हरा सल्फर बैक्टीरिया

From Vigyanwiki

हरा सल्फर जीवाणु , क्लोरोबायोटा, अनिवार्य रूप से अवायवीय जीव फोटोऑटोट्रॉफ़िक जीवाणु का एक समूह है जो सल्फर को मेटाबोलाइज़ करता है।[1]

हरा सल्फर जीवाणु नॉनमोटाइल (क्लोरोहेरपेटन थैलेशियम को छोड़कर, जो ग्लाइड कर सकते हैं) और एनोक्सीजेनिक प्रकाश संश्लेषण में सक्षम हैं।[1][2] वे अवायवीय जलीय वातावरण में रहते हैं।[3] पौधों के विपरीत, हरे सल्फर जीवाणु मुख्य रूप से सल्फाइड आयनों का उपयोग इलेक्ट्रॉन दाताओं के रूप में करते हैं।[4] वे स्वपोषी हैं जो कार्बन निर्धारण करने के लिए रिवर्स ट्राईकार्बोक्सिलिक एसिड चक्र का उपयोग करते हैं।[5] वे मिक्सोट्रॉफ़ भी हैं और नाइट्रोजन को कम करते हैं।[6][7]


विशेषताएं

हरा सल्फर जीवाणु ग्राम-नकारात्मक रॉड या गोलाकार आकार के जीवाणु होते हैं। कुछ प्रकार के हरे सल्फर जीवाणु में गैस रिक्तिकाएँ होती हैं जो गति करने की अनुमति देती हैं। वे फोटोलिथोऑटोट्रॉफ़ हैं, और इलेक्ट्रॉन स्रोत के रूप में प्रकाश ऊर्जा और कम सल्फर यौगिकों का उपयोग करते हैं।[8] इलेक्ट्रॉन दाताओं में H2, H2S, S सम्मिलित हैं। इन जीवाणुओं में प्रमुख प्रकाश संश्लेषक वर्णक बैक्टीरियोक्लोरोफिल c या d हरी प्रजातियों में और e भूरे रंग की प्रजातियों में है और क्लोरोसोम और प्लाज्मा झिल्ली में स्थित है।[3] क्लोरोसोम अद्वितीय विशेषता है जो उन्हें कम प्रकाश की स्थिति में प्रकाश पकड़ने की अनुमति देती है।[9]


प्राकृतिक आवास

अधिकांश हरे सल्फर जीवाणु मेसोफाइल हैं, जो मध्यम तापमान पसंद करते हैं, और सभी जलीय वातावरण में रहते हैं। उन्हें अवायवीय स्थितियों और कम सल्फर की आवश्यकता होती है; वे सामान्यतः तलछट के शीर्ष मिलीमीटर में पाए जाते हैं। वे कम प्रकाश की स्थिति में प्रकाश संश्लेषण करने में सक्षम हैं।[3]

लगभग 100 मीटर की गहराई पर हरे सल्फर जीवाणु की एक बड़ी आबादी को रखने के लिए काला सागर एक अत्यंत अनॉक्सी वातावरण पाया गया हैं। समुद्र के इस क्षेत्र में उपलब्ध प्रकाश की कमी के कारण अधिकांश जीवाणु प्रकाश संश्लेषक रूप से निष्क्रिय थे। सल्फाइड केमोकलाइन में पाई गई प्रकाश संश्लेषक गतिविधि से पता चलता है कि जीवाणु को कोशिकीय रखरखाव के लिए बहुत कम ऊर्जा की आवश्यकता होती है।[10]

प्रशांत महासागर में 2,500 मीटर की गहराई पर मेक्सिको के तट पर ब्लैक स्मोकर करने वाले के पास हरे सल्फर जीवाणु की प्रजाति पाई गई है। इस गहराई पर, GSB1 नामित जीवाणु, थर्मल वेंट की मंद चमक से दूर रहता है क्योंकि कोई भी सूर्य का प्रकाश उस गहराई में प्रवेश नहीं कर सकता है।[11]

ताइवान में कोरल रीफ कॉलोनियों पर हरा सल्फर जीवाणु भी पाए गए हैं, वे इन कॉलोनियों पर हरे रंग की परत का बहुमत बनाते हैं। वे संभवतः मूंगा प्रणाली में भूमिका निभाते हैं, और जीवाणु और मूंगा परपोषी के बीच सहजीवी संबंध हो सकता है।[12] मूंगा जीवाणु के लिए अवायवीय वातावरण और कार्बन का स्रोत प्रदान कर सकता है। जीवाणु पोषक तत्व प्रदान कर सकते हैं और सल्फाइड को ऑक्सीकरण करके प्रवाल को विसर्जित कर सकते हैं।[13]

सल्फर स्प्रिंग्स में एक प्रकार का हरा सल्फर जीवाणु, क्लोरोबाकुलम टेपिडम पाया गया है। अधिकांश अन्य हरे सल्फर जीवाणु के विपरीत, ये जीव थर्मोफिलिक हैं।[3]









मेटाबोलिज्म

प्रकाश संश्लेषण

हरे सल्फर जीवाणु प्रकाश संश्लेषण के लिए टाइप I अभिक्रिया केंद्र का उपयोग करते हैं। टाइप I अभिक्रिया केंद्र पौधों और साइनोबैक्टीरीया में फोटोसिस्टम I (पीएसआई) के बैक्टीरियल होमोलॉजी (जीव विज्ञान) हैं। जीएसबी अभिक्रिया केंद्रों में बैक्टीरियोक्लोरोफिल a होता है और 840 एनएम के उत्तेजन तरंग दैर्ध्य के कारण P840 अभिक्रिया केंद्रों के रूप में जाना जाता है जो इलेक्ट्रॉनों के प्रवाह को शक्ति प्रदान करता है। हरे सल्फर जीवाणु में अभिक्रिया केंद्र बड़े एंटिना कॉम्प्लेक्स से जुड़ा होता है जिसे क्लोरोसोम कहा जाता है जो अभिक्रिया केंद्र में प्रकाश ऊर्जा को कैप्चर और फ़नल करता है। 720 और 750 एनएम के बीच स्पेक्ट्रम के सुदूर लाल क्षेत्र में क्लोरोसोम का उच्चतम अवशोषण होता है क्योंकि उनमें बैक्टीरियोक्लोरोफिल c, d और e होते हैं।[14] फेन्ना-मैथ्यूज-ओल्सन कॉम्प्लेक्स (एफएमओ) नामक प्रोटीन कॉम्प्लेक्स भौतिक रूप से क्लोरोसोम और P840 RC के बीच स्थित है। एफएमओ कॉम्प्लेक्स एंटीना द्वारा अवशोषित ऊर्जा को अभिक्रिया केंद्र में कुशलतापूर्वक स्थानांतरित करने में सहायता करता है।

पीएसआई और टाइप I अभिक्रिया केंद्र फेरेडॉक्सिन (Fd) को कम करने में सक्षम हैं, शक्तिशाली रिडक्टेंट जिसका उपयोग CO2 को ठीक करने और एनएडीपीएच को कम करने के लिए किया जा सकता है। एक बार अभिक्रिया केंद्र (RC) ने Fd को एक इलेक्ट्रॉन दिया है तो यह लगभग +300 mV की कमी क्षमता के साथ एक ऑक्सीकरण एजेंट (P840+) बन जाता है। चूंकि यह O
2
(E
0
= +820 mV)) को संश्लेषित करने के लिए पानी से इलेक्ट्रॉनों को निकालने के लिए पर्याप्त सकारात्मक नहीं है, यह H2S, थायोसल्फेट या Fe2 + आयनों जैसे अन्य स्रोतों से इलेक्ट्रॉनों को स्वीकार कर सकता है।[15] H2S जैसे दाताओं से स्वीकर्ता Fd तक इलेक्ट्रॉनों के इस परिवहन को रैखिक इलेक्ट्रॉन प्रवाह या रैखिक इलेक्ट्रॉन परिवहन कहा जाता है। सल्फाइड आयनों का ऑक्सीकरण अपशिष्ट उत्पाद के रूप में सल्फर के उत्पादन की ओर जाता है जो झिल्ली के बाह्य पक्ष पर ग्लोब्यूल्स के रूप में जमा होता है। सल्फर के ये ग्लोब्यूल हरे सल्फर जीवाणु को अपना नाम देते हैं। जब सल्फाइड समाप्त हो जाता है, तो सल्फर ग्लोब्यूल्स का सेवन किया जाता है और आगे सल्फेट को ऑक्सीकृत किया जाता है। चूँकि, सल्फर ऑक्सीकरण का मार्ग अच्छी तरह से समझा नहीं गया है।[4]

Fd पर इलेक्ट्रॉनों को पास करने के अतिरिक्त, P840 अभिक्रिया केंद्र में Fe-S क्लस्टर इलेक्ट्रॉनों को मेनाक्विनोन (MQ: MQH
2
) में स्थानांतरित कर सकते हैं। जो इलेक्ट्रॉनों को इलेक्ट्रॉन परिवहन श्रृंखला (ईटीसी) के माध्यम से P840+ में लौटाते हैं। RC पर वापस जाने के रास्ते में MQH2 से इलेक्ट्रॉन एक साइटोक्रोम bc1 कॉम्प्लेक्स (माइटोकॉन्ड्रिया के कॉम्प्लेक्स III के समान) से निकलते हैं जो झिल्ली के पार H+ आयनों को पंप करता है। झिल्ली के पार प्रोटॉन की विद्युत रासायनिक क्षमता का उपयोग FoF1 एटीपी सिंथेज़ द्वारा एडेनोसाइन ट्रायफ़ोस्फेट को संश्लेषित करने के लिए किया जाता है। यह चक्रीय इलेक्ट्रॉन परिवहन एटीपी के रूप में प्रकाश ऊर्जा को सेलुलर ऊर्जा में परिवर्तित करने के लिए उत्तरदायी है।[14]

सल्फर मेटाबोलिज्म

हरा सल्फर जीवाणु विशेष रूप से कार्बन डाइऑक्साइड निर्धारण में अवायवीय प्रकाश संश्लेषण के लिए इलेक्ट्रॉन दाताओं के रूप में उपयोग करने के लिए अकार्बनिक सल्फर यौगिकों को ऑक्सीकरण करता है। वे सामान्यतः एक इलेक्ट्रॉन दाता के रूप में अन्य सल्फर यौगिकों पर सल्फाइड का उपयोग करना पसंद करते हैं, चूंकि वे थायोसल्फेट या H2 का उपयोग कर सकते हैं।[16] मध्यवर्ती सामान्यतः सल्फर होता है, जो सेल के बाहर जमा होता है,[17] और अंतिम उत्पाद सल्फेट है। सल्फर, जो बाह्य रूप से जमा होता है, सल्फर ग्लोब्यूल्स के रूप में होता है, जिसे बाद में पूरी तरह से ऑक्सीकृत किया जा सकता है।[16]

हरे सल्फर जीवाणु में सल्फर ऑक्सीकरण के तंत्र की अच्छी तरह से विशेषता नहीं है। सल्फाइड ऑक्सीकरण में सम्मिलित होने वाले कुछ एंजाइमों में फ्लेवोसाइटोक्रोम सी, सल्फाइड: क्विनोन ऑक्सीडोरडक्टेस और SO
x
प्रणाली सम्मिलित हैं। फ्लेवोसाइटोक्रोम सल्फाइड से साइटोक्रोम में इलेक्ट्रॉनों के हस्तांतरण को उत्प्रेरित कर सकता है, और ये साइटोक्रोम तब इलेक्ट्रॉनों को प्रकाश संश्लेषक अभिक्रिया केंद्र में ले जा सकते हैं। चूँकि सभी हरे सल्फर जीवाणु इस एंजाइम का उत्पादन नहीं करते हैं जो प्रदर्शित करते हैं कि सल्फाइड के ऑक्सीकरण के लिए इसकी आवश्यकता नहीं है। सल्फाइड: क्विनोन ऑक्सीडोरडक्टेस (एसक्यूआर) भी इलेक्ट्रॉन परिवहन में सहायता करता है, किन्तु जब हरे सल्फर जीवाणु में सल्फाइड ऑक्सीकरण की घटी हुई दरों का उत्पादन करने के लिए अकेले पाया गया है, तो यह सुझाव देता है कि एक अलग और अधिक प्रभावी तंत्र है।[16] चूँकि, अधिकांश हरे सल्फर जीवाणु में एसक्यूआर जीन का होमोलॉग होता है।[18] थायोसल्फेट से सल्फेट के ऑक्सीकरण को SO
x
प्रणाली में एंजाइमों द्वारा उत्प्रेरित किया जा सकता है।[16]

ऐसा माना जाता है कि हरे सल्फर जीवाणु के विकास के समय क्षैतिज जीन स्थानांतरण के माध्यम से सल्फर मेटाबोलिज्म से संबंधित एंजाइम और जीन प्राप्त किए गए थे।[18]


कार्बन स्थिरीकरण

हरा सल्फर जीवाणु फोटोऑटोट्रॉफ़ हैं: वे न केवल प्रकाश से ऊर्जा प्राप्त करते हैं, वे कार्बन डाइऑक्साइड को कार्बन के एकमात्र स्रोत के रूप में उपयोग करके विकसित कर सकते हैं। वे रिवर्स ट्राइकारबॉक्सिलिक एसिड चक्र (rTCA) चक्र का उपयोग करके कार्बन डाइऑक्साइड को ठीक करते हैं[5] जहां कार्बन डाइऑक्साइड को कम करने के लिए ऊर्जा की खपत होती है, न कि आगे के टीसीए चक्र में ऑक्सीकरण के रूप में देखा जाता है,[5] पाइरूवेट और एसीटेट को संश्लेषित करने के लिए। इन अणुओं का उपयोग कच्चे माल के रूप में उन सभी बिल्डिंग ब्लॉक्स को संश्लेषित करने के लिए किया जाता है जिनकी कोशिका को मैक्रो मोलेक्यूल उत्पन्न करने की आवश्यकता होती है। आरटीसीए चक्र अत्यधिक ऊर्जा कुशल है जो जीवाणु को कम प्रकाश की स्थिति में बढ़ने में सक्षम बनाता है।[19] चूँकि इसमें कई ऑक्सीजन संवेदनशील एंजाइम होते हैं जो एरोबिक स्थितियों में इसकी दक्षता को सीमित करते हैं।[19]

रिडक्टिव टीसीए साइकिल डायग्राम

ऑक्सीडेटिव ट्राइकारबॉक्सिलिक एसिड चक्र के उत्क्रमण की प्रतिक्रियाएं चार एंजाइमों द्वारा उत्प्रेरित होती हैं:[5]

  1. पाइरूवेट: फेरेडॉक्सिन (Fd) ऑक्सीडोरडक्टेस:
    एसिटल-CoA + CO2 + 2Fdred + 2H+ ⇌ पाइरूवेट + CoA + 2Fdox
  2. एटीपी साइट्रेट लाईसे:
    ACL, एसिटल-CoA + ऑक्सालोसेटेट + ADP + Pi ⇌ साइट्रेट + CoA + ATP
  3. α-केटो-ग्लूटारेट: फेरेडॉक्सिन ऑक्सीडोरडक्टेस:
    सक्सिनिल-CoA + CO2 + 2Fdred + 2H+ ⇌ α-केटोग्लूटारेट + CoA + 2Fdox
  4. फुमारारे रिडक्टेस
    सक्सिनेट + एक्सीपीटर ⇌ फ्यूमरेट + रिड्यूस्ड एक्सीपीटर

चूँकि, ऑक्सीडेटिव टीसीए चक्र (ओटीसीए) अभी भी हरे सल्फर जीवाणु में उपस्थित है। ओटीसीए एसीटेट को आत्मसात कर सकता है, चूंकि फोटोट्रोफिक विकास के समय जीन के स्थान और डाउन रेगुलेशन के कारण हरे सल्फर जीवाणु में ओटीसीए अधूरा प्रतीत होता है।[5]


मिक्सोट्रॉफी

हरा सल्फर जीवाणु को अधिकांश बाध्यकारी फोटोऑटोट्रॉफ़्स के रूप में जाना जाता है क्योंकि वे प्रकाश की अनुपस्थिति में विकसित नहीं हो सकते हैं, चाहे उन्हें कार्बनिक पदार्थ प्रदान किया गया हो।[5][15] चूंकि वे मिक्सोट्रॉफी का रूप प्रदर्शित करते हैं जहां वे प्रकाश और CO2 की उपस्थिति में सरल कार्बनिक यौगिकों का उपभोग कर सकते हैं।[5] CO2 या HCO3 की उपस्थिति में, कुछ हरे सल्फर जीवाणु एसीटेट या पाइरूवेट का उपयोग कर सकते हैं।[5]

हरा सल्फर जीवाणु में मिक्सोट्रॉफ़ प्रतिनिधि हरा सल्फर जीवाणु क्लोरोबाकुलम टेपिडम द्वारा सबसे अच्छी तरह से तैयार की जाती है।[20] मिक्सोट्रोफी अमीनो एसिड जैवसंश्लेषण/कार्बन उपयोग और ऊर्जा मेटाबोलिज्म के समय होती है।[21] जीवाणु आरटीसीए को चलाने के लिए सल्फर के ऑक्सीकरण से उत्पन्न इलेक्ट्रॉनों का उपयोग करता है, और यह प्रकाश से प्राप्त ऊर्जा का उपयोग करता है। सी. टेपिडम कार्बनिक कार्बन स्रोत के रूप में पाइरूवेट और एसीटेट दोनों का उपयोग भी प्रदर्शित करता है।[21]

सी. टेपिडम में मिक्सोट्रॉफी का एक उदाहरण जो ऑटोट्रॉफी और हेटरोट्रॉफी को जोड़ती है, एसिटाइल-सीओए के संश्लेषण में है। सी. टेपिडम आरटीसीए चक्र के माध्यम से ऑटोट्रोफिक रूप से एसिटाइल-सीओए उत्पन्न कर सकता है, या यह एसिटेट के तेज से हेटरोट्रोफिक रूप से उत्पन्न कर सकता है। समान मिक्सोट्रोफिक गतिविधि तब होती है जब पाइरूवेट का उपयोग अमीनो एसिड बायोसिंथेसिस के लिए किया जाता है, किन्तु एसीटेट का उपयोग करके मिक्सोट्रोफिक विकास उच्च विकास दर पैदा करता है।[20][21]

ऊर्जा मेटाबोलिज्म में, सी. टेपिडम ऊर्जा (एनएडीपीएच और एनएडीएच) का उत्पादन करने के लिए प्रकाश प्रतिक्रियाओं पर निर्भर करता है क्योंकि सामान्यतः ऊर्जा उत्पादन (ऑक्सीडेटिव पेंटोस फॉस्फेट मार्ग और सामान्य टीसीए चक्र) के लिए उत्तरदायी मार्ग केवल आंशिक रूप से कार्यात्मक होते हैं।[21] प्रकाश से अवशोषित फोटॉनों का उपयोग एनएडीपीएच और एनएडीएच, ऊर्जा मेटाबोलिज्म के सहकारकों के उत्पादन के लिए किया जाता है। सी. टेपिडम भी सल्फाइड ऑक्सीकरण से प्राप्त प्रोटॉन प्रेरक बल का उपयोग करके एटीपी के रूप में ऊर्जा उत्पन्न करता है।[20] बैक्टीरियोक्लोरोफिल के माध्यम से सल्फाइड ऑक्सीकरण और फोटॉन अवशोषण दोनों से ऊर्जा उत्पादन।[21]


नाइट्रोजन स्थिरीकरण

अधिकांश हरे सल्फर जीवाणु डायज़ोट्रोफ़ हैं: वे नाइट्रोजन को अमोनिया में कम कर सकते हैं जो तब अमीनो एसिड को संश्लेषित करने के लिए उपयोग किया जाता है।[22] हरे सल्फर जीवाणु के बीच नाइट्रोजन निर्धारण सामान्यतः एनोक्सीजेनिक फोटोट्रॉफ़ का विशिष्ट होता है, और इसके लिए प्रकाश की उपस्थिति की आवश्यकता होती है। हरा सल्फर जीवाणु टाइप I स्राव प्रणाली से गतिविधि प्रदर्शित करता है। टाइप -1 स्राव प्रणाली और फेरेडॉक्सिन-एनएडीपी + ऑक्सीडोरडक्टेस कम लोहा उत्पन्न करने के लिए, विशेषता जो नाइट्रोजन निर्धारण का समर्थन करने के लिए विकसित हुई।[23] बैंगनी सल्फर जीवाणु के प्रकार, वे अमोनिया सांद्रता के जवाब में नाइट्रोजिनेज पोस्ट-ट्रांसलेशन की गतिविधि को नियंत्रित कर सकते हैं। निफ जीनों का उनका अधिकार, चाहे विकासशील रूप से अलग हो, यह सुझाव दे सकता है कि उनकी नाइट्रोजन स्थिरीकरण क्षमता दो भिन्न-भिन्न घटनाओं में या साझा बहुत दूर पूर्वज के माध्यम से उत्पन्न हुई।[24]

नाइट्रोजन स्थिरीकरण में सक्षम हरे सल्फर जीवाणु के उदाहरणों में जीनस क्लोरोबियम और पेलोडिक्टीयन सम्मिलित हैं, जिनमें पी. फेयोक्लाथ्रैटिफॉर्म को सम्मिलित नहीं किया गया है। प्रोस्थेकोक्लोरिस एस्टुअरी और क्लोरोहेरपेटन थैलेशियम भी इसी श्रेणी में आते हैं।[24] उनका N2 स्थिरीकरण व्यापक है और पारिस्थितिक तंत्र के लिए समग्र नाइट्रोजन उपलब्धता में महत्वपूर्ण भूमिका निभाता है। प्रोस्थेकोक्लोरिस जैसे प्रवाल भित्तियों में रहने वाले हरे सल्फर बैक्टीरिया पहले से ही पोषक तत्वों से सीमित वातावरण में उपलब्ध नाइट्रोजन उत्पन्न करने में महत्वपूर्ण हैं।[25]


यह भी देखें

संदर्भ

  1. 1.0 1.1 Bryant DA, Frigaard NU (November 2006). "प्रोकैरियोटिक प्रकाश संश्लेषण और फोटोट्रॉफी प्रकाशित". Trends in Microbiology. 14 (11): 488–96. doi:10.1016/j.tim.2006.09.001. PMID 16997562.
  2. Green BR (2003). प्रकाश-संश्लेषण में प्रकाश संचयन एंटेना. p. 8. ISBN 0792363353.
  3. 3.0 3.1 3.2 3.3 Kushkevych, Ivan; Procházka, Jiří; Gajdács, Márió; Rittmann, Simon K.-M. R.; Vítězová, Monika (2021-06-15). "एनारोबिक फोटोट्रोफिक पर्पल और ग्रीन सल्फर बैक्टीरिया की आणविक फिजियोलॉजी". International Journal of Molecular Sciences. 22 (12): 6398. doi:10.3390/ijms22126398. ISSN 1422-0067. PMC 8232776. PMID 34203823.
  4. 4.0 4.1 Sakurai H, Ogawa T, Shiga M, Inoue K (June 2010). "हरे सल्फर बैक्टीरिया में अकार्बनिक सल्फर ऑक्सीकरण प्रणाली". Photosynthesis Research. 104 (2–3): 163–76. doi:10.1007/s11120-010-9531-2. PMID 20143161. S2CID 1091791.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Tang KH, Blankenship RE (November 2010). "दोनों आगे और पीछे TCA चक्र हरे सल्फर बैक्टीरिया में काम करते हैं". The Journal of Biological Chemistry. 285 (46): 35848–54. doi:10.1074/jbc.M110.157834. PMC 2975208. PMID 20650900.
  6. Wahlund, Thomas (1993). "थर्मोफिलिक ग्रीन सल्फर जीवाणु क्लोरोबियम टेपिडम द्वारा नाइट्रोजन निर्धारण". Journal of Bacteriology. 175 (2): 474–478. doi:10.1128/jb.175.2.474-478.1993. PMC 196162. PMID 8093448.
  7. Feng, Xueyang; Tang, Kuo-Hsiang; Blankenship, Robert E.; Tang, Yinjie J. (2010-12-10). "ग्रीन सल्फर बैक्टीरिया क्लोरोबाकुलम टेपिडम में मिक्सोट्रोफिक मेटाबोलिज्म का मेटाबोलिक फ्लक्स विश्लेषण*". Journal of Biological Chemistry (in English). 285 (50): 39544–39550. doi:10.1074/jbc.M110.162958. ISSN 0021-9258. PMC 2998096. PMID 20937805.
  8. "Green Sulfur Bacteria - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-04-22.
  9. John Wiley & Sons, Ltd, ed. (2001-05-30). एल्स (in English) (1 ed.). Wiley. doi:10.1002/9780470015902.a0000458.pub2. ISBN 978-0-470-01617-6. S2CID 82067054.
  10. Marschall E, Jogler M, Hessge U, Overmann J (May 2010). "काला सागर में हरे सल्फर बैक्टीरिया की एक अत्यंत कम प्रकाश-अनुकूलित आबादी का बड़े पैमाने पर वितरण और गतिविधि पैटर्न". Environmental Microbiology. 12 (5): 1348–62. doi:10.1111/j.1462-2920.2010.02178.x. PMID 20236170.
  11. Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (June 2005). "एक गहरे समुद्र के हाइड्रोथर्मल वेंट से अनिवार्य रूप से प्रकाश संश्लेषक जीवाणु अवायवीय". Proceedings of the National Academy of Sciences of the United States of America. 102 (26): 9306–10. Bibcode:2005PNAS..102.9306B. doi:10.1073/pnas.0503674102. PMC 1166624. PMID 15967984.
  12. Yang, Shan-Hua; Lee, Sonny T. M.; Huang, Chang-Rung; Tseng, Ching-Hung; Chiang, Pei-Wen; Chen, Chung-Pin; Chen, Hsing-Ju; Tang, Sen-Lin (2016-02-26). "रीफ-बिल्डिंग कोरल आइसोपोरा पलिफेरा के कंकाल में संभावित नाइट्रोजन-फिक्सिंग, ग्रीन सल्फर बैक्टीरिया की व्यापकता". Limnology and Oceanography. 61 (3): 1078–1086. Bibcode:2016LimOc..61.1078Y. doi:10.1002/lno.10277. ISSN 0024-3590. S2CID 87463811.
  13. Cai, Lin; Zhou, Guowei; Tian, Ren-Mao; Tong, Haoya; Zhang, Weipeng; Sun, Jin; Ding, Wei; Wong, Yue Him; Xie, James Y.; Qiu, Jian-Wen; Liu, Sheng (2017-08-24). "मेटागेनोमिक विश्लेषण एक हरे सल्फर जीवाणु को एक संभावित प्रवाल सहजीवन के रूप में प्रकट करता है". Scientific Reports (in English). 7 (1): 9320. Bibcode:2017NatSR...7.9320C. doi:10.1038/s41598-017-09032-4. ISSN 2045-2322. PMC 5571212. PMID 28839161.
  14. 14.0 14.1 Hauska G, Schoedl T, Remigy H, Tsiotis G (October 2001). "हरे सल्फर बैक्टीरिया का प्रतिक्रिया केंद्र (1)". Biochimica et Biophysica Acta. 1507 (1–3): 260–77. doi:10.1016/S0005-2728(01)00200-6. PMID 11687219.
  15. 15.0 15.1 Ligrone, Roberto (2019). "Moving to the Light: The Evolution of Photosynthesis". In Roberto Ligrone (ed.). Biological Innovations that Built the World: A Four-billion-year Journey through Life and Earth History. Cham: Springer International Publishing. pp. 99–127. doi:10.1007/978-3-030-16057-9_4. ISBN 978-3-030-16057-9. S2CID 189992218. Retrieved 2021-01-29.
  16. 16.0 16.1 16.2 16.3 Frigaard, Niels-Ulrik; Dahl, Christiane (2008-01-01), Poole, Robert K. (ed.), "Sulfur Metabolism in Phototrophic Sulfur Bacteria", Advances in Microbial Physiology (in English), Academic Press, vol. 54, pp. 103–200, retrieved 2022-04-22
  17. van Gemerden, Hans (1986-10-01). "हरे और बैंगनी सल्फर बैक्टीरिया द्वारा मौलिक सल्फर का उत्पादन". Archives of Microbiology (in English). 146 (1): 52–56. doi:10.1007/BF00690158. ISSN 1432-072X. S2CID 30812886.
  18. 18.0 18.1 Gregersen, Lea; Bryant, Donald; Frigaard, Niels-Ulrik (2011). "ग्रीन सल्फर बैक्टीरिया में ऑक्सीडेटिव सल्फर मेटाबॉलिज्म का तंत्र और विकास". Frontiers in Microbiology. 2: 116. doi:10.3389/fmicb.2011.00116. ISSN 1664-302X. PMC 3153061. PMID 21833341.
  19. 19.0 19.1 Bar-Even, Arren; Noor, Elad; Milo, Ron (2012). "मात्रात्मक लेंस के माध्यम से कार्बन निर्धारण मार्गों का सर्वेक्षण". Journal of Experimental Botany. 63 (6): 2325–2342. doi:10.1093/jxb/err417. ISSN 1460-2431. PMID 22200662.
  20. 20.0 20.1 20.2 Frigaard, Niels-Ulrik; Chew, Aline Gomez Maqueo; Li, Hui; Maresca, Julia A.; Bryant, Donald A. (2003). "Chlorobium Tepidum : Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence". Photosynthesis Research (in English). 78 (2): 93–117. doi:10.1023/B:PRES.0000004310.96189.b4. ISSN 0166-8595. PMID 16245042. S2CID 30218833.
  21. 21.0 21.1 21.2 21.3 21.4 Feng, Xueyang; Tang, Kuo-Hsiang; Blankenship, Robert E.; Tang, Yinjie J. (2010-12-10). "ग्रीन सल्फर बैक्टीरिया क्लोरोबाकुलम टेपिडम में मिक्सोट्रोफिक मेटाबोलिज्म का मेटाबोलिक फ्लक्स विश्लेषण *". Journal of Biological Chemistry (in English). 285 (50): 39544–39550. doi:10.1074/jbc.M110.162958. ISSN 0021-9258. PMC 2998096. PMID 20937805.
  22. Madigan, Michael T. (1995). "Microbiology of Nitrogen Fixation by एनोक्सीजेनिक प्रकाश संश्लेषक बैक्टीरिया". In Robert E. Blankenship; Michael T. Madigan; Carl E. Bauer (eds.). एनोक्सीजेनिक प्रकाश संश्लेषक बैक्टीरिया. Advances in Photosynthesis and Respiration. Vol. 2. Dordrecht: Springer Netherlands. pp. 915–928. doi:10.1007/0-306-47954-0_42. ISBN 978-0-306-47954-0.
  23. Mus, Florence; Colman, Daniel R.; Peters, John W.; Boyd, Eric S. (2019-08-20). "भूगर्भीय प्रतिक्रियाएं, ऑक्सीजन, और नाइट्रोजिनेस का विकास". Free Radical Biology and Medicine. Early Life on Earth and Oxidative Stress (in English). 140: 250–259. doi:10.1016/j.freeradbiomed.2019.01.050. ISSN 0891-5849. PMID 30735835. S2CID 73433517.
  24. 24.0 24.1 Madigan, Michael T. (1995), Blankenship, Robert E.; Madigan, Michael T.; Bauer, Carl E. (eds.), "Microbiology of Nitrogen Fixation by Anoxygenic Photosynthetic Bacteria", Anoxygenic Photosynthetic Bacteria, Advances in Photosynthesis and Respiration (in English), Dordrecht: Springer Netherlands, vol. 2, pp. 915–928, doi:10.1007/0-306-47954-0_42, ISBN 978-0-306-47954-0, retrieved 2022-05-01
  25. Yang, Shan-Hua; Lee, Sonny T. M.; Huang, Chang-Rung; Tseng, Ching-Hung; Chiang, Pei-Wen; Chen, Chung-Pin; Chen, Hsing-Ju; Tang, Sen-Lin (May 2016). "Prevalence of potential nitrogen-fixing, green sulfur bacteria in the skeleton of reef-building coral Isopora palifera: Endolithic bacteria in coral skeletons". Limnology and Oceanography (in English). 61 (3): 1078–1086. Bibcode:2016LimOc..61.1078Y. doi:10.1002/lno.10277. S2CID 87463811.


बाहरी संबंध