होम फ़ैक्टर
गणित में, विशेष रूप से श्रेणी सिद्धांत में, होम-सेट (अर्थात ऑब्जेक्ट श्रेणी सिद्धांत के बीच आकारिकी के सेट) सेट की श्रेणी के लिए महत्वपूर्ण फ़ैक्टर्स को जन्म देते हैं। इन फ़ैक्टर्स को होम-फ़ंक्टर्स कहा जाता है और श्रेणी सिद्धांत और गणित की अन्य शाखाओं में इनके कई अनुप्रयोग हैं।
औपचारिक परिभाषा
मान लीजिए कि C स्थानीय रूप से छोटी श्रेणी है (अर्थात श्रेणी (गणित) जिसके लिए होम-क्लास वास्तव में सेट (गणित) हैं और उचित वर्ग नहीं हैं)।
सी में सभी ऑब्जेक्ट ए और बी के लिए हम सेट की श्रेणी में दो फ़ैक्टर्स को निम्नानुसार परिभाषित करते हैं:
hom(A, –) : C → सेट hom(–, B) : C → सेट[1] यह एक सहसंयोजक फ़ैक्टर है जो निम्न द्वारा दिया गया है: - hom(A, –) सी में प्रत्येक ऑब्जेक्ट एक्स को मॉर्फिज्म, hom के सेट (A, X) पर मैप करता है
- hom(A, –) प्रत्येक रूपवाद को फलन f : X → Y के लिए मैप करता है
- hom(A, f) : hom(A, X) → hom(A, Y) द्वारा दिए गए
- प्रत्येक जी के लिए hom(A, X).
यह एक विरोधाभासी फ़ैक्टर है जो इसके द्वारा दिया गया है: - hom(–, B) सी में प्रत्येक ऑब्जेक्ट एक्स को मॉर्फिज्म, hom के सेट (X, B) पर मैप करता है
- hom(–, B) प्रत्येक रूपवाद को फलन h : X → Y के लिए मैप करता है
- hom(h, B) : hom(Y, B) → hom(X, B) द्वारा दिए गए
- प्रत्येक जी के लिए hom(Y, B).
फ़ैक्टर होम(-, बी) को ऑब्जेक्ट बी के बिंदुओं का फ़ैक्टर भी कहा जाता है।
ध्यान दें कि होम के पहले तर्क को ठीक करने से स्वाभाविक रूप से सहसंयोजक फ़ैक्टर उत्पन्न होता है और दूसरे तर्क को ठीक करने से स्वाभाविक रूप से कॉन्ट्रावेरिएंट फ़ंक्टर उत्पन्न होता है। यह उस विधि की कलाकृति है जिसमें किसी को रूपवाद की रचना करनी चाहिए।
फ़ैक्टर्स होम (ए, -) और होम (-, बी) की जोड़ी प्राकृतिक परिवर्तन में संबंधित है। रूपवादों के किसी भी जोड़े के लिए f : B → B' और h : A' → A निम्नलिखित आरेख क्रमविनिमेय आरेख:
दोनों पथ g : A → B से f ∘ g ∘ h : A′ → B′ भेजते हैं।
उपरोक्त आरेख की क्रमविनिमेयता से पता चलता है कि होम (-, -) C × C से 'सेट' तक द्विभाजक है जो पहले तर्क में विरोधाभासी है और दूसरे में सहसंयोजक है। समान रूप से, हम कह सकते हैं कि होम(-,-) द्विभाजक है
- Hom(–, –) : Cop × C → Set
जहां cop C की विपरीत श्रेणी है। संकेतन homC डोमेन बनाने वाली श्रेणी पर जोर देने के लिए कभी-कभी hom(-, -) के लिए (-, -) का उपयोग किया जाता है।
योनेडा लेम्मा
उपरोक्त क्रमविनिमेय आरेख का उल्लेख करते हुए, कोई यह देख सकता है कि प्रत्येक रूपवाद
- h : A′ → A
एक प्राकृतिक परिवर्तन को जन्म देता है
- Hom(h, –) : Hom(A, –) → Hom(A′, –)
और हर रूपवाद
- f : B → B′
एक प्राकृतिक परिवर्तन को जन्म देता है
- Hom(–, f) : Hom(–, B) → Hom(–, B′)
योनेडा की लेम्मा का तात्पर्य है कि होम फ़ैक्टर्स के बीच प्रत्येक प्राकृतिक परिवर्तन इसी रूप का होता है। दूसरे शब्दों में, होम फ़ैक्टर श्रेणी सीCop को फ़ैक्टर श्रेणी 'सेट' में एम्बेड करके पूर्ण और फ़ैक्टर को जन्म देते हैं। (सहसंयोजक या विरोधाभासी, यह इस पर निर्भर करता है कि किस होम फ़ैक्टर का उपयोग किया गया है)।
आंतरिक होम फ़ैक्टर
कुछ श्रेणियों में फ़ंक्टर हो सकता है जो होम फ़ंक्टर की तरह व्यवहार करता है, किन्तु 'सेट' के अतिरिक्त श्रेणी सी में ही मान लेता है। ऐसे फ़नकार को 'आंतरिक होम फ़नकार' कहा जाता है, और अधिकांशतः इसे इसी रूप में लिखा जाता है
इसकी उत्पाद-जैसी प्रकृति, या जैसे पर बल देना
इसकी क्रियात्मक प्रकृति पर जोर देने के लिए, या कभी-कभी केवल छोटे स्थिति में:
- उदाहरण के लिए, संबंधों की श्रेणी देखें.
जिन श्रेणियों में आंतरिक होम फ़ैक्टर होता है उन्हें बंद श्रेणी कहा जाता है। जिसके पास वह है
- ,
जहां I बंद श्रेणी की इकाई वस्तु है। बंद मोनोइडल श्रेणी के स्थिति में, यह करी की धारणा तक विस्तारित है, अर्थात्
जहाँ द्विफंक्टर है, आंतरिक उत्पाद फ़ंक्टर मोनोइडल श्रेणी को परिभाषित करता है। समरूपता X और Z दोनों में प्राकृतिक समरूपता है। दूसरे शब्दों में, बंद मोनोइडल श्रेणी में, आंतरिक होम फ़ैक्टर आंतरिक उत्पाद फ़ैक्टर का सहायक फ़ैक्टर है। जो वस्तु आंतरिक होम कहा जाता है। जब कार्टेशियन बंद श्रेणी है , जो वस्तु इसे घातीय वस्तु कहा जाता है, और इसे अधिकांशतः इस रूप में लिखा जाता है .
आंतरिक होम, जब साथ जंजीर में बंधे होते हैं, तो भाषा बनाते हैं, जिसे श्रेणी की आंतरिक भाषा कहा जाता है। इनमें से सबसे प्रसिद्ध बस टाइप किए गए लैम्ब्डा कैलकुलस हैं, जो कार्टेशियन बंद श्रेणियों की आंतरिक भाषा है, और रैखिक प्रकार प्रणाली, जो बंद मोनोइडल श्रेणी की आंतरिक भाषा है।
गुण
ध्यान दें कि प्रपत्र का फ़ैक्टर
- Hom(–, A) : Cop → Set
एक प्रीशीफ (श्रेणी सिद्धांत) है; इसी तरह, होम(ए, -) कॉपरशीफ़ है।
एक फ़नकार F : C → Set जो C में कुछ A के लिए होम (A, -) के लिए प्राकृतिक समरूपता है, को प्रतिनिधित्व योग्य फ़नकार कहा जाता है (या प्रतिनिधित्वयोग्य कॉपरशीफ़); इसी तरह, होम(-, ए) के समतुल्य कॉन्ट्रावेरिएंट फ़ैक्टर को कोरप्रजेंटेबल कहा जा सकता है।
ध्यान दें कि Hom(–, –) : Cop × C → Set' प्रोफ़ंक्टर है, और, विशेष रूप से, यह पहचान प्रोफ़ंक्टर है .
आंतरिक होम फ़ैक्टर सीमा (श्रेणी सिद्धांत) को संरक्षित करता है; वह है, जबकि, सीमा को सीमा तक भेजता है सीमाएँ भेजता है , वह कॉलिमिट है , सीमा में. निश्चित अर्थ में, इसे सीमा या कोलिमिट की परिभाषा के रूप में लिया जा सकता है।
एंडोफन्क्टर Hom(E, –) : Set → Set' को मोनाड (श्रेणी सिद्धांत) की संरचना दी जा सकती है; इस सन्यासी को मोनाड (श्रेणी सिद्धांत) पर्यावरण (या पाठक) सन्यासी कहा जाता है।
अन्य गुण
यदि A एक एबेलियन श्रेणी है और A, A की एक वस्तु है, तो HomA(A, -) A से एबेलियन समूह की श्रेणी A तक एक सहसंयोजक बाएँ-स्पष्ट फ़ंक्टर है। यह स्पष्ट है यदि और केवल यदि A प्रक्षेप्य है।[2]
मान लीजिए कि R रिंग (गणित) है और M बायाँ R-मॉड्यूल (गणित) है। फ़ैक्टर HomR(M, –): Mod-R → Ab' मॉड्यूल फ़ैक्टर के टेंसर उत्पाद के ठीक बगल में है - R M: Ab → Mod-R.
यह भी देखें
- एक्सट ऑपरेटर
- फ़ैक्टर श्रेणी
- प्रतिनिधित्व करने योग्य फ़नकार
टिप्पणियाँ
- ↑ Also commonly denoted Cop → Set, where Cop denotes the opposite category, and this encodes the arrow-reversing behaviour of Hom(–, B).
- ↑ Jacobson (2009), p. 149, Prop. 3.9.
संदर्भ
- Mac Lane, Saunders (September 1998). Categories for the Working Mathematician (Second ed.). Springer. ISBN 0-387-98403-8.
- Goldblatt, Robert (2006) [1984]. Topoi, the Categorial Analysis of Logic (Revised ed.). Dover Publications. ISBN 978-0-486-45026-1. Archived from the original on 2020-03-21. Retrieved 2009-11-25.
- Jacobson, Nathan (2009). Basic algebra. Vol. 2 (2nd ed.). Dover. ISBN 978-0-486-47187-7.
बाहरी संबंध
- Hom functor at the nLab
- Internal Hom at the nLab