फ्लक्स: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Any effect that appears to pass through a surface or substance}}
{{Short description|Any effect that appears to pass through a surface or substance}}


[[File:General flux diagram.svg|thumb|upright=1.5|सदिश क्षेत्र की क्षेत्र रेखाएँ {{math|'''F'''}} [[ इकाई वेक्टर ]] सामान्य के साथ सतहों के माध्यम से {{math|'''n'''}}, से कोण {{math|'''n'''}} को {{math|'''F'''}} है {{mvar|θ}}. फ्लक्स इस बात का माप है कि किसी दिए गए सतह से कितना क्षेत्र गुजरता है। {{math|'''F'''}} लम्बवत (⊥) और समांतर घटकों में विघटित हो जाता है {{nowrap|( ‖ )}} को {{math|'''n'''}}. केवल समानांतर घटक फ्लक्स में योगदान देता है क्योंकि यह एक बिंदु पर सतह से गुजरने वाले क्षेत्र की अधिकतम सीमा है, लंबवत घटक योगदान नहीं करता है। <br>शीर्ष: एक समतल सतह से होकर तीन क्षेत्र रेखाएँ, एक सतह से सामान्य, एक समानांतर, और एक मध्यवर्ती। <br>नीचे: एक [[घुमावदार सतह]] के माध्यम से फ़ील्ड लाइन, फ्लक्स की गणना करने के लिए इकाई सामान्य और सतह तत्व का सेटअप दिखाती है।]]
[[File:General flux diagram.svg|thumb|upright=1.5|[[ इकाई वेक्टर |इकाई वेक्टर]] {{math|'''n'''}} के साथ सतहों के माध्यम से एक सदिश क्षेत्र {{math|'''F'''}} की क्षेत्र रेखाएँ, {{math|'''n'''}} से {{math|'''F'''}} का कोण {{mvar|θ}} है। फ्लक्स इस बात का माप है कि किसी दिए गए सतह से कितना क्षेत्र गुजरता है। {{math|'''F'''}} लम्बवत (⊥) और {{math|'''n'''}} के समांतर {{nowrap|( ‖ )}} घटकों में  विभाजित किया गया है। केवल समानांतर घटक फ्लक्स में योगदान देता है क्योंकि यह एक बिंदु पर सतह से गुजरने वाले क्षेत्र की अधिकतम सीमा है जहां लंबवत घटक योगदान नहीं करता है। <br>'''शीर्ष:''' एक समतल सतह से होकर तीन क्षेत्र रेखाएँ, एक सतह से सामान्य, एक समानांतर और एक मध्यवर्ती। <br>'''नीचे:''' एक [[घुमावदार सतह]] के माध्यम से फ़ील्ड लाइन, फ्लक्स की गणना करने के लिए इकाई सामान्य और सतह तत्व का व्यवस्था दिखाती है।]]
[[Image:Surface integral - definition.svg|thumb|upright=1.5|सतह {{mvar|S}} के माध्यम से एक सदिश क्षेत्र {{math|'''F'''}} (लाल तीर) के फ्लक्स की गणना करने के लिए सतह को छोटे खण्डों {{mvar|dS}} में विभाजित किया जाता है। प्रत्येक खण्ड के माध्यम से फ्लक्स क्षेत्र के सामान्य (लंबवत) घटक के समान होता है, एककअभिलंब वेक्टर {{math|'''n'''('''x''')}} (नीला तीर) के साथ {{math|'''F'''('''x''')}} का अदिश गुणनफल बिंदु {{math|'''x'''}} पर क्षेत्र {{mvar|dS}} से गुणा होता है। सतह पर प्रत्येक खण्ड के लिए {{math|'''F''' • '''n''', ''dS''}} का योग सतह के माध्यम से फ्लक्स होता है।]]'''फ्लक्स''' किसी भी प्रभाव का वर्णन करता है जो किसी [[सतह]] या पदार्थ के माध्यम से पारण या संचारण करता है (यधपि वह वास्तव में चलता है या नहीं)। अभिवाह व्यावहारिक गणित और सदिश कलन की एक अवधारणा है जिसमें भौतिकी के अनेक अनुप्रयोग हैं। परिवहन परिघटना के लिए फ्लक्स एक सदिश मात्रा है, जो किसी पदार्थ या गुणधर्म के प्रवाह की परिमाण और दिशा का वर्णन करता है। सदिश कलन में अभिवाह एक [[अदिश (भौतिकी)]] राशि है, जिसे किसी सतह पर सदिश क्षेत्र के लम्बवत् घटक के पृष्ठीय समाकलन के रूप में परिभाषित किया गया है।<ref>Purcell,p22-26</ref>
[[Image:Surface integral - definition.svg|thumb|upright=1.5|सतह {{mvar|S}} के माध्यम से एक सदिश क्षेत्र {{math|'''F'''}} (लाल तीर) के फ्लक्स की गणना करने के लिए सतह को छोटे खण्डों {{mvar|dS}} में विभाजित किया जाता है। प्रत्येक खण्ड के माध्यम से फ्लक्स क्षेत्र के सामान्य (लंबवत) घटक के समान होता है, एककअभिलंब वेक्टर {{math|'''n'''('''x''')}} (नीला तीर) के साथ {{math|'''F'''('''x''')}} का अदिश गुणनफल बिंदु {{math|'''x'''}} पर क्षेत्र {{mvar|dS}} से गुणा होता है। सतह पर प्रत्येक खण्ड के लिए {{math|'''F''' • '''n''', ''dS''}} का योग सतह के माध्यम से फ्लक्स होता है।]]'''फ्लक्स''' किसी भी प्रभाव का वर्णन करता है जो किसी [[सतह]] या पदार्थ के माध्यम से पारण या संचारण करता है (यधपि वह वास्तव में चलता है या नहीं)। अभिवाह व्यावहारिक गणित और सदिश कलन की एक अवधारणा है जिसमें भौतिकी के अनेक अनुप्रयोग हैं। परिवहन परिघटना के लिए फ्लक्स एक सदिश मात्रा है, जो किसी पदार्थ या गुणधर्म के प्रवाह की परिमाण और दिशा का वर्णन करता है। सदिश कलन में अभिवाह एक [[अदिश (भौतिकी)]] राशि है, जिसे किसी सतह पर सदिश क्षेत्र के लम्बवत् घटक के पृष्ठीय समाकलन के रूप में परिभाषित किया गया है।<ref>Purcell,p22-26</ref>
== शब्दावली ==
== शब्दावली ==
Line 28: Line 28:
<math display="block">j(\mathbf{p}) = \frac{\partial I}{\partial A}(\mathbf{p}),</math>
<math display="block">j(\mathbf{p}) = \frac{\partial I}{\partial A}(\mathbf{p}),</math>
<math display="block">I(A,\mathbf{p}) = \frac{\mathrm{d}q}{\mathrm{d}t}(A, \mathbf{p}).</math>
<math display="block">I(A,\mathbf{p}) = \frac{\mathrm{d}q}{\mathrm{d}t}(A, \mathbf{p}).</math>
पूर्ववत सतह को समतल और अभिवाह को सर्वत्र लंबवत माना जाता है। तथापि अभिवाह को स्थिर नहीं होना चाहिए। '''''q'' अब 'p' का एक कलन है, जो सतह पर एक बिंदु है और ''A'' एक क्षेत्र है।''' सतह के माध्यम से कुल प्रवाह को मापने के स्थान पर ''q'' सतह के साथ ''p'' पर केंद्रित क्षेत्र ''A'' के साथ डिस्क के माध्यम से प्रवाह को मापता है।
पूर्ववत सतह को समतल और अभिवाह को सर्वत्र लंबवत माना जाता है। तथापि अभिवाह को स्थिर नहीं होना चाहिए। सतह के एक बिन्दु पर q अब 'p' का फलन और A, एक क्षेत्र है। सतह के माध्यम से कुल प्रवाह को मापने के स्थान पर ''q'' सतह के साथ ''p'' पर केंद्रित क्षेत्र ''A'' के साथ डिस्क के माध्यम से प्रवाह को मापता है।


अंत में, सदिश क्षेत्र के रूप में फ्लक्स:
अंत में, सदिश क्षेत्र के रूप में फ्लक्स:
<math display="block">\mathbf{j}(\mathbf{p}) = \frac{\partial \mathbf{I}}{\partial A}(\mathbf{p}),</math>
<math display="block">\mathbf{j}(\mathbf{p}) = \frac{\partial \mathbf{I}}{\partial A}(\mathbf{p}),</math>
<math display="block">\mathbf{I}(A,\mathbf{p}) = \underset{\mathbf{\hat{n}}}{\operatorname{arg\,max}} \mathbf{\hat{n}}_{\mathbf p} \frac{\mathrm{d}q}{\mathrm{d}t}(A,\mathbf{p}, \mathbf{\hat{n}}).</math>
<math display="block">\mathbf{I}(A,\mathbf{p}) = \underset{\mathbf{\hat{n}}}{\operatorname{arg\,max}} \mathbf{\hat{n}}_{\mathbf p} \frac{\mathrm{d}q}{\mathrm{d}t}(A,\mathbf{p}, \mathbf{\hat{n}}).</math>
इस स्थिति में हम किसी निश्चित सतह को नहीं माप रहे हैं। एक बिंदु ''q'', एक क्षेत्र और दिशा का कलन है (मात्रक सदिश <math>\mathbf{\hat{n}}</math> द्वारा दिया गया),और उस मात्रक सदिश के लंबवत क्षेत्र A की डिस्क के माध्यम से प्रवाह को मापता है। '''''I'' को मात्रक सदिश का चयन करने के लिए परिभाषित किया गया है जो बिंदु के ओर प्रवाह को अधिकतम करता है, क्योंकि वास्तविक प्रवाह उस डिस्क पर अधिकतम होता है जो इसके लंबवत है।''' इस प्रकार विशिष्ट रूप से मात्रक सदिश कलन को अधिकतम करता है जब यह प्रवाह को "सही दिशा" में इंगित करता है। (यथार्थ रूप से, यह [[अंकन का दुरुपयोग]] है क्योंकि "आर्ग मैक्स" सीधे सदिश की तुलना नहीं कर सकता है; हम सदिश को इसके स्थान पर सबसे बड़े मानदंड के साथ लेते हैं।)
इस स्थिति में हम किसी निश्चित सतह को नहीं माप रहे हैं। एक बिंदु ''q'', एक क्षेत्र और दिशा का कलन है (मात्रक सदिश <math>\mathbf{\hat{n}}</math> द्वारा दिया गया),और उस मात्रक सदिश के लंबवत क्षेत्र A की डिस्क के माध्यम से प्रवाह को मापता है। I को मात्रक सदिश का चयन करने के लिए परिभाषित किया गया है जो बिंदु के चारों ओर प्रवाह को उच्चतम सीमा तक बढाता है, क्योंकि वास्तविक प्रवाह उस डिस्क पर अधिक होता है जो इसके लंबवत है। इस प्रकार विशिष्ट रूप से मात्रक सदिश कलन को अधिकतम करता है जब यह प्रवाह को "सही दिशा" में इंगित करता है। (यथार्थ रूप से, यह [[अंकन का दुरुपयोग]] है क्योंकि "आर्ग मैक्स" सीधे सदिश की तुलना नहीं कर सकता है; हम सदिश को इसके स्थान पर सबसे बड़े मानदंड के साथ लेते हैं।)


==== गुणधर्म ====
==== गुणधर्म ====
Line 90: Line 90:


== पृष्ठ समाकल के रूप में अभिवाह ==
== पृष्ठ समाकल के रूप में अभिवाह ==
[[Image:Flux diagram.png|thumb|कल्पित फ्लक्स। वलय सतह की सीमाओं को दर्शाते हैं। लाल तीर आवेशों, द्रव कणों, उपपरमाण्विक कणों, फोटॉन आदि के प्रवाह के लिए अर्थ होते हैं। प्रत्येक वलय से पारित होने वाले तीरों की संख्या फ्लक्स होती है।]]
[[Image:Flux diagram.png|thumb|कल्पित अभिवाह। वलय सतह की सीमाओं को दर्शाते हैं। लाल तीर आवेशों, द्रव कणों, सूक्ष्माणु, फोटॉन आदि के प्रवाह को दर्शाते हैं। प्रत्येक वलय से होकर जाने वाले तीरों की संख्या अभिवाह होती है।]]


=== सामान्य गणितीय परिभाषा (सतह समाकलन) ===
=== सामान्य गणितीय परिभाषा (सतह समाकलन) ===
Line 122: Line 122:
एक विद्युत "आवेश", जैसे कि दिक् में एकल प्रोटॉन का परिमाण कूलॉम में परिभाषित होता है। इस तरह के आवेश के चारों ओर एक विद्युत क्षेत्र होता है। सचित्र रूप में, एक सकारात्मक बिंदु आवेश से विद्युत क्षेत्र को विद्युत क्षेत्र रेखाओं (कभी-कभी "बल रेखाएँ" भी कहा जाता है) को विकीर्ण करने वाले बिंदु के रूप में देखा जा सकता है। संकल्पनात्मकतः विद्युत अभिवाह को किसी दिए गए क्षेत्र से होकर जाने वाली "क्षेत्र रेखाओं की संख्या" के रूप में माना जा सकता है। गणितीय रूप से, विद्युत अभिवाह किसी दिए गए क्षेत्र में विद्युत क्षेत्र के सामान्य घटक का समाकल है। इसलिए एमकेएस प्रणाली में विद्युत प्रवाह की इकाइयाँ [[न्यूटन (इकाई)]] प्रति [[कूलम्ब (इकाई)]] गुणा मीटर वर्ग या Nm²/C हैं। (विद्युत फ्लक्स घनत्व प्रति इकाई क्षेत्र में विद्युत फ्लक्स है और समाकलित क्षेत्र में औसत विद्युत क्षेत्र के सामान्य घटक की शक्ति का एक माप है। इसकी इकाइयाँ N/C हैं, जो एमकेएस इकाइयों में विद्युत क्षेत्र के समान हैं।)
एक विद्युत "आवेश", जैसे कि दिक् में एकल प्रोटॉन का परिमाण कूलॉम में परिभाषित होता है। इस तरह के आवेश के चारों ओर एक विद्युत क्षेत्र होता है। सचित्र रूप में, एक सकारात्मक बिंदु आवेश से विद्युत क्षेत्र को विद्युत क्षेत्र रेखाओं (कभी-कभी "बल रेखाएँ" भी कहा जाता है) को विकीर्ण करने वाले बिंदु के रूप में देखा जा सकता है। संकल्पनात्मकतः विद्युत अभिवाह को किसी दिए गए क्षेत्र से होकर जाने वाली "क्षेत्र रेखाओं की संख्या" के रूप में माना जा सकता है। गणितीय रूप से, विद्युत अभिवाह किसी दिए गए क्षेत्र में विद्युत क्षेत्र के सामान्य घटक का समाकल है। इसलिए एमकेएस प्रणाली में विद्युत प्रवाह की इकाइयाँ [[न्यूटन (इकाई)]] प्रति [[कूलम्ब (इकाई)]] गुणा मीटर वर्ग या Nm²/C हैं। (विद्युत फ्लक्स घनत्व प्रति इकाई क्षेत्र में विद्युत फ्लक्स है और समाकलित क्षेत्र में औसत विद्युत क्षेत्र के सामान्य घटक की शक्ति का एक माप है। इसकी इकाइयाँ N/C हैं, जो एमकेएस इकाइयों में विद्युत क्षेत्र के समान हैं।)


विद्युत फ्लक्स के दो रूपों का उपयोग किया जाता है, एक ई -क्षेत्र के लिए:<ref name="विद्युत चुंबकत्व2008">{{cite book|title=विद्युत चुंबकत्व|edition=2nd|author1=I.S. Grant |author2=W.R. Phillips |series=Manchester Physics|publisher=[[John Wiley & Sons]]|year=2008|isbn=978-0-471-92712-9}}</ref><ref name="Electrodynamics 2007">{{cite book|title=इलेक्ट्रोडायनामिक्स का परिचय|edition=3rd|author=D.J. Griffiths|publisher=Pearson Education, [[Dorling Kindersley]]|year=2007|isbn=978-81-7758-293-2}}</ref>
विद्युत फ्लक्स के दो रूपों का उपयोग किया जाता है, एक ई -क्षेत्र के लिए:<ref name="Electromagnetism 2008">{{cite book|title=विद्युत चुंबकत्व|edition=2nd|author1=I.S. Grant |author2=W.R. Phillips |series=Manchester Physics|publisher=[[John Wiley & Sons]]|year=2008|isbn=978-0-471-92712-9}}</ref><ref name="Electrodynamics 2007">{{cite book|title=इलेक्ट्रोडायनामिक्स का परिचय|edition=3rd|author=D.J. Griffiths|publisher=Pearson Education, [[Dorling Kindersley]]|year=2007|isbn=978-81-7758-293-2}}</ref>
:{{oiint
:{{oiint
| preintegral = <math>\Phi_E=</math>
| preintegral = <math>\Phi_E=</math>
Line 137: Line 137:
}}
}}


'''गॉस के नियम में यह मात्रा उत्पन्न होती है - जो बताती है कि एक [[बंद सतह|संकुचित सतह]] से [[विद्युत क्षेत्र]] E का फ्लक्स सतह में संलग्न विद्युत आवेश '<nowiki/>''Q<sub>A</sub>''<nowiki/>' के समानुपाती होता है (स्वतंत्र रूप से उस आवेश को कैसे वितरित किया जाता है), समाकल रूप है:'''
गॉस के नियम में यह परिमाण उद्भूत होती है -जो अभिव्यक्त करती है कि एक [[बंद सतह|संकुचित सतह]] से [[विद्युत क्षेत्र]] E का फ्लक्स सतह में संलग्न विद्युत आवेश '''Q<sub>A</sub>''<nowiki/>' के समानुपाती होता है (स्वतंत्र रूप से उस आवेश को कैसे वितरित किया जाता है), जिसका समाकल रूप है:


:{{oiint
:{{oiint
Line 147: Line 147:
जहां ''ε''<sub>0</sub> मुक्त स्थान की विद्युतशीलता है।
जहां ''ε''<sub>0</sub> मुक्त स्थान की विद्युतशीलता है।


'''यदि कोई आवेश के क्षेत्र में एक बिंदु आवेश के पास एक नलिका के लिए विद्युत क्षेत्र सदिश, E के फ्लक्स पर विचार करता है, लेकिन इसे क्षेत्र के स्पर्शरेखा द्वारा गठित पक्षों के साथ नहीं रखता है, तो पक्षों के लिए फ्लक्स शून्य है और वहाँ नलिका के दोनों सिरों पर समान और विपरीत फ्लक्स होता है।''' यह व्युत्क्रम वर्ग क्षेत्र पर प्रयुक्त गॉस के नियम का परिणाम है। नलिका किसी भी अंतः वर्ग सतह के लिए फ्लक्स समान होगा। आवेश ''q'' के चारों ओर किसी भी सतह का कुल फ्लक्स ''q''/''ε''<sub>0</sub> है।<ref>[https://feynmanlectures.caltech.edu/II_04.html#Ch4-S5-p7 The Feynman Lectures on Physics Vol. II Ch. 4: Electrostatics]</ref>
यदि कोई आवेश के क्षेत्र में एक बिंदु आवेश के पास एक नलिका के लिए विद्युत क्षेत्र सदिश, E के फ्लक्स पर विचार करता है, लेकिन इसे क्षेत्र के स्पर्शरेखा द्वारा गठित पक्षों के साथ नहीं रखता है, तो पक्षों के लिए फ्लक्स शून्य है और वहाँ नलिका के दोनों सिरों पर समान और विपरीत फ्लक्स होता है। यह व्युत्क्रम वर्ग क्षेत्र पर प्रयुक्त गॉस के नियम का परिणाम है। नलिका किसी भी अंतः वर्ग सतह के लिए फ्लक्स समान होगा। आवेश ''q'' के चारों ओर किसी भी सतह का कुल फ्लक्स ''q''/''ε''<sub>0</sub> है।<ref>[https://feynmanlectures.caltech.edu/II_04.html#Ch4-S5-p7 The Feynman Lectures on Physics Vol. II Ch. 4: Electrostatics]</ref>


मुक्त स्थान में विद्युत विस्थापन [[संवैधानिक संबंध|संघटनिक संबंध]] '''D''' = ''ε''<sub>0</sub> '''E''' द्वारा दिया जाता है, इसलिए किसी भी सीमांकन सतह के लिए D -क्षेत्र फ्लक्स इसके भीतर आवेश '''Q<sub>A</sub>''<nowiki/>' के बराबर होता है। यहाँ अभिव्यक्ति "के लिए फ्लक्स" एक गणितीय संक्रिया को इंगित करता है और, जैसा कि देखा जा सकता है, परिणाम आवश्यक रूप से "प्रवाह" नहीं है, क्योंकि वास्तव में विद्युत क्षेत्र रेखाओं के साथ कुछ भी नहीं प्रवाहित होता है।
मुक्त स्थान में विद्युत विस्थापन [[संवैधानिक संबंध|संघटनिक संबंध]] D''' = ''ε''<sub>0</sub> E द्वारा दिया जाता है, इसलिए किसी भी सीमांकन सतह के लिए D -क्षेत्र फ्लक्स इसके भीतर आवेश Q<sub>A</sub>''<nowiki/>' के समान होता है। यहाँ अभिव्यक्ति "के लिए फ्लक्स" एक गणितीय संक्रिया को इंगित करता है और, जैसा कि देखा जा सकता है, परिणाम आवश्यक रूप से "प्रवाह" नहीं है, क्योंकि वास्तव में विद्युत क्षेत्र रेखाओं के साथ कुछ भी नहीं प्रवाहित होता है।


==== चुंबकीय प्रवाह ====
==== चुंबकीय प्रवाह ====
इकाई Wb/m<sup>2</sup> ([[टेस्ला (यूनिट)]] वाले चुंबकीय फ्लक्स घनत्व ([[चुंबकीय क्षेत्र]]) को B द्वारा निरूपित किया जाता है, और चुंबकीय प्रवाह को समान रूप से परिभाषित किया जाता है:<ref name="Electromagnetism 2008"/><ref name="Electrodynamics 2007"/>:
इकाई Wb/m<sup>2</sup> ([[टेस्ला (यूनिट)]] वाले चुंबकीय फ्लक्स घनत्व ([[चुंबकीय क्षेत्र]]) को B द्वारा निरूपित किया जाता है और चुंबकीय प्रवाह को समान रूप से परिभाषित किया जाता है:<ref name="Electromagnetism 2008"/><ref name="Electrodynamics 2007"/>:


<math>\Phi_B=\iint_A\mathbf{B}\cdot\mathrm{d}\mathbf{A}</math>
<math>\Phi_B=\iint_A\mathbf{B}\cdot\mathrm{d}\mathbf{A}</math>


ऊपरोक्त समान अंकन के साथ। फैराडे के प्रेरण के नियम में मात्रा उत्पन्न होती है, जहां चुंबकीय फ्लक्स समय-निर्भर होता है क्योंकि या तो सीमा समय-निर्भर होती है या चुंबकीय क्षेत्र समय-निर्भर होता है। समाकल रूप में:
ऊपरोक्त समान अंकन के साथ। फैराडे के प्रेरण के नियम में मात्रा उत्पन्न होती है, जहां चुंबकीय फ्लक्स समय पर निर्भर होता है क्योंकि या तो सीमा समय पर निर्भर होती है या चुंबकीय क्षेत्र समय पर निर्भर होता है। समाकल रूप में:


:<math>- \frac{{\rm d} \Phi_B}{ {\rm d} t} =  
:<math>- \frac{{\rm d} \Phi_B}{ {\rm d} t} =  
\oint_{\partial A} \mathbf{E} \cdot d \boldsymbol{\ell}</math>
\oint_{\partial A} \mathbf{E} \cdot d \boldsymbol{\ell}</math>
जहां ''d'''''ℓ''' [[बंद वक्र|संकुचित वक्र]] <math>\partial A</math> का एक अतिसूक्ष्म सदिश [[रेखा तत्व]] है, अनंत रेखा तत्व की लंबाई के समान [[परिमाण (वेक्टर)]] के साथ, और वक्र <math>\partial A</math> को स्पर्शरेखा द्वारा दी गई दिशा, समाकलित दिशा द्वारा निर्धारित चिह्न के साथ।
जहां ''d'''''ℓ''' [[बंद वक्र|संकुचित वक्र]] <math>\partial A</math> का एक अतिसूक्ष्म सदिश [[रेखा तत्व]] है, जिसकी [[परिमाण (वेक्टर)]] अनंत रेखा तत्व की लंबाई के समान है और वक्र <math>\partial A</math> दिशा के साथ एकीकरण दिशा द्वारा निर्धारित चिह्न के साथ है।


तार के परिपथ के माध्यम से चुंबकीय फ्लक्स के परिवर्तन की समय-दर उस तार में निर्मित [[वैद्युतवाहक बल]] से कम होती है। दिशा ऐसी है कि यदि धारा को तार से पारित होने दिया जाए, तो विद्युत वाहक बल एक धारा उत्पन्न करेगा जो चुंबकीय क्षेत्र में परिवर्तन का स्वयं "विरोध" करता है, जो परिवर्तन के विपरीत एक चुंबकीय क्षेत्र का निर्माण करता है। यह [[ प्रारंभ करनेवाला |प्रेरक]] और अनेक [[बिजली पैदा करने वाला|विद्युत जनित्र]] का आधार है।
तार के परिपथ के माध्यम से चुंबकीय फ्लक्स के परिवर्तन की समय-दर उस तार में निर्मित [[वैद्युतवाहक बल]] से कम होती है। दिशा ऐसी है कि यदि धारा को तार से पारित होने दिया जाए, तो विद्युत वाहक बल एक धारा उत्पन्न करेगा जो चुंबकीय क्षेत्र में परिवर्तन का स्वयं "विरोध" करता है, जो परिवर्तन के विपरीत एक चुंबकीय क्षेत्र का निर्माण करता है। यह [[ प्रारंभ करनेवाला |प्रेरक]] और अनेक [[बिजली पैदा करने वाला|विद्युत जनित्र]] का आधार है।


==== पॉइंटिंग फ्लक्स ====
==== प्वाइन्टिंग अभिवाह ====
इस परिभाषा का उपयोग करते हुए, एक निर्दिष्ट सतह पर [[पॉयंटिंग वेक्टर|पॉयंटिंग सदिश]] एस का प्रवाह वह दर है जिस पर विद्युत चुम्बकीय ऊर्जा उस सतह से प्रवाहित होती है, जिसे पहले परिभाषित किया गया है:<ref name="Electrodynamics 2007"/>
इस परिभाषा का उपयोग करते हुए एक निर्दिष्ट सतह पर [[पॉयंटिंग वेक्टर|पॉयंटिंग सदिश]] एस का प्रवाह वह दर है जिस पर विद्युत चुम्बकीय ऊर्जा उस सतह से प्रवाहित होती है, जिसे पहले परिभाषित किया गया है:<ref name="Electrodynamics 2007"/>


:{{oiint
:{{oiint
Line 173: Line 173:
}}
}}


एक सतह के माध्यम से पॉयंटिंग सदिश का फ्लक्स उस सतह से होकर जाने वाली विद्युत चुम्बकीय [[शक्ति (भौतिकी)]], या ऊर्जा प्रति इकाई [[समय|समय की ऊर्जा]] है। यह सामान्यतः [[विद्युत चुम्बकीय विकिरण]] के विश्लेषण में प्रयोग किया जाता है, लेकिन अन्य विद्युत चुम्बकीय प्रणालियों के लिए भी इसका उपयोग होता है।
एक सतह के माध्यम से प्वाइन्टिंग सदिश का फ्लक्स उस सतह से होकर जाने वाली विद्युत चुम्बकीय [[शक्ति (भौतिकी)]] या ऊर्जा प्रति इकाई [[समय|समय की ऊर्जा]] है। यह सामान्यतः [[विद्युत चुम्बकीय विकिरण]] के विश्लेषण में प्रयोग किया जाता है, लेकिन अन्य विद्युत चुम्बकीय प्रणालियों के लिए भी इसका उपयोग होता है।


भ्रामक रूप से, पॉयंटिंग सदिश को कभी-कभी शक्ति फ्लक्स कहा जाता है, जो ऊपरोक्त फ्लक्स के प्रथम उपयोग का एक उदाहरण है।<ref>{{cite book | first=Roald K. | last=Wangsness | year=1986 | title=विद्युत चुम्बकीय क्षेत्र| edition=2nd | publisher=Wiley | isbn=0-471-81186-6 }} p.357</ref> इसकी इकाई [[वाट]] प्रति [[वर्ग मीटर]] (W/m<sup>2</sup>) है।
भ्रामक रूप से, पॉयंटिंग सदिश को कभी-कभी शक्ति फ्लक्स कहा जाता है, जो ऊपरोक्त फ्लक्स के प्रथम उपयोग का एक उदाहरण है।<ref>{{cite book | first=Roald K. | last=Wangsness | year=1986 | title=विद्युत चुम्बकीय क्षेत्र| edition=2nd | publisher=Wiley | isbn=0-471-81186-6 }} p.357</ref> इसकी इकाई [[वाट]] प्रति [[वर्ग मीटर]] (W/m<sup>2</sup>) है।
Line 198: Line 198:
* [[दीप्त प्रवाह]]
* [[दीप्त प्रवाह]]
* चुंबकीय प्रवाह
* चुंबकीय प्रवाह
* [[चुंबकीय प्रवाह क्वांटम]]
* [[चुंबकीय अभिवाह क्वांटम]]
* [[न्यूट्रॉन प्रवाह]]
* [[न्यूट्रॉन प्रवाह]]
* [[ प्वाइन्टिंग अभिवाह ]]
* [[ प्वाइन्टिंग अभिवाह ]]
Line 205: Line 205:
* [[रैपिड सिंगल फ्लक्स क्वांटम]]
* [[रैपिड सिंगल फ्लक्स क्वांटम]]
* [[ध्वनि ऊर्जा प्रवाह]]
* [[ध्वनि ऊर्जा प्रवाह]]
* [[आयतनमितीय फ्लक्स]](तरल पदार्थ के लिए पहली तरह का फ्लक्स)
* [[आयतनमितीय अभिवाह]] (तरल पदार्थ के लिए पहली तरह का फ्लक्स)
* आयतनमितीय प्रवाह दर (तरल पदार्थ के लिए दूसरे प्रकार का प्रवाह)
* आयतनमितीय अभिवाह दर (तरल पदार्थ के लिए दूसरे प्रकार का प्रवाह)
{{div col end}}
{{div col end}}


Line 222: Line 222:
==बाहरी संबंध==
==बाहरी संबंध==
* {{Wiktionary-inline}}
* {{Wiktionary-inline}}
[[Category: भौतिक मात्रा]] [[Category: वेक्टर पथरी]] [[Category: दरें]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 français-language sources (fr)]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/03/2023]]
[[Category:Created On 24/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with empty portal template]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]

Latest revision as of 14:21, 1 May 2023

इकाई वेक्टर n के साथ सतहों के माध्यम से एक सदिश क्षेत्र F की क्षेत्र रेखाएँ, n से F का कोण θ है। फ्लक्स इस बात का माप है कि किसी दिए गए सतह से कितना क्षेत्र गुजरता है। F लम्बवत (⊥) और n के समांतर ( ‖ ) घटकों में विभाजित किया गया है। केवल समानांतर घटक फ्लक्स में योगदान देता है क्योंकि यह एक बिंदु पर सतह से गुजरने वाले क्षेत्र की अधिकतम सीमा है जहां लंबवत घटक योगदान नहीं करता है।
शीर्ष: एक समतल सतह से होकर तीन क्षेत्र रेखाएँ, एक सतह से सामान्य, एक समानांतर और एक मध्यवर्ती।
नीचे: एक घुमावदार सतह के माध्यम से फ़ील्ड लाइन, फ्लक्स की गणना करने के लिए इकाई सामान्य और सतह तत्व का व्यवस्था दिखाती है।
सतह S के माध्यम से एक सदिश क्षेत्र F (लाल तीर) के फ्लक्स की गणना करने के लिए सतह को छोटे खण्डों dS में विभाजित किया जाता है। प्रत्येक खण्ड के माध्यम से फ्लक्स क्षेत्र के सामान्य (लंबवत) घटक के समान होता है, एककअभिलंब वेक्टर n(x) (नीला तीर) के साथ F(x) का अदिश गुणनफल बिंदु x पर क्षेत्र dS से गुणा होता है। सतह पर प्रत्येक खण्ड के लिए Fn, dS का योग सतह के माध्यम से फ्लक्स होता है।

फ्लक्स किसी भी प्रभाव का वर्णन करता है जो किसी सतह या पदार्थ के माध्यम से पारण या संचारण करता है (यधपि वह वास्तव में चलता है या नहीं)। अभिवाह व्यावहारिक गणित और सदिश कलन की एक अवधारणा है जिसमें भौतिकी के अनेक अनुप्रयोग हैं। परिवहन परिघटना के लिए फ्लक्स एक सदिश मात्रा है, जो किसी पदार्थ या गुणधर्म के प्रवाह की परिमाण और दिशा का वर्णन करता है। सदिश कलन में अभिवाह एक अदिश (भौतिकी) राशि है, जिसे किसी सतह पर सदिश क्षेत्र के लम्बवत् घटक के पृष्ठीय समाकलन के रूप में परिभाषित किया गया है।[1]

शब्दावली

फ्लक्स शब्द की उत्पत्ति लैटिन से हुई है: जिसमे फ्लक्सस का अर्थ "प्रवाह" तथा फ्लूरे का अर्थ "प्रवाहित होना" है।[2]फ्लक्सियन के रूप में इस शब्द को आइजैक न्यूटन द्वारा अवकलन गणित (डिफरेंशियल कैलकुलस) में प्रस्तुत किया गया था।

ऊष्मा स्थानान्तरण परिघटना के विश्लेषण में ऊष्मा प्रवाह की अवधारणा जोसेफ फूरियर का एक महत्वपूर्ण योगदान था।[3]उनका मौलिक ग्रंथ द एनालिटिकल थ्योरी ऑफ़ हीट,[4]फ्लक्सियन को केंद्रीय मात्रा के रूप में और खंड में तापांतर के संदर्भ में फ्लक्स के वर्तमान प्रसिद्ध भावों को प्राप्त करने के लिए अग्रसर होता है और सामान्यतः अन्य ज्यामितीयों में तापमान प्रवणता या तापांतर के संदर्भ में परिभाषित करता है। जेम्स क्लर्क मैक्सवेल के कार्य के आधार पर कोई प्रमाणित कर सकता है,[5]कि विद्युत् चुंबकत्व में प्रयुक्त परिवहन की परिभाषा, फ्लक्स की परिभाषा से पहले है। मैक्सवेल का विशिष्ट उद्धरण है:

फ्लक्स के स्थिति में, हमें सतह के प्रत्येक तत्व के माध्यम से फ्लक्स की सतह पर, समाकल लेना होगा। इस परिचालन के परिणाम को फ्लक्स का पृष्ठ समाकल कहा जाता है। यह सतह के माध्यम से होकर जाने वाली मात्रा का प्रतिनिधित्व करता है।

— जेम्स क्लर्क मैक्सवेल

परिवहन परिभाषा के अनुसार, फ्लक्स एक एकल सदिश या एक सदिश क्षेत्र/स्थिति का कार्य हो सकता है। तत्पश्चात फ्लक्स सरलता से एक सतह पर एकीकृत किया जा सकता है। इसके विपरीत, विद्युत चुंबकत्व की परिभाषा के अनुसार फ्लक्स एक सतह पर समाकल हैं; द्वितीय फ्लक्स की परिभाषा को समाहित करना निरर्थक है क्योंकि यह एक सतह पर दो बार एकीकरण होगा। इस प्रकार, मैक्सवेल का उद्धरण केवल तभी उचित होता है जब परिवहन परिभाषा के अनुसार "फ्लक्स" का उपयोग किया जा रहा हो (और इसके अतिरिक्त एकल सदिश के स्थान पर सदिश क्षेत्र है)। यह विडंबनात्मक है क्योंकि मैक्सवेल विद्युत् चुम्बकत्व की परिभाषा के अनुसार जिसे हम अब "विद्युत् फ्लक्स" और "चुंबकीय फ्लक्स" कहते हैं, मैक्सवेल इनके प्रमुख विकासकों में से एक थे। उद्धरण (और परिवहन परिभाषा) के अनुसार उनके नाम "विद्युत् अभिवाह का पृष्ठ समाकल" और "चुंबकीय अभिवाह का पृष्ठ समाकल" होंगे, जिस स्थिति में "विद्युत अभिवाह" को "विद्युत क्षेत्र" और "चुंबकीय अभिवाह" को" चुंबकीय क्षेत्र" के रूप में परिभाषित किया जाएगा। इसका तात्पर्य है कि मैक्सवेल ने इन क्षेत्रों की कल्पना किसी प्रकार के प्रवाह/अभिवाह के रूप में की थी।

इलेक्ट्रोमैग्नेटिज्म परिभाषा के अनुसार दिए गए फ्लक्स को संबंधित फ्लक्स घनत्व यदि उस अवधि उपयोग किया जाता है तो यह समाकलित सतह के साथ इसके व्युत्पन्न को संदर्भित करता है। परिवहन परिभाषा के अनुसार कैल्कुलस के मूल प्रमेय द्वारा संबंधित अभिवाह घनत्व एक फ्लक्स है। विद्युत प्रवाह जैसे विद्युत को देखते हुए -आवेश प्रति समय विद्युत घनत्व भी परिवहन परिभाषा के अनुसार एक फ्लक्स होगा -आवेश प्रति समय प्रति क्षेत्र होगा। फ्लक्स की परस्पर विरोधी परिभाषाओं और फ्लक्स, प्रवाह और विद्युत की विनिमेयता के कारण गैर-तकनीकी अंग्रेजी में, इस परिच्छेद में प्रयुक्त सभी शब्द कभी-कभी परस्पर विनिमय और अस्पष्ट रूप से उपयोग किए जाते हैं। इस लेख के शेष अंशों में निश्चित फ्लक्स का उपयोग साहित्य में उनकी व्यापक स्वीकृति के अनुसार किया जाएगा, फ्लक्स की परिभाषा के उपेक्षा जिससे शब्द तदनुरूपी हो।

प्रति इकाई क्षेत्र प्रवाह दर के रूप में फ्लक्स

परिवहन परिघटना( ऊष्मा अंतरण, द्रव्यमान अंतरण और तरलगतिकी) में फ्लक्स को प्रति इकाई क्षेत्र में गुणधर्म के प्रवाह की दर के रूप में परिभाषित किया जाता है, जिसका आयाम [मात्रा]·[समय]−1·[क्षेत्र]-1 होता है।[6] यह क्षेत्र उस सतह का है जिसके माध्यम से या उसके आर-पार संपत्ति प्रवाहित हो रही है। उदाहरण के लिए पानी की वह मात्रा जो किसी नदी के एक खंड से होकर बहती है प्रत्येक सेकंड को उस क्रॉस सेक्शन के क्षेत्र से विभाजित किया जाता है या सूर्य के प्रकाश की ऊर्जा की वह मात्रा जो प्रत्येक सेकंड भूमि के एक भाग पर आती है जिसे पैच के क्षेत्र से विभाजित किया जाता है, प्रवाह के प्रकारों में से हैं।

सामान्य गणितीय परिभाषा (परिवहन)

जटिलता के बढ़ते क्रम में यहां 3 परिभाषाएं दी गई हैं। निम्नलिखित में प्रत्येक विशेष स्थिति है। सभी स्थितियों में अधिकतर प्रतीक j, (या J) प्रवाह के लिए तथा भौतिक मात्रा के लिए q प्रवाहित होता है एवं समय के लिए t, और क्षेत्र के लिए A का उपयोग किया जाता है। ये अभिनिर्धारित्र मोटे अक्षरों में केवल तभी लिखे जाएंगे जब वे सदिश हों।

सर्वप्रथम, (एकल) अदिश के रूप में फ्लक्स:

जहां
इस स्थिति में एक स्थिर सतह पर फ्लक्स को मापा जा रहा है जिसका क्षेत्रफल A है। सतह को समतल और अभिवाह को प्रत्येक स्थिति एवं सतह के संबंध में लंबवत स्थिर माना जाता है।

द्वितीय, एक सतह के साथ परिभाषित एक अदिश क्षेत्र के रूप में फ्लक्स, अर्थात सतह पर बिंदुओं का कलन:

पूर्ववत सतह को समतल और अभिवाह को सर्वत्र लंबवत माना जाता है। तथापि अभिवाह को स्थिर नहीं होना चाहिए। सतह के एक बिन्दु पर q अब 'p' का फलन और A, एक क्षेत्र है। सतह के माध्यम से कुल प्रवाह को मापने के स्थान पर q सतह के साथ p पर केंद्रित क्षेत्र A के साथ डिस्क के माध्यम से प्रवाह को मापता है।

अंत में, सदिश क्षेत्र के रूप में फ्लक्स:

इस स्थिति में हम किसी निश्चित सतह को नहीं माप रहे हैं। एक बिंदु q, एक क्षेत्र और दिशा का कलन है (मात्रक सदिश द्वारा दिया गया),और उस मात्रक सदिश के लंबवत क्षेत्र A की डिस्क के माध्यम से प्रवाह को मापता है। I को मात्रक सदिश का चयन करने के लिए परिभाषित किया गया है जो बिंदु के चारों ओर प्रवाह को उच्चतम सीमा तक बढाता है, क्योंकि वास्तविक प्रवाह उस डिस्क पर अधिक होता है जो इसके लंबवत है। इस प्रकार विशिष्ट रूप से मात्रक सदिश कलन को अधिकतम करता है जब यह प्रवाह को "सही दिशा" में इंगित करता है। (यथार्थ रूप से, यह अंकन का दुरुपयोग है क्योंकि "आर्ग मैक्स" सीधे सदिश की तुलना नहीं कर सकता है; हम सदिश को इसके स्थान पर सबसे बड़े मानदंड के साथ लेते हैं।)

गुणधर्म

ये प्रत्यक्ष परिभाषाएँ विशेष रूप से अंतिम दुष्कर हैं। उदाहरण के लिए, आर्ग मैक्स संरचना अनुभवजन्य माप के दृष्टिकोण से अप्राकृतिक है, जब एक वात दिग्दर्शक या इसी तरह एक बिंदु के साथ फ्लक्स की दिशा को सरलता से कम कर सकते हैं। सदिश फ्लक्स को स्पष्टतः परिभाषित करने के स्थान पर इसके विषय में कुछ गुणों को बताना प्रायः अधिक सहज होता है। इसके अतिरिक्त, इन गुणों से फ्लक्स को विशिष्ट रूप से निर्धारित किया जा सकता है।

यदि फ्लक्स j क्षेत्र से सामान्य क्षेत्र से θ कोण से होकर जाता है, तो बिंदु गुणनफल

अर्थात्, सतह से होकर जाने वाले फ्लक्स का घटक (अर्थात इसके समान) j cos θ, जबकि क्षेत्र में स्पर्शरेखा से पारित होने वाले फ्लक्स का घटक j sin θ है किन्तु वास्तव में स्पर्शरेखा के दिशा में क्षेत्र से होकर जाने वाला कोई फ्लक्स नहीं है। क्षेत्र के सामान्य होकर जाने वाला फ्लक्स का एकमात्र घटक कोसाइन घटक है।

सदिश फ्लक्स के लिए, सतह (गणित) S पर 'j' का सतह समाकल, सतह के माध्यम से समय की प्रति इकाई उचित प्रवाह देता है:

जहाँ A (और इसका अतिसूक्ष्म) सदिश क्षेत्र है – संयोजन क्षेत्र A के परिमाण जिसके माध्यम से गुणधर्म पारित होती है और मात्रक सदिश क्षेत्र के लिए सामान्य..समीकरणों के दूसरे समुच्चय के विपरीत, यहाँ सतह समतल होने की आवश्यकता नहीं है।

अंत में, हम समय अवधि t1 से t2 तक पुनः समाकलित कर सकते हैं, उसी समय (t2t1) में सतह के माध्यम से प्रवाहित गुणधर्म की कुल राशि प्राप्त कर सकते हैं :


परिवहन अभिवाह

परिवहन परिघटना साहित्य से फ्लक्स के सबसे सामान्य रूपों में से आठ को निम्नानुसार परिभाषित किया गया है:

  1. संवेग अभिवाह, एक इकाई क्षेत्र (N·s·m−2·s−1) में संवेग के स्थानांतरण की दर। (न्यूटन के श्यानता का नियम)[7]
  2. ऊष्मा अभिवाह, एक इकाई क्षेत्र (J·m−2·s−1) में ऊष्मा प्रवाह की दर। (फूरियर के चालन का नियम)[8] (ऊष्मा अभिवाह की यह परिभाषा मैक्सवेल की मूल परिभाषा में उचित है।)[5]
  3. विसरण अभिवाह, एक इकाई क्षेत्र (mol·m−2·s−1) में अणुओं की गति की दर। ( फिक के विसरण का नियम)[7]
  4. आयतनमितीय फ्लक्स, एक इकाई क्षेत्र (m3·m−2·s−1) में आयतन प्रवाह की दर। (डार्सी के भूजल अभिवाह का नियम)
  5. द्रव्यमान अभिवाह, एक इकाई क्षेत्र (kg·m−2·s−1) में द्रव्यमान प्रवाह की दर। (या तो फ़िक के नियम का एक वैकल्पिक रूप जिसमें आणविक द्रव्यमान सम्मिलित है, या डार्सी के नियम का एक वैकल्पिक रूप जिसमें घनत्व सम्मिलित है।)
  6. विकिरण अभिवाह, प्रति इकाई क्षेत्र प्रति सेकंड (J·m−2·s−1) स्रोत से एक निश्चित दूरी पर फोटॉन के रूप में स्थानांतरित ऊर्जा की मात्रा। किसी तारे के परिमाण (खगोल विज्ञान) और वर्णक्रमीय वर्ग को निर्धारित करने के लिए खगोल विज्ञान में उपयोग किया जाता है। ऊष्मा फ्लक्स के सामान्यीकरण के रूप में भी कार्य करता है, जो विद्युत चुम्बकीय वर्णक्रम तक सीमित होने पर विकिरण अभिवाह के समान होता है।
  7. ऊर्जा अभिवाह, एक इकाई क्षेत्र (J·m−2·s−1) के माध्यम से ऊर्जा के हस्तांतरण की दर। विकिरण अभिवाह और ऊष्मा अभिवाह के विशिष्ट स्थितियां हैं।
  8. कण अभिवाह, एक इकाई क्षेत्र ([कणों की संख्या] m−2·s−1) के माध्यम से कणों के हस्तांतरण की दर।

ये फ्लक्स स्थान में प्रत्येक बिंदु पर वैक्टर और निश्चित परिमाण एवं दिशा है। इसके अतिरिक्त, समष्टि में निर्धारित बिंदु के समीप नियंत्रित आयतन में मात्रा की संचय दर निर्धारित करने के लिए इनमें से किसी भी फ्लक्स का विचलन हो सकता है। असम्पीडित प्रवाह के लिए, आयतन फ्लक्स का विचलन शून्य है।

रासायनिक प्रसार

उपरोक्त जैसे एक समतापी, समदाब प्रणाली में एक घटक A के रासायनिक ग्राम अणुक फ्लक्स को फिक के प्रसार के नियम में परिभाषित किया गया है:

जहां नाबला प्रतीक ∇ प्रवणता संकारक को दर्शाता है, DAB घटक A का प्रसार गुणांक (m2·s−1) है तथा घटक B माध्यम से प्रसारित होता है एवं cA घटक A की सांद्रता है।[9]

इस फ्लक्स में mol·m−2·s−1 की इकाइयाँ हैं और मैक्सवेल की फ्लक्स की मूल परिभाषा में उपयुक्त है।[5]

तनु गैसों के लिए, गतिज आणविक सिद्धांत प्रसार गुणांक D को कण घनत्व n = N/V, आणविक द्रव्यमान m, संघट्ट परिक्षेत्र (भौतिकी) से संबंधित करता है और पूर्ण तापमान T द्वारा

जहां द्वितीय कारक माध्य मुक्त पथ है और वर्गमूल (बोल्ट्जमैन स्थिरांक k के साथ) कणों का माध्य वेग है।

विक्षुब्ध प्रवाह में, भँवर गति द्वारा परिवहन को व्यापक रूप से वर्धित प्रसार गुणांक के रूप में व्यक्त किया जा सकता है।

क्वांटम यांत्रिकी

क्वांटम यांत्रिकी में, द्रव्यमान m के कणों की क्वांटम अवस्था ψ(r, t) में संभाव्यता घनत्व के रूप में परिभाषित किया गया है

तो अंतरीय आयतन तत्व d3r में एक कण को ​​​​खोजने की प्रायिकता है
तब अनुप्रस्थ परिच्छेद के एकांक क्षेत्रफल से लम्बवत् पारित होने वाले कणों की संख्या प्रति इकाई समय प्रायिकता फ्लक्स है;
इसे कभी-कभी संभाव्यता धारा या धारा घनत्व,[10] या प्रायिकता फ्लक्स घनत्व के रूप में संदर्भित किया जाता है।[11]

पृष्ठ समाकल के रूप में अभिवाह

कल्पित अभिवाह। वलय सतह की सीमाओं को दर्शाते हैं। लाल तीर आवेशों, द्रव कणों, सूक्ष्माणु, फोटॉन आदि के प्रवाह को दर्शाते हैं। प्रत्येक वलय से होकर जाने वाले तीरों की संख्या अभिवाह होती है।

सामान्य गणितीय परिभाषा (सतह समाकलन)

एक गणितीय अवधारणा के रूप में फ्लक्स को सदिश क्षेत्र के सतह समाकलन द्वारा दर्शाया जाता है,[12]

जहाँ F एक सदिश क्षेत्र है, और dA सतह 'A का सदिश क्षेत्र है, जो सतह के प्राकृत (ज्यामिति) रूप में निर्देशित किया जाता है। द्वितीय के लिए, n सतह के लिए बाह्य अंकित इकाई सामान्य सदिश है।

सतह को उन्मुख होना चाहिए अर्थात दो पक्षों को पृथक किया जा सकता है: सतह स्वयं पर वापस नहीं आती है। इसके अतिरिक्त, सतह को वस्तुतः उन्मुख होना चाहिए, अर्थात हम प्रवाह के रूप में एक चलन का उपयोग करते हैं, जिस तरह से सकारात्मक गिना जाता है; तब पीछे की ओर बहना ऋणात्मक गिना जाता है।

सामान्यतः प्राकृत सतह दाहिने हाथ के नियम द्वारा निर्देशित होती है।

इसके विपरीत फ्लक्स को अधिक मौलिक मात्रा माना जा सकता है और वेक्टर क्षेत्र को फ्लक्स घनत्व कहा जा सकता है।

प्रायः एक सदिश क्षेत्र "प्रवाह" के बाद वक्रों (क्षेत्र रेखाएं) द्वारा खींचा जाता है; तब सदिश क्षेत्र का परिमाण रेखा घनत्व और सतह के माध्यम से फ्लक्स रेखाओं की संख्या है। रेखाएँ सकारात्मक विचलन (स्रोतों) के क्षेत्रों से उत्पन्न होती हैं और नकारात्मक विचलन (डुबाना) के क्षेत्रों पर समाप्त होती हैं।

दाईं ओर के छवि को भी देखें: एक इकाई क्षेत्र से पारित होने वाले लाल तीरों की संख्या फ्लक्स घनत्व है जहां लाल तीरों को घेरने वाला वक्र सतह की सीमा को दर्शाता है, और सतह के सन्दर्भ में तीरों का उन्मुखीकरण प्राकृत सतह के साथ सदिश क्षेत्र का आंतरिक उत्पाद के संकेत को दर्शाता है।

यदि सतह एक 3D क्षेत्र को घेरती है, तो सामान्यतः सतह इस तरह उन्मुख होती है कि अंतर्वाह को सकारात्मक तथा इसके विपरीत बहिर्वाह को नकारात्मक गिना जाता है।

विचलन प्रमेय बताता है कि एक संकुचित सतह के माध्यम से शुद्ध बहिर्वाह अन्य शब्दों में 3D क्षेत्र से शुद्ध बहिर्वाह, क्षेत्र में प्रत्येक बिंदु से क्षेत्रीय शुद्ध बहिर्वाह को जोड़कर पाया जाता है (जो विचलन द्वारा व्यक्त किया जाता है)।

यदि सतह असंकुचित है तो इसकी सीमा के रूप में एक उन्मुख वक्र होता है। स्टोक्स के प्रमेय में कहा गया है कि सदिश क्षेत्र के कर्ल (गणित) का फ्लक्स इस सीमा पर सदिश क्षेत्र का रेखा समाकाल है। इस पथ समाकाल को विशेष रूप से द्रव गतिकी में संचलन(द्रव गतिकी) भी कहा जाता है। इस प्रकार कर्ल संचलन घनत्व है।

हम फ्लक्स और इन प्रमेयों को कई विषयों में प्रयुक्त कर सकते हैं जिनमें हम धाराओं, बलों आदि को क्षेत्रों के माध्यम से प्रयुक्त होते देखते हैं।

विद्युत चुंबकत्व

विद्युत् अभिवाह

एक विद्युत "आवेश", जैसे कि दिक् में एकल प्रोटॉन का परिमाण कूलॉम में परिभाषित होता है। इस तरह के आवेश के चारों ओर एक विद्युत क्षेत्र होता है। सचित्र रूप में, एक सकारात्मक बिंदु आवेश से विद्युत क्षेत्र को विद्युत क्षेत्र रेखाओं (कभी-कभी "बल रेखाएँ" भी कहा जाता है) को विकीर्ण करने वाले बिंदु के रूप में देखा जा सकता है। संकल्पनात्मकतः विद्युत अभिवाह को किसी दिए गए क्षेत्र से होकर जाने वाली "क्षेत्र रेखाओं की संख्या" के रूप में माना जा सकता है। गणितीय रूप से, विद्युत अभिवाह किसी दिए गए क्षेत्र में विद्युत क्षेत्र के सामान्य घटक का समाकल है। इसलिए एमकेएस प्रणाली में विद्युत प्रवाह की इकाइयाँ न्यूटन (इकाई) प्रति कूलम्ब (इकाई) गुणा मीटर वर्ग या Nm²/C हैं। (विद्युत फ्लक्स घनत्व प्रति इकाई क्षेत्र में विद्युत फ्लक्स है और समाकलित क्षेत्र में औसत विद्युत क्षेत्र के सामान्य घटक की शक्ति का एक माप है। इसकी इकाइयाँ N/C हैं, जो एमकेएस इकाइयों में विद्युत क्षेत्र के समान हैं।)

विद्युत फ्लक्स के दो रूपों का उपयोग किया जाता है, एक ई -क्षेत्र के लिए:[13][14]

\oiint

और एक डी -क्षेत्र के लिए (जिसे विद्युत विस्थापन कहा जाता है):

\oiint

गॉस के नियम में यह परिमाण उद्भूत होती है -जो अभिव्यक्त करती है कि एक संकुचित सतह से विद्युत क्षेत्र E का फ्लक्स सतह में संलग्न विद्युत आवेश 'QA' के समानुपाती होता है (स्वतंत्र रूप से उस आवेश को कैसे वितरित किया जाता है), जिसका समाकल रूप है:

\oiint

जहां ε0 मुक्त स्थान की विद्युतशीलता है।

यदि कोई आवेश के क्षेत्र में एक बिंदु आवेश के पास एक नलिका के लिए विद्युत क्षेत्र सदिश, E के फ्लक्स पर विचार करता है, लेकिन इसे क्षेत्र के स्पर्शरेखा द्वारा गठित पक्षों के साथ नहीं रखता है, तो पक्षों के लिए फ्लक्स शून्य है और वहाँ नलिका के दोनों सिरों पर समान और विपरीत फ्लक्स होता है। यह व्युत्क्रम वर्ग क्षेत्र पर प्रयुक्त गॉस के नियम का परिणाम है। नलिका किसी भी अंतः वर्ग सतह के लिए फ्लक्स समान होगा। आवेश q के चारों ओर किसी भी सतह का कुल फ्लक्स q/ε0 है।[15]

मुक्त स्थान में विद्युत विस्थापन संघटनिक संबंध D' = ε0 E द्वारा दिया जाता है, इसलिए किसी भी सीमांकन सतह के लिए D -क्षेत्र फ्लक्स इसके भीतर आवेश QA' के समान होता है। यहाँ अभिव्यक्ति "के लिए फ्लक्स" एक गणितीय संक्रिया को इंगित करता है और, जैसा कि देखा जा सकता है, परिणाम आवश्यक रूप से "प्रवाह" नहीं है, क्योंकि वास्तव में विद्युत क्षेत्र रेखाओं के साथ कुछ भी नहीं प्रवाहित होता है।

चुंबकीय प्रवाह

इकाई Wb/m2 (टेस्ला (यूनिट) वाले चुंबकीय फ्लक्स घनत्व (चुंबकीय क्षेत्र) को B द्वारा निरूपित किया जाता है और चुंबकीय प्रवाह को समान रूप से परिभाषित किया जाता है:[13][14]:

ऊपरोक्त समान अंकन के साथ। फैराडे के प्रेरण के नियम में मात्रा उत्पन्न होती है, जहां चुंबकीय फ्लक्स समय पर निर्भर होता है क्योंकि या तो सीमा समय पर निर्भर होती है या चुंबकीय क्षेत्र समय पर निर्भर होता है। समाकल रूप में:

जहां d संकुचित वक्र का एक अतिसूक्ष्म सदिश रेखा तत्व है, जिसकी परिमाण (वेक्टर) अनंत रेखा तत्व की लंबाई के समान है और वक्र दिशा के साथ एकीकरण दिशा द्वारा निर्धारित चिह्न के साथ है।

तार के परिपथ के माध्यम से चुंबकीय फ्लक्स के परिवर्तन की समय-दर उस तार में निर्मित वैद्युतवाहक बल से कम होती है। दिशा ऐसी है कि यदि धारा को तार से पारित होने दिया जाए, तो विद्युत वाहक बल एक धारा उत्पन्न करेगा जो चुंबकीय क्षेत्र में परिवर्तन का स्वयं "विरोध" करता है, जो परिवर्तन के विपरीत एक चुंबकीय क्षेत्र का निर्माण करता है। यह प्रेरक और अनेक विद्युत जनित्र का आधार है।

प्वाइन्टिंग अभिवाह

इस परिभाषा का उपयोग करते हुए एक निर्दिष्ट सतह पर पॉयंटिंग सदिश एस का प्रवाह वह दर है जिस पर विद्युत चुम्बकीय ऊर्जा उस सतह से प्रवाहित होती है, जिसे पहले परिभाषित किया गया है:[14]

\oiint

एक सतह के माध्यम से प्वाइन्टिंग सदिश का फ्लक्स उस सतह से होकर जाने वाली विद्युत चुम्बकीय शक्ति (भौतिकी) या ऊर्जा प्रति इकाई समय की ऊर्जा है। यह सामान्यतः विद्युत चुम्बकीय विकिरण के विश्लेषण में प्रयोग किया जाता है, लेकिन अन्य विद्युत चुम्बकीय प्रणालियों के लिए भी इसका उपयोग होता है।

भ्रामक रूप से, पॉयंटिंग सदिश को कभी-कभी शक्ति फ्लक्स कहा जाता है, जो ऊपरोक्त फ्लक्स के प्रथम उपयोग का एक उदाहरण है।[16] इसकी इकाई वाट प्रति वर्ग मीटर (W/m2) है।

एसआई विकिरणमिति इकाइयां

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol Symbol
Radiant energy Qe[nb 2] joule J ML2T−2 Energy of electromagnetic radiation.
Radiant energy density we joule per cubic metre J/m3 ML−1T−2 Radiant energy per unit volume.
Radiant flux Φe[nb 2] watt W = J/s ML2T−3 Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Spectral flux Φe,ν[nb 3] watt per hertz W/Hz ML2T−2 Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1.
Φe,λ[nb 4] watt per metre W/m MLT−3
Radiant intensity Ie,Ω[nb 5] watt per steradian W/sr ML2T−3 Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν[nb 3] watt per steradian per hertz W⋅sr−1⋅Hz−1 ML2T−2 Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity.
Ie,Ω,λ[nb 4] watt per steradian per metre W⋅sr−1⋅m−1 MLT−3
Radiance Le,Ω[nb 5] watt per steradian per square metre W⋅sr−1⋅m−2 MT−3 Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance
Specific intensity
Le,Ω,ν[nb 3] watt per steradian per square metre per hertz W⋅sr−1⋅m−2⋅Hz−1 MT−2 Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Le,Ω,λ[nb 4] watt per steradian per square metre, per metre W⋅sr−1⋅m−3 ML−1T−3
Irradiance
Flux density
Ee[nb 2] watt per square metre W/m2 MT−3 Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance
Spectral flux density
Ee,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy).
Ee,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiosity Je[nb 2] watt per square metre W/m2 MT−3 Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity".
Je,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exitance Me[nb 2] watt per square metre W/m2 MT−3 Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν[nb 3] watt per square metre per hertz W⋅m−2⋅Hz−1 MT−2 Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Me,λ[nb 4] watt per square metre, per metre W/m3 ML−1T−3
Radiant exposure He joule per square metre J/m2 MT−2 Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν[nb 3] joule per square metre per hertz J⋅m−2⋅Hz−1 MT−1 Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence".
He,λ[nb 4] joule per square metre, per metre J/m3 ML−1T−2
See also: SI · Radiometry · Photometry
  1. Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  2. 2.0 2.1 2.2 2.3 2.4 Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek letter nu, not to be confused with a letter "v", indicating a photometric quantity.)
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Spectral quantities given per unit wavelength are denoted with suffix "λ".
  5. 5.0 5.1 Directional quantities are denoted with suffix "Ω".

यह भी देखें

टिप्पणियाँ

  1. Purcell,p22-26
  2. Weekley, Ernest (1967). आधुनिक अंग्रेजी का एक व्युत्पत्ति संबंधी शब्दकोश. Courier Dover Publications. p. 581. ISBN 0-486-21873-2.
  3. Herivel, John (1975). Joseph Fourier : the man and the physicist. Oxford: Clarendon Press. pp. 181–191. ISBN 0198581491.
  4. Fourier, Joseph (1822). Théorie analytique de la chaleur (in français). Paris: Firmin Didot Père et Fils. OCLC 2688081.
  5. 5.0 5.1 5.2 Maxwell, James Clerk (1892). बिजली और चुंबकत्व पर ग्रंथ. ISBN 0-486-60636-8.
  6. Bird, R. Byron; Stewart, Warren E.; Lightfoot, Edwin N. (1960). परिवहन घटना. Wiley. ISBN 0-471-07392-X.
  7. 7.0 7.1 P.M. Whelan; M.J. Hodgeson (1978). भौतिकी के आवश्यक सिद्धांत (2nd ed.). John Murray. ISBN 0-7195-3382-1.
  8. Carslaw, H.S.; Jaeger, J.C. (1959). ठोस पदार्थों में ऊष्मा का चालन (Second ed.). Oxford University Press. ISBN 0-19-853303-9.
  9. Welty; Wicks, Wilson and Rorrer (2001). मोमेंटम, हीट और मास ट्रांसफर के फंडामेंटल (4th ed.). Wiley. ISBN 0-471-38149-7.
  10. D. McMahon (2006). क्वांटम यांत्रिकी डिमिस्टिफाइड. Demystified. Mc Graw Hill. ISBN 0-07-145546-9.
  11. Sakurai, J. J. (1967). उन्नत क्वांटम यांत्रिकी. Addison Wesley. ISBN 0-201-06710-2.
  12. M.R. Spiegel; S. Lipcshutz; D. Spellman (2009). वेक्टर विश्लेषण. Schaum's Outlines (2nd ed.). McGraw Hill. p. 100. ISBN 978-0-07-161545-7.
  13. 13.0 13.1 I.S. Grant; W.R. Phillips (2008). विद्युत चुंबकत्व. Manchester Physics (2nd ed.). John Wiley & Sons. ISBN 978-0-471-92712-9.
  14. 14.0 14.1 14.2 D.J. Griffiths (2007). इलेक्ट्रोडायनामिक्स का परिचय (3rd ed.). Pearson Education, Dorling Kindersley. ISBN 978-81-7758-293-2.
  15. The Feynman Lectures on Physics Vol. II Ch. 4: Electrostatics
  16. Wangsness, Roald K. (1986). विद्युत चुम्बकीय क्षेत्र (2nd ed.). Wiley. ISBN 0-471-81186-6. p.357


अग्रिम पठन


बाहरी संबंध