प्रतिच्छेदन (समुच्चय सिद्धांत)

From Vigyanwiki

समुच्चय सिद्धांत में, दो समुच्चय का प्रतिच्छेदन तथा द्वारा चिह्नित है[1] के सभी तत्वों से युक्त समुच्चय है I , से संबंधित है या समकक्ष है, के सभी तत्व के भी हैI[2]

संकेतन एवं शब्दावली

प्रतिच्छेदन प्रतीक का उपयोग करके लिखा गया है, अर्थात् इंफिक्स नोटेशन के, उदाहरण निम्नलिखित है:

दो से अधिक समुच्चयो के सामान्यीकृत प्रतिच्छेदन को इस प्रकार लिखा जा सकता है:
जो कैपिटल-सिग्मा नोटेशन के समान होते है।


इस लेख में प्रयुक्त प्रतीकों की व्याख्या के लिए, गणितीय प्रतीकों की सारणी देखें।

परिभाषा

तीन समुच्चय का परस्पर:
केवल अक्षरों के आकार पर विचार करते हुए एवं उनके उच्चारण की उपेक्षा करते हुए, बिना उच्चारण वाले आधुनिक ग्रीक वर्णमाला, लैटिन लिपि एवं सिरिलिक लिपियों का परस्पर
समुच्चय के साथ परस्पर का उदाहरण

दो समुच्चयो का परस्पर तथा द्वारा चिह्नित ,[3] उन सभी वस्तुओं का समुच्चय है जो दोनों समुच्चयों तथा के सदस्य होते हैं I

यह प्रतीकों में इस प्रकार प्रदर्शित हैं I

का परस्पर तत्व है, एवं का समान तत्व एवं [3] हैI

उदाहरण के लिए:

  • समुच्चय {1, 2, 3} एवं {2, 3, 4} का प्रतिच्छेदन {2, 3} है।
  • अंक 9 अभाज्य संख्याओं के समुच्चय {2, 3, 5, 7, 11, ...} एवं विषम संख्याओं के समुच्चय {1, 3, 5, 7, 9, 11, ...} के प्रतिच्छेदन में, 9 प्रधान नहीं है।

इंटरसेक्टिंग एवं डिसजॉइंट समुच्चय

कहा जाता है कि, यदि उपस्थित हो तो, प्रतिच्छेद करता है I का तत्व तथा है I जिस स्थिति में प्रतिच्छेद करता है, at प्राप्त होता है , समान रूप से, , को प्रतिच्छेद करता हैI यदि उनका परस्पर वसित समुच्चय है, जिसे द्वारा प्रदर्शित करते हैं I यदि , को प्रतिच्छेद नहीं करता है, तो इसे सरल भाषा में सामान्य तत्व नहीं मानते हैं। यदि तथा असंयुक्त हैं और परस्पर रिक्त समुच्चय है, तो इस प्रकार द्वारा प्रदर्शित करते है, उदाहरण के लिए, समुच्चयो तथा असम्बद्ध हैं, जबकि सम संख्याओं का समुच्चय 3 के गुणज के समुच्चय को 6 के गुणज में विभक्त करता है।

बीजगणितीय गुण

बाइनरी परस्पर साहचर्य ऑपरेशन है; अर्थात किसी भी समुच्चय के लिए तथा निम्नलिखित है:

इस प्रकार अस्पष्टता के बिना कोष्ठकों को त्यागा जा सकता है: उपरोक्त में से किसी को भी लिखा जा सकता है . परस्पर भी कम्यूटेटिव संपत्ति है। अर्थात किसी के लिए तथा निम्नलिखित है:
अतिरिक्त समुच्चय के साथ किसी भी समुच्चय का प्रतिच्छेदन अतिरिक्त समुच्चय में परिणाम देता है; अर्थात किसी भी समुच्चय के लिए , इस प्रकार है:
इसके अतिरिक्त, परस्पर ऑपरेशन निःशक्तता है; अर्थात समुच्चय संतुष्ट करता है I ये सभी गुण तार्किक संयोजन के विषय में समान तथ्यों का अनुसरण करते हैं।


परस्पर संघ पर वितरित करता है एवं संघ प्रतिच्छेदन पर वितरित करता है। अर्थात किसी भी समुच्चय के लिए तथा निम्नलिखित है

विश्व के अंदर पूरक (समुच्चय सिद्धांत) को परिभाषित कर सकता है I को के सभी तत्वों का समुच्चय होना है, किन्तु अंदर नही होना चाहिए I का परस्पर तथा को उनके पूरक के संघ के रूप में लिखा जा सकता है, जो डी मॉर्गन के नियम द्वारा सरलता से प्राप्त होता है:

इच्छानुसार प्रतिच्छेदन

सामान्य धारणा समुच्चयो के स्वेच्छानुसार अतिरिक्त संग्रह का प्रतिच्छेदन है। यदि अतिरिक्त समुच्चय है जिसके तत्व स्वयं समुच्चय होते हैं I परस्पर का तत्व है I यदि केवल सार्वभौमिक परिमाणीकरण तत्व का का तत्व है, प्रतीकों में इस प्रकार है:

इस अंतिम अवधारणा के लिए नोटेशन अधिक भिन्न हो सकते हैं। समुच्चय सिद्धांत कभी लिखते है, इसके अतिरिक्त भी लिखते है, इसके पश्चात नोटेशन को सामान्यीकृत किया जा सकता है I , जो संग्रह के प्रतिच्छेदन को संदर्भित करता है I यहां गैर-अतिरिक्त समुच्चय है, एवं प्रत्येक के लिए समुच्चय है I हानि में सूचकांक समुच्चय प्राकृतिक संख्याओं का समुच्चय है, इसमें अनंत गुणनफल के अनुरूप नोटेशन देखा जा सकता है:
जब स्वरूपण कठिन हो, तो इसे इस प्रकार लिखा जा सकता है I यह अंतिम उदाहरण, अनगिनत समुच्चयों का प्रतिच्छेदन, वास्तव में अधिक सामान्य है; उदाहरण के लिए, सिग्मा (σ- ) बीजगणितय पर लेख देखें।

शून्य प्रतिच्छेदन

कोष्ठकों में तर्कों का तार्किक संयोजन बिना किसी तर्क का संयोजन टॉटोलॉजी है (तुलना करें: अतिरिक्त उत्पाद); तदनुसार बिना समुच्चय का प्रतिच्छेदन ब्रह्मांड (समुच्चय सिद्धांत) है।

ध्यान दें कि पूर्व अनुभाग में, हमने उस हानि को बाहर कर दिया था जहाँ रिक्त () समुच्चय था I जिसका कारण इस प्रकार है: संग्रह का प्रतिच्छेदन समुच्चय के रूप में परिभाषित किया गया है (समुच्चय -बिल्डर नोटेशन देखें)

यदि रिक्त समुच्चय है, तो में तो प्रश्न बन जाता है कौन सा कथित सारणी को पूर्ण करते हैं? . जब रिक्त समुच्चय है, ऊपर दी गई सारणी रिक्त समुच्चय का उदाहरण है। रिक्त समुच्चय का परस्पर सार्वभौमिक समुच्चय होना चाहिए,[4] परन्तु मानक (ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत) समुच्चय सिद्धांत में, सार्वभौमिक समुच्चय नहीं है।

प्रकार सिद्धांत में चूँकि, निर्धारित प्रकार का है I इसलिए परस्पर प्रकार का समझा जाता है I (समुच्चय का प्रकार जिसके तत्व अंदर हैं ), को हम परिभाषित कर सकते हैं I का सार्वभौमिक समुच्चय होना I (वह समुच्चय जिसके तत्व सभी प्रकार के पद हैं |)

यह भी देखें

सममित अंतर| सममित अंतर]] – Elements in exactly one of two sets

संदर्भ

  1. "सेट्स का चौराहा". web.mnstate.edu. Retrieved 2020-09-04.
  2. "आँकड़े: संभाव्यता नियम". People.richland.edu. Retrieved 2012-05-08.
  3. 3.0 3.1 "सेट ऑपरेशंस | यूनियन | चौराहे | पूरक | अंतर | पारस्परिक रूप से अनन्य | विभाजन | डी मॉर्गन का नियम | वितरण नियम | कार्तीय उत्पाद". www.probabilitycourse.com. Retrieved 2020-09-04.
  4. Megginson, Robert E. (1998). "Chapter 1". बनच अंतरिक्ष सिद्धांत का परिचय. Graduate Texts in Mathematics. Vol. 183. New York: Springer-Verlag. pp. xx+596. ISBN 0-387-98431-3.


अग्रिम पठन

  • Devlin, K. J. (1993). The Joy of Sets: Fundamentals of Contemporary Set Theory (Second ed.). New York, NY: Springer-Verlag. ISBN 3-540-94094-4.
  • Munkres, James R. (2000). "Set Theory and Logic". Topology (Second ed.). Upper Saddle River: Prentice Hall. ISBN 0-13-181629-2.
  • Rosen, Kenneth (2007). "Basic Structures: Sets, Functions, Sequences, and Sums". Discrete Mathematics and Its Applications (Sixth ed.). Boston: McGraw-Hill. ISBN 978-0-07-322972-0.

बाहरी संबंध