थर्मोडायनामिक समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 9: Line 9:
मौलिक थर्मोडायनामिक समीकरणों में से एक [[यांत्रिक कार्य]] के अनुरूप थर्मोडायनामिक कार्य का वर्णन है, या गुरुत्वाकर्षण के खिलाफ एक ऊंचाई के माध्यम से उठाया गया वजन, जैसा कि 1824 में फ्रांसीसी भौतिक विज्ञानी निकोलस लियोनार्ड सादी कार्नोट  के माध्यम से परिभाषित किया गया था। कार्नोट ने कार्य के लिए [[कार्य (भौतिकी)]] वाक्यांश का प्रयोग किया। उनकी प्रसिद्ध "ऑन द मोटिव पावर ऑफ फायर" के फुटनोट्स में, उन्होंने कहा है: "हम अभिव्यक्ति प्रेरक शक्ति का उपयोग उस उपयोगी प्रभाव को व्यक्त करने के लिए करते हैं जो एक मोटर उत्पादन करने में सक्षम है। इस प्रभाव की समानता हमेशा एक वजन को एक निश्चित ऊंचाई तक बढ़ाने के साथ की जा सकती है। यह, जैसा कि हम जानते हैं, एक माप के रूप में, वजन के उत्पाद को उस ऊँचाई से गुणा किया जाता है जिस पर इसे उठाया जाता है। कार्नोट की परिभाषा में [[समय]] की एक इकाई को सम्मलित करने के साथ, व्यक्ति [[शक्ति (भौतिकी)]] की आधुनिक परिभाषा पर आता है:
मौलिक थर्मोडायनामिक समीकरणों में से एक [[यांत्रिक कार्य]] के अनुरूप थर्मोडायनामिक कार्य का वर्णन है, या गुरुत्वाकर्षण के खिलाफ एक ऊंचाई के माध्यम से उठाया गया वजन, जैसा कि 1824 में फ्रांसीसी भौतिक विज्ञानी निकोलस लियोनार्ड सादी कार्नोट  के माध्यम से परिभाषित किया गया था। कार्नोट ने कार्य के लिए [[कार्य (भौतिकी)]] वाक्यांश का प्रयोग किया। उनकी प्रसिद्ध "ऑन द मोटिव पावर ऑफ फायर" के फुटनोट्स में, उन्होंने कहा है: "हम अभिव्यक्ति प्रेरक शक्ति का उपयोग उस उपयोगी प्रभाव को व्यक्त करने के लिए करते हैं जो एक मोटर उत्पादन करने में सक्षम है। इस प्रभाव की समानता हमेशा एक वजन को एक निश्चित ऊंचाई तक बढ़ाने के साथ की जा सकती है। यह, जैसा कि हम जानते हैं, एक माप के रूप में, वजन के उत्पाद को उस ऊँचाई से गुणा किया जाता है जिस पर इसे उठाया जाता है। कार्नोट की परिभाषा में [[समय]] की एक इकाई को सम्मलित करने के साथ, व्यक्ति [[शक्ति (भौतिकी)]] की आधुनिक परिभाषा पर आता है:
<math display="block">P = \frac{W}{t} = \frac{(mg)h}{t} </math>
<math display="block">P = \frac{W}{t} = \frac{(mg)h}{t} </math>
19वीं सदी के उत्तरार्ध के दौरान, [[रुडोल्फ क्लॉसियस]], [[पीटर गुथरी टैट]] और [[विलार्ड गिब्स]] जैसे भौतिकविदों ने [[थर्मोडायनामिक प्रणाली]] की अवधारणा और इससे संबंधित प्रक्रियाओं को नियंत्रित करने वाले सहसंबंधी ऊर्जावान कानून की अवधारणा को विकसित करने के लिए काम करते थे। थर्मोडायनामिक प्रणाली की संतुलन "स्थिति" को निर्धारित करके वर्णित किया जाता है। थर्मोडायनामिक प्रणाली की स्थिति को कई [[गहन और व्यापक गुण]]ों  के माध्यम से निर्दिष्ट किया जाता है, जिनमें से सबसे अधिक परिचित [[मात्रा (थर्मोडायनामिक्स)]], [[आंतरिक ऊर्जा]] और प्रत्येक घटक कण ([[कण संख्या]]) की मात्रा होती है। व्यापक पैरामीटर पूरे सिस्टम के गुण हैं, जैसा कि गहन पैरामीटर के विपरीत है, जिसे एक बिंदु पर परिभाषित किया जा सकता है, जैसे तापमान और दबाव। व्यापक पैरामीटर (एन्ट्रॉपी को छोड़कर) सामान्यतः किसी प्रकार से संरक्षित होते हैं जब तक कि सिस्टम बाहर से उस पैरामीटर में बदलाव के लिए अछूता रहता है। आयतन के लिए इस कथन की सच्चाई तुच्छ है, कणों के लिए यह कहा जा सकता है कि प्रत्येक परमाणु तत्व की कुल कण संख्या संरक्षित है। ऊर्जा के स्थितियों में, ऊर्जा के संरक्षण के बयान को ऊष्मप्रवैगिकी के पहले नियम के रूप में जाना जाता है।
19वीं सदी के उत्तरार्ध के दौरान, [[रुडोल्फ क्लॉसियस]], [[पीटर गुथरी टैट]] और [[विलार्ड गिब्स]] जैसे भौतिकविदों ने [[थर्मोडायनामिक प्रणाली]] की अवधारणा और इससे संबंधित प्रक्रियाओं को नियंत्रित करने वाले सहसंबंधी ऊर्जावान कानून की अवधारणा को विकसित करने के लिए काम करते थे। थर्मोडायनामिक प्रणाली की संतुलन "स्थिति" को निर्धारित करके वर्णित किया जाता है। थर्मोडायनामिक प्रणाली की स्थिति को कई [[गहन और व्यापक गुण]]ों  के माध्यम से निर्दिष्ट किया जाता है, जिनमें से सबसे अधिक परिचित [[मात्रा (थर्मोडायनामिक्स)]], [[आंतरिक ऊर्जा]] और प्रत्येक घटक कण ([[कण संख्या]]) की मात्रा होती है। व्यापक पैरामीटर पूरे प्रणाली के गुण हैं, जैसा कि गहन पैरामीटर के विपरीत है, जिसे एक बिंदु पर परिभाषित किया जा सकता है, जैसे तापमान और दबाव। व्यापक पैरामीटर (एन्ट्रॉपी को छोड़कर) सामान्यतः किसी प्रकार से संरक्षित होते हैं जब तक कि प्रणाली बाहर से उस पैरामीटर में बदलाव के लिए अछूता रहता है। आयतन के लिए इस कथन की सच्चाई तुच्छ है, कणों के लिए यह कहा जा सकता है कि प्रत्येक परमाणु तत्व की कुल कण संख्या संरक्षित है। ऊर्जा के स्थितियों में, ऊर्जा के संरक्षण के बयान को ऊष्मप्रवैगिकी के पहले नियम के रूप में जाना जाता है।


एक थर्मोडायनामिक प्रणाली संतुलन में होती है जब वह समय में साथ बदलती नहीं है। यह बहुत कम समय में हो सकता है, या यह धीरे-धीरे होता हो सकता है। एक ऊष्मप्रवैगिकी प्रणाली कई उपप्रणालियों से मिलकर बनी होती है, जो विभिन्न व्यापक मात्राओं के संबंध में एक दूसरे से "अधिरोहित" हो सकते हैं। यदि हमारे पास संतुलन में एक थर्मोडायनामिक प्रणाली हो जिसमें हम इसकी कुछ बाधाएँ हटा देते हैं, तो यह एक नई संतुलन स्थिति में जाएगी। थर्मोडायनामिक मापदंडों को अब चर मानों के रूप में समझे जा सकते हैं और स्थिति को थर्मोडायनामिक मापदंडों के स्थान में एक विशेष बिंदु के रूप में सोचा जा सकता है। सिस्टम की स्थिति में परिवर्तन को इस स्थिति अंतरिक्ष में पथ के रूप में देखा जा सकता है। इस परिवर्तन को [[थर्मोडायनामिक प्रक्रिया]] कहा जाता है। थर्मोडायनामिक समीकरणों का उपयोग अब इन अलग-अलग संतुलन अवस्था में स्थिति के मापदंडों के बीच संबंधों को व्यक्त करने के लिए किया जाता है।
एक थर्मोडायनामिक प्रणाली संतुलन में होती है जब वह समय में साथ बदलती नहीं है। यह बहुत कम समय में हो सकता है, या यह धीरे-धीरे होता हो सकता है। एक ऊष्मप्रवैगिकी प्रणाली कई उपप्रणालियों से मिलकर बनी होती है, जो विभिन्न व्यापक मात्राओं के संबंध में एक दूसरे से "अधिरोहित" हो सकते हैं। यदि हमारे पास संतुलन में एक थर्मोडायनामिक प्रणाली हो जिसमें हम इसकी कुछ बाधाएँ हटा देते हैं, तो यह एक नई संतुलन स्थिति में जाएगी। थर्मोडायनामिक मापदंडों को अब चर मानों के रूप में समझे जा सकते हैं और स्थिति को थर्मोडायनामिक मापदंडों के स्थान में एक विशेष बिंदु के रूप में सोचा जा सकता है। प्रणाली की स्थिति में परिवर्तन को इस स्थिति अंतरिक्ष में पथ के रूप में देखा जा सकता है। इस परिवर्तन को [[थर्मोडायनामिक प्रक्रिया]] कहा जाता है। थर्मोडायनामिक समीकरणों का उपयोग अब इन अलग-अलग संतुलन अवस्था में स्थिति के मापदंडों के बीच संबंधों को व्यक्त करने के लिए किया जाता है।


थर्मोडायनामिक प्रणाली के रासायनिक पथ को निर्देशित करने वाली सिद्धांत है एंट्रोपी का सिद्धांत। एंट्रोपी पहले सभी विस्तावी थर्मोडायनमिक पैरामीटरों की विस्तावशील फ़ंक्शन के रूप में देखा जाता है। यदि हमारे पास एक संतुलित थर्मोडायनमिक प्रणाली हो और हम सिस्टम से कुछ विस्तावी प्रतिबंधों को छोड़ते हैं, तो सिस्टम कई संतुलित स्थितियों में जा सकता है जो ऊर्जा, आयतन इत्यादि की संरक्षा के साथ संगत होते हैं। थर्मोडायनमिक के दूसरे नियम ने स्पष्ट किया है कि वह संतुलित स्थिति जिसमें यह जाता है, वास्तव में सबसे बड़ी, [[एन्ट्रापी]] वाली होती है। एक बार जब हम विस्तावी पैरामीटरों के रूप में एंट्रोपी को जानते हैं, हम अंतिम संतुलित स्थिति का अनुमान लगा सकते हैं। {{harv|कैलन|1985}}
थर्मोडायनामिक प्रणाली के रासायनिक पथ को निर्देशित करने वाली सिद्धांत है एंट्रोपी का सिद्धांत। एंट्रोपी पहले सभी विस्तावी थर्मोडायनमिक पैरामीटरों की विस्तावशील फ़ंक्शन के रूप में देखा जाता है। यदि हमारे पास एक संतुलित थर्मोडायनमिक प्रणाली हो और हम प्रणाली से कुछ विस्तावी प्रतिबंधों को छोड़ते हैं, तो प्रणाली कई संतुलित स्थितियों में जा सकता है जो ऊर्जा, आयतन इत्यादि की संरक्षा के साथ संगत होते हैं। थर्मोडायनमिक के दूसरे नियम ने स्पष्ट किया है कि वह संतुलित स्थिति जिसमें यह जाता है, वास्तव में सबसे बड़ी, [[एन्ट्रापी]] वाली होती है। एक बार जब हम विस्तावी पैरामीटरों के रूप में एंट्रोपी को जानते हैं, हम अंतिम संतुलित स्थिति का अनुमान लगा सकते हैं। {{harv|कैलन|1985}}


== नोटेशन ==
== नोटेशन ==
Line 36: Line 36:
}}
}}


थर्मोडायनामिक सिस्टम सामान्यतः निम्न प्रकार के सिस्टम इंटरैक्शन से प्रभावित होते हैं। विचाराधीन प्रकारों का उपयोग सिस्टम को ओपन सिस्टम, क्लोज्ड सिस्टम और आइसोलेटेड सिस्टम के रूप में वर्गीकृत करने के लिए किया जाता है।
थर्मोडायनामिक प्रणाली सामान्यतः निम्न प्रकार के प्रणाली इंटरैक्शन से प्रभावित होते हैं। विचाराधीन प्रकारों का उपयोग प्रणाली को ओपन प्रणाली, क्लोज्ड प्रणाली और आइसोलेटेड प्रणाली के रूप में वर्गीकृत करने के लिए किया जाता है।
{{block indent|; ''δw'': [[यांत्रिक कार्य|कार्य]] की अतिसूक्ष्म मात्रा (''W'')
{{block indent|; ''δw'': [[यांत्रिक कार्य|कार्य]] की अतिसूक्ष्म मात्रा (''W'')
; ''δq'': [[हीट]] (''Q'') की अतिसूक्ष्म मात्रा
; ''δq'': [[हीट]] (''Q'') की अतिसूक्ष्म मात्रा
Line 65: Line 65:
* ऊष्मप्रवैगिकी का पहला नियम
* ऊष्मप्रवैगिकी का पहला नियम
::<math>dU = \delta Q - \delta W </math> कहाँ <math>dU </math> प्रणाली की आंतरिक ऊर्जा में अपरिमित वृद्धि है, <math>\delta Q </math> प्रणाली में असीम ताप प्रवाह है, और <math>\delta W </math> तंत्र  के माध्यम से किया गया अतिसूक्ष्म कार्य है।
::<math>dU = \delta Q - \delta W </math> कहाँ <math>dU </math> प्रणाली की आंतरिक ऊर्जा में अपरिमित वृद्धि है, <math>\delta Q </math> प्रणाली में असीम ताप प्रवाह है, और <math>\delta W </math> तंत्र  के माध्यम से किया गया अतिसूक्ष्म कार्य है।
:पहला नियम ऊर्जा संरक्षण का नियम है। प्रतीक <math>\delta</math> सादे डी के अतिरिक्त, [[जर्मन लोग]]ों के गणितज्ञ [[कार्ल गॉटफ्राइड न्यूमैन]] के काम में उत्पन्न हुआ<ref>Carl G. Neumann, ''Vorlesungen über die mechanische Theorie der Wärme'', 1875.</ref> और एक [[अचूक अंतर]] को दर्शाने के लिए और यह इंगित करने के लिए उपयोग किया जाता है कि क्यू और डब्ल्यू पथ-निर्भर हैं (अर्थात, वे स्थिति कार्य नहीं हैं)। [[भौतिक रसायन]] शास्त्र जैसे कुछ क्षेत्रों में, सकारात्मक कार्य को पारंपरिक रूप से सिस्टम के अतिरिक्त सिस्टम पर किए गए कार्य के रूप में माना जाता है, और कानून के रूप में व्यक्त किया जाता है <math>dU = \delta Q + \delta W</math>.
:पहला नियम ऊर्जा संरक्षण का नियम है। प्रतीक <math>\delta</math> सादे डी के अतिरिक्त, [[जर्मन लोग]]ों के गणितज्ञ [[कार्ल गॉटफ्राइड न्यूमैन]] के काम में उत्पन्न हुआ<ref>Carl G. Neumann, ''Vorlesungen über die mechanische Theorie der Wärme'', 1875.</ref> और एक [[अचूक अंतर]] को दर्शाने के लिए और यह इंगित करने के लिए उपयोग किया जाता है कि क्यू और डब्ल्यू पथ-निर्भर हैं (अर्थात, वे स्थिति कार्य नहीं हैं)। [[भौतिक रसायन]] शास्त्र जैसे कुछ क्षेत्रों में, सकारात्मक कार्य को पारंपरिक रूप से प्रणाली के अतिरिक्त प्रणाली पर किए गए कार्य के रूप में माना जाता है, और कानून के रूप में व्यक्त किया जाता है <math>dU = \delta Q + \delta W</math>.
* ऊष्मप्रवैगिकी का दूसरा नियम
* ऊष्मप्रवैगिकी का दूसरा नियम
:: एक पृथक प्रणाली की एन्ट्रॉपी कभी घटती नहीं है: <math> dS \ge 0</math> एक पृथक प्रणाली के लिए।
:: एक पृथक प्रणाली की एन्ट्रॉपी कभी घटती नहीं है: <math> dS \ge 0</math> एक पृथक प्रणाली के लिए।
Line 91: Line 91:
\left(\frac{\partial U}{\partial V}\right)_{S,\{N_i\}}dV+
\left(\frac{\partial U}{\partial V}\right)_{S,\{N_i\}}dV+
\sum_i\left(\frac{\partial U}{\partial N_i}\right)_{S,V,\{N_{j \ne i}\}}dN_i
\sum_i\left(\frac{\partial U}{\partial N_i}\right)_{S,V,\{N_{j \ne i}\}}dN_i
</math> जिससे निम्नलिखित पहचान की जा सकती है: <math display="block">\left(\frac{\partial U}{\partial S}\right)_{V,\{N_i\}}=T</math> <math display="block">\left(\frac{\partial U}{\partial V}\right)_{S,\{N_i\}}=-p</math> <math display="block">\left(\frac{\partial U}{\partial N_i}\right)_{S,V,\{N_{j \ne i}\}}=\mu_i</math> इन समीकरणों को आंतरिक ऊर्जा के संबंध में अवस्था के समीकरण के रूप में जाना जाता है। (ध्यान दें - दबाव, आयतन, तापमान और कण संख्या के बीच का संबंध जिसे सामान्यतः स्थिति का समीकरण कहा जाता है, स्थिति के कई संभावित समीकरणों में से एक है।) यदि हम स्थिति के उपरोक्त समीकरणों के सभी k+2 जानते हैं, तो हम कर सकते हैं मौलिक समीकरण को पुनर्गठित करें और सिस्टम के सभी थर्मोडायनामिक गुणों को पुनर्प्राप्त करें।
</math> जिससे निम्नलिखित पहचान की जा सकती है: <math display="block">\left(\frac{\partial U}{\partial S}\right)_{V,\{N_i\}}=T</math> <math display="block">\left(\frac{\partial U}{\partial V}\right)_{S,\{N_i\}}=-p</math> <math display="block">\left(\frac{\partial U}{\partial N_i}\right)_{S,V,\{N_{j \ne i}\}}=\mu_i</math> इन समीकरणों को आंतरिक ऊर्जा के संबंध में अवस्था के समीकरण के रूप में जाना जाता है। (ध्यान दें - दबाव, आयतन, तापमान और कण संख्या के बीच का संबंध जिसे सामान्यतः स्थिति का समीकरण कहा जाता है, स्थिति के कई संभावित समीकरणों में से एक है।) यदि हम स्थिति के उपरोक्त समीकरणों के सभी k+2 जानते हैं, तो हम कर सकते हैं मौलिक समीकरण को पुनर्गठित करें और प्रणाली के सभी थर्मोडायनामिक गुणों को पुनर्प्राप्त करें।
*मूल समीकरण को किसी भी अन्य अवकलन के लिए हल किया जा सकता है और समान व्यंजक खोजे जा सकते हैं। उदाहरण के लिए, हम के लिए हल कर सकते हैं <math>dS</math> और उसे ढूंढो <math display="block">\left(\frac{\partial S}{\partial V}\right)_{U,\{N_i\}} = \frac{p}{T}</math>
*मूल समीकरण को किसी भी अन्य अवकलन के लिए हल किया जा सकता है और समान व्यंजक खोजे जा सकते हैं। उदाहरण के लिए, हम के लिए हल कर सकते हैं <math>dS</math> और उसे ढूंढो <math display="block">\left(\frac{\partial S}{\partial V}\right)_{U,\{N_i\}} = \frac{p}{T}</math>


Line 97: Line 97:
== थर्मोडायनामिक क्षमता ==
== थर्मोडायनामिक क्षमता ==
{{main|थर्मोडायनामिक क्षमता}}
{{main|थर्मोडायनामिक क्षमता}}
न्यूनतम ऊर्जा के सिद्धांत के  के माध्यम से, दूसरे नियम को यह कहकर पुन: स्थापित किया जा सकता है कि एक निश्चित एन्ट्रापी के लिए, जब सिस्टम पर बाधाओं को कम किया जाता है, तो आंतरिक ऊर्जा एक न्यूनतम मान लेती है। इसके लिए यह आवश्यक होगा कि सिस्टम अपने परिवेश से जुड़ा हो, अन्यथा ऊर्जा स्थिर रहेगी।
न्यूनतम ऊर्जा के सिद्धांत के  के माध्यम से, दूसरे नियम को यह कहकर पुन: स्थापित किया जा सकता है कि एक निश्चित एन्ट्रापी के लिए, जब प्रणाली पर बाधाओं को कम किया जाता है, तो आंतरिक ऊर्जा एक न्यूनतम मान लेती है। इसके लिए यह आवश्यक होगा कि प्रणाली अपने परिवेश से जुड़ा हो, अन्यथा ऊर्जा स्थिर रहेगी।


न्यूनतम ऊर्जा के सिद्धांत के अनुसार, ऐसे कई अन्य स्थिति कार्य हैं जिन्हें परिभाषित किया जा सकता है जिनमें ऊर्जा के आयाम होते हैं और जिन्हें निरंतर एन्ट्रॉपी के अतिरिक्त कुछ शर्तों के अनुसार दूसरे कानून के अनुसार कम किया जाता है। इन्हें [[थर्मोडायनामिक क्षमता]] कहा जाता है। ऐसी प्रत्येक क्षमता के लिए, प्रासंगिक मूलभूत समीकरण उसी द्वितीय-नियम सिद्धांत से उत्पन्न होता है जो प्रतिबंधित स्थितियों के अनुसार ऊर्जा न्यूनीकरण को जन्म देता है: कि प्रणाली और उसके पर्यावरण की कुल एन्ट्रॉपी संतुलन में अधिकतम होती है। गहन पैरामीटर सिस्टम के व्यापक गुणों के संबंध में पर्यावरण के डेरिवेटिव को एंट्रॉपी देते हैं।
न्यूनतम ऊर्जा के सिद्धांत के अनुसार, ऐसे कई अन्य स्थिति कार्य हैं जिन्हें परिभाषित किया जा सकता है जिनमें ऊर्जा के आयाम होते हैं और जिन्हें निरंतर एन्ट्रॉपी के अतिरिक्त कुछ शर्तों के अनुसार दूसरे कानून के अनुसार कम किया जाता है। इन्हें [[थर्मोडायनामिक क्षमता]] कहा जाता है। ऐसी प्रत्येक क्षमता के लिए, प्रासंगिक मूलभूत समीकरण उसी द्वितीय-नियम सिद्धांत से उत्पन्न होता है जो प्रतिबंधित स्थितियों के अनुसार ऊर्जा न्यूनीकरण को जन्म देता है: कि प्रणाली और उसके पर्यावरण की कुल एन्ट्रॉपी संतुलन में अधिकतम होती है। गहन पैरामीटर प्रणाली के व्यापक गुणों के संबंध में पर्यावरण के डेरिवेटिव को एंट्रॉपी देते हैं।


चार सबसे आम थर्मोडायनामिक क्षमताएं हैं:
चार सबसे आम थर्मोडायनामिक क्षमताएं हैं:
Line 129: Line 129:
=== यूलर इंटीग्रल ===
=== यूलर इंटीग्रल ===
{{see also|यूलर इंटीग्रल (थर्मोडायनामिक्स)}}
{{see also|यूलर इंटीग्रल (थर्मोडायनामिक्स)}}
क्योंकि आंतरिक ऊर्जा यू के सभी प्राकृतिक चर [[व्यापक मात्रा]] में हैं, यह सजातीय कार्य सकारात्मक समरूपता यूलर के सजातीय कार्य प्रमेय से अनुसरण करता है
क्योंकि आंतरिक ऊर्जा यू के सभी प्राकृतिक चर [[व्यापक मात्रा]] में हैं, यह सजातीय कार्य सकारात्मक समरूपता यूलर के सजातीय कार्य प्रमेय से अनुसरण करता है,


:<math>U=TS-pV+\sum_i \mu_i N_i</math>
:<math>U=TS-pV+\sum_i \mu_i N_i</math>
Line 144: Line 144:


:<math>0=SdT-Vdp+\sum_iN_id\mu_i</math>
:<math>0=SdT-Vdp+\sum_iN_id\mu_i</math>
जिसे गिब्स-डुहेम संबंध के रूप में जाना जाता है। गिब्स-डुहेम प्रणाली के गहन मापदंडों के बीच एक संबंध है। यह इस प्रकार है कि r घटकों के साथ एक सरल प्रणाली के लिए, r+1 स्वतंत्र पैरामीटर या स्वतंत्रता की डिग्री होगी। उदाहरण के लिए, एक घटक के साथ एक सरल प्रणाली में दो डिग्री स्वतंत्रता होगी, और उदाहरण के लिए दबाव और मात्रा जैसे एकमात्र दो पैरामीटर  के माध्यम से निर्दिष्ट किया जा सकता है। कानून का नाम विलार्ड गिब्स और [[पियरे ड्यूहेम]] के नाम पर रखा गया है।
जिसे गिब्स-डुहेम संबंध के रूप में जाना जाता है। गिब्स-डुहेम प्रणाली के गहन मापदंडों के बीच एक संबंध है। यह इस प्रकार है कि r घटकों के साथ एक सरल प्रणाली के लिए, r+1 स्वतंत्र पैरामीटर या स्वतंत्रता की डिग्री होगी। उदाहरण के लिए, एक घटक के साथ एक सरल प्रणाली में दो डिग्री स्वतंत्रता होगी, और उदाहरण के लिए दबाव और मात्रा जैसे एकमात्र दो पैरामीटर  के माध्यम से निर्दिष्ट किया जा सकता है। नियम का नाम विलार्ड गिब्स और [[पियरे ड्यूहेम]] के नाम पर रखा गया है।


== दूसरे क्रम के समीकरण ==
== दूसरे क्रम के समीकरण ==
Line 170: Line 170:
=== भौतिक गुण ===
=== भौतिक गुण ===
{{Main|भौतिक गुण (थर्मोडायनामिक्स)}}
{{Main|भौतिक गुण (थर्मोडायनामिक्स)}}
ऊष्मप्रवैगिकी क्षमता के दूसरे डेरिवेटिव सामान्यतः छोटे बदलावों के लिए सिस्टम की प्रतिक्रिया का वर्णन करते हैं। दूसरे डेरिवेटिव की संख्या जो एक दूसरे से स्वतंत्र हैं, अपेक्षाकृत कम है, जिसका अर्थ है कि अधिकांश भौतिक गुणों को एकमात्र कुछ मानक गुणों के संदर्भ में वर्णित किया जा सकता है। एकल घटक प्रणाली के स्थितियों में, तीन गुण हैं जिन्हें सामान्यतः मानक माना जाता है जिससे अन्य सभी प्राप्त किए जा सकते हैं:
ऊष्मप्रवैगिकी क्षमता के दूसरे डेरिवेटिव सामान्यतः छोटे बदलावों के लिए प्रणाली की प्रतिक्रिया का वर्णन करते हैं। दूसरे डेरिवेटिव की संख्या जो एक दूसरे से स्वतंत्र हैं, अपेक्षाकृत कम है, जिसका अर्थ है कि अधिकांश भौतिक गुणों को एकमात्र कुछ मानक गुणों के संदर्भ में वर्णित किया जा सकता है। एकल घटक प्रणाली के स्थितियों में, तीन गुण हैं जिन्हें सामान्यतः मानक माना जाता है जिससे अन्य सभी प्राप्त किए जा सकते हैं:


* निरंतर तापमान या निरंतर एन्ट्रापी पर संपीड्यता <math display="block"> \beta_{T \text{ or } S} = -{ 1\over V } \left ( {\partial V\over \partial p} \right )_{T,N \text{ or } S,N}</math>
* निरंतर तापमान या निरंतर एन्ट्रापी पर संपीड्यता <math display="block"> \beta_{T \text{ or } S} = -{ 1\over V } \left ( {\partial V\over \partial p} \right )_{T,N \text{ or } S,N}</math>

Revision as of 01:28, 21 March 2023

ऊष्मप्रवैगिकी थर्मोडायनामिक समीकरणों के एक गणितीय ढांचे के माध्यम से व्यक्त की जाती है जो प्रयोगशाला या उत्पादन प्रक्रिया में मापी गई विभिन्न थर्मोडायनामिक मात्राओं और भौतिक गुणों से संबंधित होती है। ऊष्मप्रवैगिकी अभिधारणाओं के एक मूलभूत समुच्चय पर आधारित है, जो ऊष्मप्रवैगिकी के नियम बन गए।

परिचय

मौलिक थर्मोडायनामिक समीकरणों में से एक यांत्रिक कार्य के अनुरूप थर्मोडायनामिक कार्य का वर्णन है, या गुरुत्वाकर्षण के खिलाफ एक ऊंचाई के माध्यम से उठाया गया वजन, जैसा कि 1824 में फ्रांसीसी भौतिक विज्ञानी निकोलस लियोनार्ड सादी कार्नोट के माध्यम से परिभाषित किया गया था। कार्नोट ने कार्य के लिए कार्य (भौतिकी) वाक्यांश का प्रयोग किया। उनकी प्रसिद्ध "ऑन द मोटिव पावर ऑफ फायर" के फुटनोट्स में, उन्होंने कहा है: "हम अभिव्यक्ति प्रेरक शक्ति का उपयोग उस उपयोगी प्रभाव को व्यक्त करने के लिए करते हैं जो एक मोटर उत्पादन करने में सक्षम है। इस प्रभाव की समानता हमेशा एक वजन को एक निश्चित ऊंचाई तक बढ़ाने के साथ की जा सकती है। यह, जैसा कि हम जानते हैं, एक माप के रूप में, वजन के उत्पाद को उस ऊँचाई से गुणा किया जाता है जिस पर इसे उठाया जाता है। कार्नोट की परिभाषा में समय की एक इकाई को सम्मलित करने के साथ, व्यक्ति शक्ति (भौतिकी) की आधुनिक परिभाषा पर आता है:

19वीं सदी के उत्तरार्ध के दौरान, रुडोल्फ क्लॉसियस, पीटर गुथरी टैट और विलार्ड गिब्स जैसे भौतिकविदों ने थर्मोडायनामिक प्रणाली की अवधारणा और इससे संबंधित प्रक्रियाओं को नियंत्रित करने वाले सहसंबंधी ऊर्जावान कानून की अवधारणा को विकसित करने के लिए काम करते थे। थर्मोडायनामिक प्रणाली की संतुलन "स्थिति" को निर्धारित करके वर्णित किया जाता है। थर्मोडायनामिक प्रणाली की स्थिति को कई गहन और व्यापक गुणों के माध्यम से निर्दिष्ट किया जाता है, जिनमें से सबसे अधिक परिचित मात्रा (थर्मोडायनामिक्स), आंतरिक ऊर्जा और प्रत्येक घटक कण (कण संख्या) की मात्रा होती है। व्यापक पैरामीटर पूरे प्रणाली के गुण हैं, जैसा कि गहन पैरामीटर के विपरीत है, जिसे एक बिंदु पर परिभाषित किया जा सकता है, जैसे तापमान और दबाव। व्यापक पैरामीटर (एन्ट्रॉपी को छोड़कर) सामान्यतः किसी प्रकार से संरक्षित होते हैं जब तक कि प्रणाली बाहर से उस पैरामीटर में बदलाव के लिए अछूता रहता है। आयतन के लिए इस कथन की सच्चाई तुच्छ है, कणों के लिए यह कहा जा सकता है कि प्रत्येक परमाणु तत्व की कुल कण संख्या संरक्षित है। ऊर्जा के स्थितियों में, ऊर्जा के संरक्षण के बयान को ऊष्मप्रवैगिकी के पहले नियम के रूप में जाना जाता है।

एक थर्मोडायनामिक प्रणाली संतुलन में होती है जब वह समय में साथ बदलती नहीं है। यह बहुत कम समय में हो सकता है, या यह धीरे-धीरे होता हो सकता है। एक ऊष्मप्रवैगिकी प्रणाली कई उपप्रणालियों से मिलकर बनी होती है, जो विभिन्न व्यापक मात्राओं के संबंध में एक दूसरे से "अधिरोहित" हो सकते हैं। यदि हमारे पास संतुलन में एक थर्मोडायनामिक प्रणाली हो जिसमें हम इसकी कुछ बाधाएँ हटा देते हैं, तो यह एक नई संतुलन स्थिति में जाएगी। थर्मोडायनामिक मापदंडों को अब चर मानों के रूप में समझे जा सकते हैं और स्थिति को थर्मोडायनामिक मापदंडों के स्थान में एक विशेष बिंदु के रूप में सोचा जा सकता है। प्रणाली की स्थिति में परिवर्तन को इस स्थिति अंतरिक्ष में पथ के रूप में देखा जा सकता है। इस परिवर्तन को थर्मोडायनामिक प्रक्रिया कहा जाता है। थर्मोडायनामिक समीकरणों का उपयोग अब इन अलग-अलग संतुलन अवस्था में स्थिति के मापदंडों के बीच संबंधों को व्यक्त करने के लिए किया जाता है।

थर्मोडायनामिक प्रणाली के रासायनिक पथ को निर्देशित करने वाली सिद्धांत है एंट्रोपी का सिद्धांत। एंट्रोपी पहले सभी विस्तावी थर्मोडायनमिक पैरामीटरों की विस्तावशील फ़ंक्शन के रूप में देखा जाता है। यदि हमारे पास एक संतुलित थर्मोडायनमिक प्रणाली हो और हम प्रणाली से कुछ विस्तावी प्रतिबंधों को छोड़ते हैं, तो प्रणाली कई संतुलित स्थितियों में जा सकता है जो ऊर्जा, आयतन इत्यादि की संरक्षा के साथ संगत होते हैं। थर्मोडायनमिक के दूसरे नियम ने स्पष्ट किया है कि वह संतुलित स्थिति जिसमें यह जाता है, वास्तव में सबसे बड़ी, एन्ट्रापी वाली होती है। एक बार जब हम विस्तावी पैरामीटरों के रूप में एंट्रोपी को जानते हैं, हम अंतिम संतुलित स्थिति का अनुमान लगा सकते हैं। (कैलन 1985)

नोटेशन

कुछ सबसे आम थर्मोडायनामिक मात्राएँ हैं:

संयुग्म चर जोड़े मौलिक स्थिति चर हैं जिनका उपयोग थर्मोडायनामिक कार्यों को तैयार करने के लिए किया जाता है।

सबसे महत्वपूर्ण थर्मोडायनामिक क्षमता निम्नलिखित कार्य हैं:

थर्मोडायनामिक प्रणाली सामान्यतः निम्न प्रकार के प्रणाली इंटरैक्शन से प्रभावित होते हैं। विचाराधीन प्रकारों का उपयोग प्रणाली को ओपन प्रणाली, क्लोज्ड प्रणाली और आइसोलेटेड प्रणाली के रूप में वर्गीकृत करने के लिए किया जाता है।

; δw: कार्य की अतिसूक्ष्म मात्रा (W)
δq
हीट (Q) की अतिसूक्ष्म मात्रा
मी
मास

थर्मोडायनामिक कार्यों से निर्धारित सामान्य सामग्री गुण (थर्मोडायनामिक्स) निम्नलिखित हैं:

; ρ: घनत्व को प्रति इकाई आयतन में सामग्री के द्रव्यमान के रूप में परिभाषित किया गया है
CV
ताप क्षमता स्थिर आयतन पर
Cp
ताप क्षमता स्थिर दाब पर
βT
इज़ोटेर्मल संपीड़नीयता
βS
रुद्धोष्म संपीड़नीयता
α
तापीय विस्तार का गुणांक

निम्नलिखित स्थिरांक स्थिरांक हैं जो इकाइयों की एक मानक प्रणाली के आवेदन के कारण कई रिश्तों में होते हैं।

ऊष्मप्रवैगिकी के नियम

थर्मोडायनामिक्स के व्यवहार को थर्मोडायनामिक्स के नियमों में संक्षेपित किया गया है, जो संक्षेप में हैं:

  • ऊष्मप्रवैगिकी का शून्यवाँ नियम
यदि A, B,C थर्मोडायनमिक प्रणालियाँ ऐसी हों कि A, B के साथ थर्मल संतुलन में हो और B, C के साथ थर्मल संतुलन में हो, तो A, C के साथ थर्मल संतुलन में होगी।
ज़ीरोथ लॉ थर्मोमीट्री में महत्वपूर्ण है, क्योंकि इससे तापमान मापने के पैमाने के अस्तित्व का अनुमान लगाया जा सकता है। व्यावहारिक रूप में, C एक थर्मामापक होता है, और ज़ीरोथ लॉ यह कहता है कि थर्मोडायनमिक संतुलन में होने वाली प्रणालियां एक दूसरे से थर्मोडायनमिक संतुलन में होती हैं।
  • ऊष्मप्रवैगिकी का पहला नियम
कहाँ प्रणाली की आंतरिक ऊर्जा में अपरिमित वृद्धि है, प्रणाली में असीम ताप प्रवाह है, और तंत्र के माध्यम से किया गया अतिसूक्ष्म कार्य है।
पहला नियम ऊर्जा संरक्षण का नियम है। प्रतीक सादे डी के अतिरिक्त, जर्मन लोगों के गणितज्ञ कार्ल गॉटफ्राइड न्यूमैन के काम में उत्पन्न हुआ[1] और एक अचूक अंतर को दर्शाने के लिए और यह इंगित करने के लिए उपयोग किया जाता है कि क्यू और डब्ल्यू पथ-निर्भर हैं (अर्थात, वे स्थिति कार्य नहीं हैं)। भौतिक रसायन शास्त्र जैसे कुछ क्षेत्रों में, सकारात्मक कार्य को पारंपरिक रूप से प्रणाली के अतिरिक्त प्रणाली पर किए गए कार्य के रूप में माना जाता है, और कानून के रूप में व्यक्त किया जाता है .
  • ऊष्मप्रवैगिकी का दूसरा नियम
एक पृथक प्रणाली की एन्ट्रॉपी कभी घटती नहीं है: एक पृथक प्रणाली के लिए।
द्वितीय नियम से संबंधित एक अवधारणा जो ऊष्मप्रवैगिकी में महत्वपूर्ण है, उत्क्रमणीयता की है। किसी दिए गए पृथक प्रणाली के भीतर एक प्रक्रिया को प्रतिवर्ती कहा जाता है यदि पूरी प्रक्रिया में एंट्रॉपी कभी नहीं बढ़ती है (अर्थात एंट्रॉपी अपरिवर्तित रहती है)।
कब
ऊष्मप्रवैगिकी के तीसरे नियम में कहा गया है कि तापमान के पूर्ण शून्य पर, एन्ट्रापी एक पूर्ण क्रिस्टलीय संरचना के लिए शून्य है।
  • ऑनसेजर पारस्परिक संबंध - कभी-कभी ऊष्मप्रवैगिकी का चौथा नियम कहा जाता है
[definition needed]
ऊष्मप्रवैगिकी का चौथा नियम अभी तक सहमत कानून नहीं है (कई कथित विविधताएं सम्मलित हैं); चूँकि, ऐतिहासिक रूप से, ऑनसेगर पारस्परिक संबंधों को अधिकांशतः चौथे नियम के रूप में संदर्भित किया जाता है।

मौलिक समीकरण

ऊष्मप्रवैगिकी का पहला और दूसरा नियम ऊष्मप्रवैगिकी के सबसे मौलिक समीकरण हैं। उन्हें मौलिक थर्मोडायनामिक संबंध के रूप में जाना जाता है, जो समान तापमान और दबाव की प्रणाली के थर्मोडायनामिक स्थिति कार्यों के सभी परिवर्तनों का वर्णन करता है। एक सरल उदाहरण के रूप में, एक ऐसी प्रणाली पर विचार करें जो कई प्रकार के k विभिन्न प्रकार के कणों से बना है और इसका आयतन एकमात्र बाहरी चर के रूप में है। मौलिक थर्मोडायनामिक संबंध तब आंतरिक ऊर्जा के संदर्भ में व्यक्त किया जा सकता है:

इस समीकरण के कुछ महत्वपूर्ण पहलुओं पर ध्यान दिया जाना चाहिए: (अल्बर्टी 2001), (बालियन 2003), (कैलन 1985)

  • थर्मोडायनामिक स्पेस में k+2 आयाम हैं
  • अंतर मात्रा (यू, एस, वी, एनi) सभी व्यापक मात्राएँ हैं। विभेदक मात्राओं के गुणांक गहन मात्राएँ (तापमान, दबाव, रासायनिक क्षमता) हैं। आंतरिक ऊर्जा के संबंध में समीकरण में प्रत्येक जोड़ी को संयुग्म चर (थर्मोडायनामिक्स) के रूप में जाना जाता है। गहन चरों को सामान्यीकृत बल के रूप में देखा जा सकता है। गहन चर में असंतुलन असंतुलन का मुकाबला करने की दिशा में व्यापक चर के प्रवाह का कारण होगा।
  • समीकरण को शृंखला नियम के एक विशेष स्थितियों के रूप में देखा जा सकता है। दूसरे शब्दों में:
    जिससे निम्नलिखित पहचान की जा सकती है:
    इन समीकरणों को आंतरिक ऊर्जा के संबंध में अवस्था के समीकरण के रूप में जाना जाता है। (ध्यान दें - दबाव, आयतन, तापमान और कण संख्या के बीच का संबंध जिसे सामान्यतः स्थिति का समीकरण कहा जाता है, स्थिति के कई संभावित समीकरणों में से एक है।) यदि हम स्थिति के उपरोक्त समीकरणों के सभी k+2 जानते हैं, तो हम कर सकते हैं मौलिक समीकरण को पुनर्गठित करें और प्रणाली के सभी थर्मोडायनामिक गुणों को पुनर्प्राप्त करें।
  • मूल समीकरण को किसी भी अन्य अवकलन के लिए हल किया जा सकता है और समान व्यंजक खोजे जा सकते हैं। उदाहरण के लिए, हम के लिए हल कर सकते हैं और उसे ढूंढो


थर्मोडायनामिक क्षमता

न्यूनतम ऊर्जा के सिद्धांत के के माध्यम से, दूसरे नियम को यह कहकर पुन: स्थापित किया जा सकता है कि एक निश्चित एन्ट्रापी के लिए, जब प्रणाली पर बाधाओं को कम किया जाता है, तो आंतरिक ऊर्जा एक न्यूनतम मान लेती है। इसके लिए यह आवश्यक होगा कि प्रणाली अपने परिवेश से जुड़ा हो, अन्यथा ऊर्जा स्थिर रहेगी।

न्यूनतम ऊर्जा के सिद्धांत के अनुसार, ऐसे कई अन्य स्थिति कार्य हैं जिन्हें परिभाषित किया जा सकता है जिनमें ऊर्जा के आयाम होते हैं और जिन्हें निरंतर एन्ट्रॉपी के अतिरिक्त कुछ शर्तों के अनुसार दूसरे कानून के अनुसार कम किया जाता है। इन्हें थर्मोडायनामिक क्षमता कहा जाता है। ऐसी प्रत्येक क्षमता के लिए, प्रासंगिक मूलभूत समीकरण उसी द्वितीय-नियम सिद्धांत से उत्पन्न होता है जो प्रतिबंधित स्थितियों के अनुसार ऊर्जा न्यूनीकरण को जन्म देता है: कि प्रणाली और उसके पर्यावरण की कुल एन्ट्रॉपी संतुलन में अधिकतम होती है। गहन पैरामीटर प्रणाली के व्यापक गुणों के संबंध में पर्यावरण के डेरिवेटिव को एंट्रॉपी देते हैं।

चार सबसे आम थर्मोडायनामिक क्षमताएं हैं:

Name Symbol Formula Natural variables
Internal energy
Helmholtz free energy
Enthalpy
Gibbs free energy
Landau potential, or
grand potential
,

प्रत्येक क्षमता के बाद इसके प्राकृतिक चर दिखाए जाते हैं। ये चर महत्वपूर्ण हैं क्योंकि यदि थर्मोडायनामिक क्षमता को इसके प्राकृतिक चर के संदर्भ में व्यक्त किया जाता है, तो इसमें किसी अन्य संबंध को प्राप्त करने के लिए आवश्यक सभी थर्मोडायनामिक संबंध सम्मलित होंगे। दूसरे शब्दों में, यह भी एक मूलभूत समीकरण होगा। उपरोक्त चार संभावनाओं के लिए, मौलिक समीकरणों को इस प्रकार व्यक्त किया जाता है:

इन संभावनाओं को वापस बुलाने और प्राप्त करने के लिए थर्मोडायनामिक वर्ग को एक उपकरण के रूप में उपयोग किया जा सकता है।

पहले क्रम के समीकरण

मौलिक समीकरण के आंतरिक ऊर्जा संस्करण की प्रकार, विशेष क्षमता के संबंध में स्थिति के k+2 समीकरणों को खोजने के लिए उपरोक्त समीकरणों पर श्रृंखला नियम का उपयोग किया जा सकता है। यदि Φ थर्मोडायनामिक क्षमता है, तो मौलिक समीकरण को इस प्रकार व्यक्त किया जा सकता है:

जहां क्षमता के प्राकृतिक चर हैं। यदि से संयुग्मित है तो हमारे पास उस क्षमता के लिए स्थिति के समीकरण हैं, संयुग्म चर के प्रत्येक सेट के लिए एक।

स्थिति का एकमात्र एक समीकरण मूलभूत समीकरण को पुनर्गठित करने के लिए पर्याप्त नहीं होगा। थर्मोडायनामिक प्रणाली को पूरी प्रकार से चिह्नित करने के लिए स्थिति के सभी समीकरणों की आवश्यकता होगी। ध्यान दें कि जिसे सामान्यतः स्थिति का समीकरण कहा जाता है, वह हेल्महोल्ट्ज़ क्षमता और आयतन को सम्मलित करने वाला स्थिति का यांत्रिक समीकरण है:

एक आदर्श गैस के लिए, यह परिचित PV=Nk बन जाता हैBटी।

यूलर इंटीग्रल

क्योंकि आंतरिक ऊर्जा यू के सभी प्राकृतिक चर व्यापक मात्रा में हैं, यह सजातीय कार्य सकारात्मक समरूपता यूलर के सजातीय कार्य प्रमेय से अनुसरण करता है,

अन्य मुख्य विभवों के भावों को प्रतिस्थापित करने पर हमारे पास ऊष्मागतिकीय विभवों के लिए निम्नलिखित भाव हैं:

ध्यान दें कि यूलर इंटीग्रल को कभी-कभी मौलिक समीकरण भी कहा जाता है।

गिब्स-डुहेम संबंध

आंतरिक ऊर्जा के लिए यूलर समीकरण को अलग करना और आंतरिक ऊर्जा के लिए मौलिक समीकरण के साथ संयोजन करना, यह इस प्रकार है:

जिसे गिब्स-डुहेम संबंध के रूप में जाना जाता है। गिब्स-डुहेम प्रणाली के गहन मापदंडों के बीच एक संबंध है। यह इस प्रकार है कि r घटकों के साथ एक सरल प्रणाली के लिए, r+1 स्वतंत्र पैरामीटर या स्वतंत्रता की डिग्री होगी। उदाहरण के लिए, एक घटक के साथ एक सरल प्रणाली में दो डिग्री स्वतंत्रता होगी, और उदाहरण के लिए दबाव और मात्रा जैसे एकमात्र दो पैरामीटर के माध्यम से निर्दिष्ट किया जा सकता है। नियम का नाम विलार्ड गिब्स और पियरे ड्यूहेम के नाम पर रखा गया है।

दूसरे क्रम के समीकरण

ऐसे कई संबंध हैं जो ऊपर दिए गए मूल समीकरणों से गणितीय रूप से अनुसरण करते हैं। गणितीय संबंधों की सूची के लिए त्रुटिहीन अवकलन देखें। कई समीकरणों को थर्मोडायनामिक क्षमता के दूसरे डेरिवेटिव के रूप में व्यक्त किया जाता है (ब्रिजमैन समीकरण देखें)।

मैक्सवेल संबंध

मैक्सवेल संबंध समानताएं हैं जो उनके प्राकृतिक चर के संबंध में थर्मोडायनामिक क्षमता के दूसरे डेरिवेटिव को सम्मलित करती हैं। वे इस तथ्य से सीधे अनुसरण करते हैं कि दूसरा अवकलज लेते समय अवकलन का क्रम मायने नहीं रखता। चार सबसे आम मैक्सवेल संबंध हैं:

थर्मोडायनामिक वर्ग का उपयोग इन संबंधों को याद करने और प्राप्त करने के लिए एक उपकरण के रूप में किया जा सकता है।

भौतिक गुण

ऊष्मप्रवैगिकी क्षमता के दूसरे डेरिवेटिव सामान्यतः छोटे बदलावों के लिए प्रणाली की प्रतिक्रिया का वर्णन करते हैं। दूसरे डेरिवेटिव की संख्या जो एक दूसरे से स्वतंत्र हैं, अपेक्षाकृत कम है, जिसका अर्थ है कि अधिकांश भौतिक गुणों को एकमात्र कुछ मानक गुणों के संदर्भ में वर्णित किया जा सकता है। एकल घटक प्रणाली के स्थितियों में, तीन गुण हैं जिन्हें सामान्यतः मानक माना जाता है जिससे अन्य सभी प्राप्त किए जा सकते हैं:

  • निरंतर तापमान या निरंतर एन्ट्रापी पर संपीड्यता
  • स्थिर दबाव या स्थिर आयतन पर विशिष्ट ऊष्मा (प्रति-कण)।
  • ताप विस्तार प्रसार गुणांक

तापमान और दबाव के संबंध में इन गुणों को गिब्स मुक्त ऊर्जा के तीन संभावित दूसरे व्युत्पन्न के रूप में देखा जाता है।

थर्मोडायनामिक संपत्ति संबंध

दबाव, आयतन, तापमान, इकाई सेल आयतन, बल्क मापांक और द्रव्यमान जैसे गुणों को आसानी से मापा जाता है। अन्य गुणों को सरल संबंधों के माध्यम से मापा जाता है, जैसे घनत्व, विशिष्ट आयतन, विशिष्ट भार। आंतरिक ऊर्जा, एंट्रॉपी, एन्थैल्पी और गर्मी हस्तांतरण जैसे गुणों को सरल संबंधों के माध्यम से इतनी आसानी से मापा या निर्धारित नहीं किया जाता है। इस प्रकार, हम मैक्सवेल संबंध, क्लैपेरॉन समीकरण और मेयर संबंध जैसे अधिक जटिल संबंधों का उपयोग करते हैं।

ऊष्मप्रवैगिकी में मैक्सवेल संबंध महत्वपूर्ण हैं क्योंकि वे एन्ट्रापी में परिवर्तन का निर्धारण करने के लिए दबाव, तापमान और विशिष्ट आयतन के गुणों में परिवर्तन को मापने का एक साधन प्रदान करते हैं। एंट्रॉपी को सीधे नहीं मापा जा सकता है। एक स्थिर तापमान पर दबाव के संबंध में एंट्रॉपी में परिवर्तन एक साधारण संपीड़ित प्रणाली के लिए निरंतर दबाव पर तापमान के संबंध में विशिष्ट मात्रा में नकारात्मक परिवर्तन के समान होता है। ऊष्मप्रवैगिकी में मैक्सवेल संबंधों का उपयोग अधिकांशतः ऊष्मप्रवैगिकी संबंधों को प्राप्त करने के लिए किया जाता है।[2]

क्लैपेरॉन समीकरण हमें दबाव, तापमान और विशिष्ट आयतन का उपयोग करने की अनुमति देता है जिससे एक चरण परिवर्तन से जुड़े एन्थैल्पी परिवर्तन को निर्धारित किया जा सके। निरंतर दबाव और तापमान पर होने वाली किसी भी चरण परिवर्तन प्रक्रिया के लिए यह महत्वपूर्ण है। दबाव बनाम तापमान ग्राफ पर एक संतृप्ति वक्र के ढलान को मापकर दिए गए तापमान पर वाष्पीकरण की एन्थैल्पी को हल करने वाले संबंधों में से एक है। यह हमें दिए गए तापमान पर संतृप्त वाष्प और तरल की विशिष्ट मात्रा निर्धारित करने की भी अनुमति देता है। नीचे दिए गए समीकरण में, विशिष्ट गुप्त ऊष्मा का प्रतिनिधित्व करता है, तापमान का प्रतिनिधित्व करता है, और विशिष्ट मात्रा में परिवर्तन का प्रतिनिधित्व करता है।[3]

मेयर संबंध बताता है कि स्थिर आयतन पर गैस की विशिष्ट ऊष्मा क्षमता स्थिर दबाव की समानता में थोड़ी कम होती है। यह संबंध इस तर्क पर बनाया गया था कि गैस के तापमान को बढ़ाने के लिए ऊर्जा की आपूर्ति की जानी चाहिए और गैस के आयतन परिवर्तन स्थितियों में काम करने के लिए। इस संबंध के अनुसार विशिष्ट ऊष्मा धारिता का अंतर सार्वत्रिक गैस नियतांक के समान होता है। यह संबंध Cp और Cv के बीच अंतर के माध्यम से दर्शाया गया है:

Cp – Cv = R[4]


टिप्पणियाँ

  1. Carl G. Neumann, Vorlesungen über die mechanische Theorie der Wärme, 1875.
  2. Cengel, Yunus A.; Boles, Michael A. (2015). Thermodynamics: An Engineering Approach, Eighth Edition. McGraw-Hill Education. ISBN 978-0-07-339817-4. page 661
  3. Cengel, Yunus A.; Boles, Michael A. (2015). Thermodynamics: An Engineering Approach, Eighth Edition. McGraw-Hill Education. ISBN 978-0-07-339817-4. page 662
  4. Cengel, Yunus A.; Boles, Michael A. (2015). Thermodynamics: An Engineering Approach, Eighth Edition. McGraw-Hill Education. ISBN 978-0-07-339817-4. page 669


संदर्भ