकनी सतहों पर चार्ज के अलग-अलग क्षेत्रों के रूप में संग्रहीत किया गया था।

ऑर्थोगोनल ग्रिड तारों के दो सेट सामान्य रूप से थोड़े सकारात्मक रूप से पक्षपाती थे, जिससे कैथोड से इलेक्ट्रॉनों को डाईइलेक्ट्रिक डाईइलेक्ट्रिक तक पहुंचने के लिए ग्रिड के माध्यम से त्वरित किया जा सकते है। इलेक्ट्रॉनों के निरंतर प्रवाह ने संग्रहीत आवेश को इलेक्ट्रॉनों के द्वितीयक उत्सर्जन द्वारा निरंतर पुनर्जीवित करने की अनुमति दी है। पढ़ने या लिखने के लिए थोड़ा सा चुनने के लिए, दो ग्रिडों में से प्रत्येक पर दो आसन्न तारों को पक्षपाती नकारात्मक किया गया था, जिससे वर्तमान में केवल स्थान पर डाईइलेक्ट्रिक डाईइलेक्ट्रिकप्रवाह हो सकता है।

इस संबंध में सिलेक्ट्रोन विलियम्स ट्यूब के विपरीत अर्थों में काम करता है। विलियम्स ट्यूब में, बीम निरंतर पढ़ने/लिखने के चक्र में स्कैन कर रहा है जिसका उपयोग डेटा को पुन: उत्पन्न करने के लिए भी किया जाता है। इसके विपरीत, सेलेक्ट्रोन लगभग सदैव पूरी ट्यूब को पुन: उत्पन्न करता है, केवल समय-समय पर इसे वास्तविक पढ़ने और लिखने के लिए तोड़ता है। आवश्यक विरामों की कमी के कारण इसने न केवल संचालन को तेज कर दिया किन्तु इसका कारण यह भी था कि डेटा अधिक विश्वसनीय था क्योंकि यह निरंतर रिफ्रेश होता रहेता था।

सेलेक्ट्रोन क्रॉस सेक्शन

इस प्रकार उपरोक्त के रूप में थोड़ा सा चयन करके लेखन पूरा किया गया था, और फिर सिग्नल प्लेट पर सकारात्मक या नकारात्मक क्षमता की पल्सभेज दी गई थी। थोड़े से चयन के साथ, इलेक्ट्रॉनों को (सकारात्मक क्षमता के साथ) खींच लिया जाएगा या डाईइलेक्ट्रिक(नकारात्मक क्षमता) से धकेल दिया जाएगा। जब ग्रिड पर पूर्वाग्रह गिरा दिया गया था, तो इलेक्ट्रोन स्थैतिक विद्युत के स्थान के रूप में डाईइलेक्ट्रि कपर फंस गए थे।

उपकरण से पढ़ने के लिए थोड़ा सा स्थान चुना गया था और कैथोड से पल्स भेजा गया था। यदि उस बिट के डाईइलेक्ट्रिक डाईइलेक्ट्रिकमें चार्ज होता है, तो इलेक्ट्रॉनों को डाईइलेक्ट्रि कसे धकेल दिया जाएगा और सिग्नल प्लेट में वर्तमान की संक्षिप्त पल्स के रूप में पढ़ा जाएगा। ऐसी किसी स्पंद का कारण यह नहीं है कि परावैद्युत में आवेश नहीं होना चाहिए।

इस प्रकार की छोटी क्षमता 256-बिट (128 बाय 2 बिट) उत्पादन उपकरण[8] समान वैक्यूम-ट्यूब लिफाफे में था। यह आठ कैथोड की पंक्ति से अलग आयताकार प्लेट पर असतत सुराख़ों के दो संचयन सरणियों के साथ बनाया गया था। 4096-बिट उपकरण के लिए पिन की संख्या 44 से घटाकर 31 पिन कर डी गयी है। और दो समाक्षीय सिग्नल आउटपुट कनेक्टर कर दी गई थी। इस संस्करण में प्रत्येक सुराख़ में दृश्यमान हरे फॉस्फोर सम्मिलित थे जिससे बिट स्थिति को आँख से भी पढ़ा जा सकता है।

पेटेंट

संदर्भ

उद्धरण

  1. Metropolis N, Rajchman, JA (1980) Early Research on Computers at RCA A History of Computing in the Twentieth Century pp 465-469, ISBN 0-12-491650-3
  2. Jump up to: 2.0 2.1 2.2 2.3 Greuenberger JF (1968) The History of the JOHNNIAC pp 25-27
  3. Knoll & Kazan 1952, p. 1.
  4. Eckert 1998, pp. 19–20.
  5. Eckert 1998, p. 18.
  6. Jump up to: 6.0 6.1 6.2 Eckert 1998, p. 21.
  7. Rajchman, JA (1947). "सिलेक्ट्रोन - चुनिंदा इलेक्ट्रोस्टैटिक स्टोरेज के लिए एक ट्यूब" (PDF). Mathematical Tables and Other Aids to Computation. 2 (20): 359–361. doi:10.2307/2002239. JSTOR 2002239.
  8. Rajchman, JA (1951). "चयनात्मक इलेक्ट्रोस्टैटिक स्टोरेज ट्यूब". RCA Review. 12 (1): 53–97.


ग्रन्थसूची


बाहरी संबंध