लंबवत और क्षैतिज बंडल: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mathematics concept}} | {{Short description|Mathematics concept}} | ||
गणित में, ऊर्ध्वाधर बंडल और क्षैतिज बंडल एक फाइबर बंडल से जुड़े [[वेक्टर बंडल]] होते | गणित में, ऊर्ध्वाधर बंडल और क्षैतिज बंडल एक फाइबर बंडल से जुड़े [[वेक्टर बंडल|सदिश बंडल]] होते हैं। अधिक स्पष्ट रूप से, एक चिकनी फाइबर बंडल दिया गया <math>\pi\colon E\to B</math>, लंबवत बंडल <math>VE</math> और क्षैतिज बंडल <math>HE</math> <math>E</math> [[स्पर्शरेखा बंडल]] <math>TE</math> के [[सबबंडल]] हैं जिसका व्हिटनी योग <math>VE\oplus HE\cong TE</math> संतुष्ट करता है . इसका अर्थ है कि, प्रत्येक बिंदु पर <math>e\in E</math>, पर तंतु <math>V_eE</math> और <math>H_eE</math> [[स्पर्शरेखा स्थान]] <math>T_eE</math> की पूरक उपसमष्टियाँ बनाते हैं . ऊर्ध्वाधर बंडल में सभी सदिश होते हैं जो तंतुओं के स्पर्शरेखा होते हैं, जबकि क्षैतिज बंडल को पूरक उपबंडल के कुछ विकल्प की आवश्यकता होती है। | ||
इसे | इसे स्पष्ट बनाने के लिए, ऊर्ध्वाधर स्थान <math>V_eE</math> पर <math>e\in E</math> कों <math>\ker(d\pi_e)</math>. को परिभाषित करें अर्थात अंतर <math>d\pi_e\colon T_eE\to T_bB</math> (जहाँ <math>b=\pi(e)</math>) एक रेखीय प्रक्षेपण है जिसका कर्नेल <math>\pi</math> के तंतुओं के समान आयाम होता है | यदि हम <math>F=\pi^{-1}(b)</math> लिखते हैं , तब <math>V_eE</math> में <math>T_eE</math> बिल्कुल सदिश होते हैं | जो स्पर्शी <math>F</math> भी हैं| यह नाम निम्न-आयामी उदाहरणों से प्रेरित है जैसे एक वृत्त के ऊपर तुच्छ रेखा बंडल, जिसे कभी-कभी एक क्षैतिज वृत्त के लिए लंबवत सिलेंडर के रूप में चित्रित किया जाता है। जो एक क्षैतिज वृत्त को प्रक्षेपित करता है। <math>T_eE</math> एक उपस्थान <math>H_eE</math> का क्षैतिज स्थान कहा जाता है | यदि <math>T_eE</math> की सदिश समष्टियों का प्रत्यक्ष योग <math>V_eE</math> और <math>H_eE</math> है | | ||
ऊर्ध्वाधर रिक्त स्थान V | E में प्रत्येक के लिए ऊर्ध्वाधर रिक्त स्थान V<sub>''e''</sub>E का असंयुक्त संघ TE का सबबंडल VE है; यह E का उर्ध्वाधर बंडल है। इसी प्रकार, क्षैतिज रिक्त स्थान <math>H_eE</math> e के साथ सुचारू रूप से भिन्न होते हैं, उनका असंयुक्त संघ एक क्षैतिज बंडल है। यहाँ द" और "ए" शब्दों का उपयोग और यहां जानबूझकर किया गया है | प्रत्येक लंबवत उप-स्थान अद्वितीय है, <math>\ker(d\pi_e)</math> स्पष्ट रूप से परिभाषित किया गया है . तुच्छ स्थितियों को छोड़कर, प्रत्येक बिंदु पर अनंत संख्या में क्षैतिज उप-स्थान होते हैं। यह भी ध्यान दें कि प्रत्येक बिंदु पर क्षैतिज स्थान के इच्छानुसार विकल्प, सामान्यतः, एक चिकने सदिश बंडल का निर्माण नहीं करते है | उन्हें स्पष्ट विधि से सुचारू विधि से भिन्न होना चाहिए। | ||
क्षैतिज बंडल [[फाइबर बंडल]] पर [[एह्रेसमैन कनेक्शन]] की धारणा तैयार करने | क्षैतिज बंडल [[फाइबर बंडल]] पर [[एह्रेसमैन कनेक्शन|एह्रेसमैन सम्बन्ध]] की धारणा तैयार करने की एक विधि है। इस प्रकार, उदाहरण के लिए, यदि ई एक प्रमुख जी-बंडल है | तो क्षैतिज बंडल को सामान्यतः जी-इनवेरिएंट होना आवश्यक है: ऐसा विकल्प एक [[ कनेक्शन (प्रमुख बंडल) |सम्बन्ध (प्रमुख बंडल)]] के सामान है।<ref>David Bleecker, ''[https://zulfahmed.files.wordpress.com/2014/05/88623149-bleecker-d-gauge-theory-and-variational-principles-aw-1981-ka-t-201s-pqgf.pdf Gauge Theory and Variational Principles]'' (1981) Addison-Wesely Publishing Company {{isbn|0-201-10096-7}} ''(See theorem 1.2.4)''</ref> यह विशेष रूप से तब होता है जब ई कुछ सदिश बंडल से जुड़ा [[फ्रेम बंडल]] होता है, जो कि एक प्रमुख <math>\operatorname{GL}_n</math> बंडल होता है। | ||
== औपचारिक परिभाषा == | |||
मान लीजिए π:E→B चिकने मैनिफोल्ड B पर एक चिकना फाइबर बंडल है। ऊर्ध्वाधर बंडल कर्नेल VE := ker(dπ) है | स्पर्शरेखा मानचित्र dπ : TE → TB का कर्नेल (रैखिक बीजगणित) है।<ref name="kolar">{{citation|last1 = Kolář|first1=Ivan|last2=Michor|first2=Peter|last3=Slovák|first3=Jan|url=http://www.emis.de/monographs/KSM/kmsbookh.pdf|title=Natural Operations in Differential Geometry|year = 1993|publisher = Springer-Verlag}} (page 77)</ref> | |||
dπ<sub>e</sub> के बाद से प्रत्येक बिंदु ई पर विशेषण है, यह टीई का एक नियमित सबबंडल उत्पन्न करता है। इसके अतिरिक्त, लंबवत बंडल वीई भी पूर्णांक है। | |||
E पर एक एह्रेसमैन सम्बन्ध, TE में VE से HE के लिए एक पूरक सबबंडल का विकल्प है, जिसे सम्बन्ध का क्षैतिज बंडल कहा जाता है। E में प्रत्येक बिंदु e पर, दो उपसमष्टियाँ एक [[प्रत्यक्ष योग]] बनाती हैं, जैसे कि T<sub>''e''</sub>E = V<sub>''e''</sub>E ⊕ H<sub>''e''</sub> है | | |||
E पर एक | |||
== उदाहरण == | == उदाहरण == | ||
चिकने फाइबर बंडल का एक सरल उदाहरण दो [[कई गुना]] का कार्टेशियन उत्पाद है। बंडल | चिकने फाइबर बंडल का एक सरल उदाहरण दो [[कई गुना|मैनिफोल्ड]] का कार्टेशियन उत्पाद है। बंडल प्रक्षेपण pr<sub>1</sub> : M × N → M : (x, y) → x के साथ बंडल B<sub>1</sub> := (M × N, pr<sub>1</sub>) पर विचार करें। ऊर्ध्वाधर बंडल खोजने के लिए ऊपर दिए गए पैराग्राफ में परिभाषा को प्रयुक्त करते हुए, हम पहले M × N में एक बिंदु (m,n) पर विचार करते हैं। फिर pr<sub>1</sub> के अनुसार इस बिंदु की छवि m है। इसी pr<sub>1</sub> के अंतर्गत m की पूर्वछवि {m} × N है, ताकि T<sub>(m,n)</sub> ({m} × N) = {m} × TN। ऊर्ध्वाधर बंडल तब VB<sub>1</sub> = M × TN है, जो T(M ×N) का एक उपसमूह है। यदि हम अन्य प्रक्षेपण pr2 : M × N → N : (x, y) → y को फाइबर बंडल B<sub>2</sub> := (M × N, pr<sub>2</sub>) परिभाषित करने के लिए लेते हैं तो ऊर्ध्वाधर बंडल VB<sub>2</sub> = TM × N होता है। | ||
दोनों ही | दोनों ही स्थितियों में, उत्पाद संरचना क्षैतिज बंडल का एक स्वाभाविक विकल्प देती है, और इसलिए एह्रेसमैन सम्बन्ध: B<sub>1</sub> का क्षैतिज बंडल B<sub>2</sub> का लंबवत बंडल इसके विपरीत है। | ||
== गुण == | == गुण == | ||
विभेदक ज्यामिति से विभिन्न महत्वपूर्ण [[टेन्सर]] और [[विभेदक रूप]] ऊर्ध्वाधर और क्षैतिज बंडलों पर विशिष्ट गुण ग्रहण करते हैं, या उनके संदर्भ में भी परिभाषित किए जा सकते हैं। इनमें से कुछ हैं: | विभेदक ज्यामिति से विभिन्न महत्वपूर्ण [[टेन्सर]] और [[विभेदक रूप]] ऊर्ध्वाधर और क्षैतिज बंडलों पर विशिष्ट गुण ग्रहण करते हैं, या उनके संदर्भ में भी परिभाषित किए जा सकते हैं। इनमें से कुछ हैं: | ||
* एक लंबवत [[वेक्टर क्षेत्र]] एक | * एक लंबवत [[वेक्टर क्षेत्र|सदिश क्षेत्र]] एक सदिश फ़ील्ड है जो लंबवत बंडल में है। अर्थात्, 'E' के प्रत्येक बिंदु 'E' के लिए, एक सदिश <math>v_e\in V_eE</math> चुनता है जहाँ <math>V_eE \subset T_eE = T_e(E_{\pi(e)} )</math> E पर ऊर्ध्वाधर सदिश स्थान है।<ref name="kolar"/>* एक अवकलनीय अवकलन रूप आर-रूप <math>\alpha</math> ई पर 'क्षैतिज रूप' कहा जाता है यदि <math>\alpha(v_1,...,v_r)=0</math> जब भी कम से कम एक सदिश <math>v_1,..., v_r</math> लंबवत है। | ||
* [[ कनेक्शन प्रपत्र ]] क्षैतिज बंडल पर | * [[ कनेक्शन प्रपत्र | सम्बन्ध प्रपत्र]] क्षैतिज बंडल पर लुप्त हो जाता है, और केवल लंबवत बंडल पर गैर-शून्य होता है। इस प्रकार, क्षैतिज बंडल को परिभाषित करने के लिए सम्बन्ध रूप का उपयोग किया जा सकता है: क्षैतिज बंडल सम्बन्ध रूप का कर्नेल है। | ||
* [[सोल्डर फॉर्म]] या [[टॉटोलॉजिकल वन-फॉर्म]] वर्टिकल बंडल पर | * [[सोल्डर फॉर्म|सोल्डर रूप]] या [[टॉटोलॉजिकल वन-फॉर्म|टॉटोलॉजिकल वन-रूप]] वर्टिकल बंडल पर लुप्त हो जाता है और क्षैतिज बंडल पर नॉन-जीरो होता है। परिभाषा के अनुसार, सोल्डर रूप पूरी प्रकार से क्षैतिज बंडल में अपना मान लेता है। | ||
* एक फ्रेम बंडल के | * एक फ्रेम बंडल के स्थिति में, [[मरोड़ रूप]] ऊर्ध्वाधर बंडल पर लुप्त हो जाता है, और इसका उपयोग ठीक उसी भाग को परिभाषित करने के लिए किया जा सकता है जिसे [[लेवी-Civita कनेक्शन|लेवी-सिविता सम्बन्ध]] में बदलने के लिए इच्छानुसार सम्बन्ध में जोड़ा जाना चाहिए, अर्थात एक बनाने के लिए सम्बन्ध मरोड़ रहित हो। वास्तव में , यदि कोई सोल्डर रूप के लिए θ लिखता है, तो टोरसन टेंसर Θ Θ = D θ (डी के साथ [[बाहरी सहसंयोजक व्युत्पन्न]]) द्वारा दिया जाता है। किसी दिए गए सम्बन्ध ω के लिए, TE पर एक अद्वितीय एक-रूप σ होता है, जिसे [[विरूपण टेंसर]] कहा जाता है, जो ऊर्ध्वाधर बंडल में लुप्त हो रहा है, और ऐसा है कि ω+σ एक अन्य सम्बन्ध 1-रूप है जो मरोड़-मुक्त है। परिणामी एक रूप ω+σ लेवी-सिविता सम्बन्ध के अतिरिक्त और कुछ नहीं है। कोई इसे एक परिभाषा के रूप में ले सकता है: चूंकि मरोड़ <math>\Theta = D\theta = d\theta + \omega \wedge \theta</math> द्वारा दिया जाता है , मरोड़ का लुप्त होना <math>d\theta = - (\omega +\sigma) \wedge \theta</math> और यह दिखाना कठिन नहीं है कि σ ऊर्ध्वाधर बंडल पर लुप्त हो जाना चाहिए, और σ प्रत्येक फाइबर पर जी-इनवेरिएंट होना चाहिए (अधिक स्पष्ट रूप से, कि σ जी के आसन्न प्रतिनिधित्व में बदल जाता है)। ध्यान दें कि यह लेवी-सिविता सम्बन्ध को किसी भी कार्य टेन्सर के लिए कोई स्पष्ट संदर्भ दिए बिना परिभाषित करता है (चूँकि कार्य टेंसर को सोल्डर रूप का एक विशेष स्थिति समझा जा सकता है, क्योंकि यह आधार के स्पर्शरेखा और कोटेंगेंट बंडलों के बीच एक मानचित्र स्थापित करता है। अंतरिक्ष, अर्थात फ्रेम बंडल के क्षैतिज और लंबवत उप-स्थानों के बीच) है। | ||
* ऐसे | * ऐसे स्थिति में जहां E एक प्रमुख बंडल है, तो मूलभूत सदिश क्षेत्र आवश्यक रूप से लंबवत बंडल में रहना चाहिए, और किसी भी क्षैतिज बंडल में लुप्त हो जाना चाहिए। | ||
==टिप्पणियाँ== | ==टिप्पणियाँ == | ||
{{Reflist}} | {{Reflist}} | ||
Line 54: | Line 50: | ||
* {{citation|last1 = Krupka|first1=Demeter|last2=Janyška|first2=Josef|title=Lectures on differential invariants|year = 1990|publisher = Univerzita J. E. Purkyně V Brně|isbn=80-210-0165-8}} | * {{citation|last1 = Krupka|first1=Demeter|last2=Janyška|first2=Josef|title=Lectures on differential invariants|year = 1990|publisher = Univerzita J. E. Purkyně V Brně|isbn=80-210-0165-8}} | ||
* {{citation|last1 = Saunders|first1 = D.J.|title = The geometry of jet bundles|year = 1989|publisher = Cambridge University Press|isbn = 0-521-36948-7|url-access = registration|url = https://archive.org/details/geometryofjetbun0000saun}} | * {{citation|last1 = Saunders|first1 = D.J.|title = The geometry of jet bundles|year = 1989|publisher = Cambridge University Press|isbn = 0-521-36948-7|url-access = registration|url = https://archive.org/details/geometryofjetbun0000saun}} | ||
[[Category:Created On 25/04/2023]] | [[Category:Created On 25/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:कनेक्शन (गणित)]] | |||
[[Category:फाइबर बंडल]] | |||
[[Category:विभेदक टोपोलॉजी]] |
Latest revision as of 19:30, 17 May 2023
गणित में, ऊर्ध्वाधर बंडल और क्षैतिज बंडल एक फाइबर बंडल से जुड़े सदिश बंडल होते हैं। अधिक स्पष्ट रूप से, एक चिकनी फाइबर बंडल दिया गया , लंबवत बंडल और क्षैतिज बंडल स्पर्शरेखा बंडल के सबबंडल हैं जिसका व्हिटनी योग संतुष्ट करता है . इसका अर्थ है कि, प्रत्येक बिंदु पर , पर तंतु और स्पर्शरेखा स्थान की पूरक उपसमष्टियाँ बनाते हैं . ऊर्ध्वाधर बंडल में सभी सदिश होते हैं जो तंतुओं के स्पर्शरेखा होते हैं, जबकि क्षैतिज बंडल को पूरक उपबंडल के कुछ विकल्प की आवश्यकता होती है।
इसे स्पष्ट बनाने के लिए, ऊर्ध्वाधर स्थान पर कों . को परिभाषित करें अर्थात अंतर (जहाँ ) एक रेखीय प्रक्षेपण है जिसका कर्नेल के तंतुओं के समान आयाम होता है | यदि हम लिखते हैं , तब में बिल्कुल सदिश होते हैं | जो स्पर्शी भी हैं| यह नाम निम्न-आयामी उदाहरणों से प्रेरित है जैसे एक वृत्त के ऊपर तुच्छ रेखा बंडल, जिसे कभी-कभी एक क्षैतिज वृत्त के लिए लंबवत सिलेंडर के रूप में चित्रित किया जाता है। जो एक क्षैतिज वृत्त को प्रक्षेपित करता है। एक उपस्थान का क्षैतिज स्थान कहा जाता है | यदि की सदिश समष्टियों का प्रत्यक्ष योग और है |
E में प्रत्येक के लिए ऊर्ध्वाधर रिक्त स्थान VeE का असंयुक्त संघ TE का सबबंडल VE है; यह E का उर्ध्वाधर बंडल है। इसी प्रकार, क्षैतिज रिक्त स्थान e के साथ सुचारू रूप से भिन्न होते हैं, उनका असंयुक्त संघ एक क्षैतिज बंडल है। यहाँ द" और "ए" शब्दों का उपयोग और यहां जानबूझकर किया गया है | प्रत्येक लंबवत उप-स्थान अद्वितीय है, स्पष्ट रूप से परिभाषित किया गया है . तुच्छ स्थितियों को छोड़कर, प्रत्येक बिंदु पर अनंत संख्या में क्षैतिज उप-स्थान होते हैं। यह भी ध्यान दें कि प्रत्येक बिंदु पर क्षैतिज स्थान के इच्छानुसार विकल्प, सामान्यतः, एक चिकने सदिश बंडल का निर्माण नहीं करते है | उन्हें स्पष्ट विधि से सुचारू विधि से भिन्न होना चाहिए।
क्षैतिज बंडल फाइबर बंडल पर एह्रेसमैन सम्बन्ध की धारणा तैयार करने की एक विधि है। इस प्रकार, उदाहरण के लिए, यदि ई एक प्रमुख जी-बंडल है | तो क्षैतिज बंडल को सामान्यतः जी-इनवेरिएंट होना आवश्यक है: ऐसा विकल्प एक सम्बन्ध (प्रमुख बंडल) के सामान है।[1] यह विशेष रूप से तब होता है जब ई कुछ सदिश बंडल से जुड़ा फ्रेम बंडल होता है, जो कि एक प्रमुख बंडल होता है।
औपचारिक परिभाषा
मान लीजिए π:E→B चिकने मैनिफोल्ड B पर एक चिकना फाइबर बंडल है। ऊर्ध्वाधर बंडल कर्नेल VE := ker(dπ) है | स्पर्शरेखा मानचित्र dπ : TE → TB का कर्नेल (रैखिक बीजगणित) है।[2]
dπe के बाद से प्रत्येक बिंदु ई पर विशेषण है, यह टीई का एक नियमित सबबंडल उत्पन्न करता है। इसके अतिरिक्त, लंबवत बंडल वीई भी पूर्णांक है।
E पर एक एह्रेसमैन सम्बन्ध, TE में VE से HE के लिए एक पूरक सबबंडल का विकल्प है, जिसे सम्बन्ध का क्षैतिज बंडल कहा जाता है। E में प्रत्येक बिंदु e पर, दो उपसमष्टियाँ एक प्रत्यक्ष योग बनाती हैं, जैसे कि TeE = VeE ⊕ He है |
उदाहरण
चिकने फाइबर बंडल का एक सरल उदाहरण दो मैनिफोल्ड का कार्टेशियन उत्पाद है। बंडल प्रक्षेपण pr1 : M × N → M : (x, y) → x के साथ बंडल B1 := (M × N, pr1) पर विचार करें। ऊर्ध्वाधर बंडल खोजने के लिए ऊपर दिए गए पैराग्राफ में परिभाषा को प्रयुक्त करते हुए, हम पहले M × N में एक बिंदु (m,n) पर विचार करते हैं। फिर pr1 के अनुसार इस बिंदु की छवि m है। इसी pr1 के अंतर्गत m की पूर्वछवि {m} × N है, ताकि T(m,n) ({m} × N) = {m} × TN। ऊर्ध्वाधर बंडल तब VB1 = M × TN है, जो T(M ×N) का एक उपसमूह है। यदि हम अन्य प्रक्षेपण pr2 : M × N → N : (x, y) → y को फाइबर बंडल B2 := (M × N, pr2) परिभाषित करने के लिए लेते हैं तो ऊर्ध्वाधर बंडल VB2 = TM × N होता है।
दोनों ही स्थितियों में, उत्पाद संरचना क्षैतिज बंडल का एक स्वाभाविक विकल्प देती है, और इसलिए एह्रेसमैन सम्बन्ध: B1 का क्षैतिज बंडल B2 का लंबवत बंडल इसके विपरीत है।
गुण
विभेदक ज्यामिति से विभिन्न महत्वपूर्ण टेन्सर और विभेदक रूप ऊर्ध्वाधर और क्षैतिज बंडलों पर विशिष्ट गुण ग्रहण करते हैं, या उनके संदर्भ में भी परिभाषित किए जा सकते हैं। इनमें से कुछ हैं:
- एक लंबवत सदिश क्षेत्र एक सदिश फ़ील्ड है जो लंबवत बंडल में है। अर्थात्, 'E' के प्रत्येक बिंदु 'E' के लिए, एक सदिश चुनता है जहाँ E पर ऊर्ध्वाधर सदिश स्थान है।[2]* एक अवकलनीय अवकलन रूप आर-रूप ई पर 'क्षैतिज रूप' कहा जाता है यदि जब भी कम से कम एक सदिश लंबवत है।
- सम्बन्ध प्रपत्र क्षैतिज बंडल पर लुप्त हो जाता है, और केवल लंबवत बंडल पर गैर-शून्य होता है। इस प्रकार, क्षैतिज बंडल को परिभाषित करने के लिए सम्बन्ध रूप का उपयोग किया जा सकता है: क्षैतिज बंडल सम्बन्ध रूप का कर्नेल है।
- सोल्डर रूप या टॉटोलॉजिकल वन-रूप वर्टिकल बंडल पर लुप्त हो जाता है और क्षैतिज बंडल पर नॉन-जीरो होता है। परिभाषा के अनुसार, सोल्डर रूप पूरी प्रकार से क्षैतिज बंडल में अपना मान लेता है।
- एक फ्रेम बंडल के स्थिति में, मरोड़ रूप ऊर्ध्वाधर बंडल पर लुप्त हो जाता है, और इसका उपयोग ठीक उसी भाग को परिभाषित करने के लिए किया जा सकता है जिसे लेवी-सिविता सम्बन्ध में बदलने के लिए इच्छानुसार सम्बन्ध में जोड़ा जाना चाहिए, अर्थात एक बनाने के लिए सम्बन्ध मरोड़ रहित हो। वास्तव में , यदि कोई सोल्डर रूप के लिए θ लिखता है, तो टोरसन टेंसर Θ Θ = D θ (डी के साथ बाहरी सहसंयोजक व्युत्पन्न) द्वारा दिया जाता है। किसी दिए गए सम्बन्ध ω के लिए, TE पर एक अद्वितीय एक-रूप σ होता है, जिसे विरूपण टेंसर कहा जाता है, जो ऊर्ध्वाधर बंडल में लुप्त हो रहा है, और ऐसा है कि ω+σ एक अन्य सम्बन्ध 1-रूप है जो मरोड़-मुक्त है। परिणामी एक रूप ω+σ लेवी-सिविता सम्बन्ध के अतिरिक्त और कुछ नहीं है। कोई इसे एक परिभाषा के रूप में ले सकता है: चूंकि मरोड़ द्वारा दिया जाता है , मरोड़ का लुप्त होना और यह दिखाना कठिन नहीं है कि σ ऊर्ध्वाधर बंडल पर लुप्त हो जाना चाहिए, और σ प्रत्येक फाइबर पर जी-इनवेरिएंट होना चाहिए (अधिक स्पष्ट रूप से, कि σ जी के आसन्न प्रतिनिधित्व में बदल जाता है)। ध्यान दें कि यह लेवी-सिविता सम्बन्ध को किसी भी कार्य टेन्सर के लिए कोई स्पष्ट संदर्भ दिए बिना परिभाषित करता है (चूँकि कार्य टेंसर को सोल्डर रूप का एक विशेष स्थिति समझा जा सकता है, क्योंकि यह आधार के स्पर्शरेखा और कोटेंगेंट बंडलों के बीच एक मानचित्र स्थापित करता है। अंतरिक्ष, अर्थात फ्रेम बंडल के क्षैतिज और लंबवत उप-स्थानों के बीच) है।
- ऐसे स्थिति में जहां E एक प्रमुख बंडल है, तो मूलभूत सदिश क्षेत्र आवश्यक रूप से लंबवत बंडल में रहना चाहिए, और किसी भी क्षैतिज बंडल में लुप्त हो जाना चाहिए।
टिप्पणियाँ
- ↑ David Bleecker, Gauge Theory and Variational Principles (1981) Addison-Wesely Publishing Company ISBN 0-201-10096-7 (See theorem 1.2.4)
- ↑ 2.0 2.1 Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural Operations in Differential Geometry (PDF), Springer-Verlag (page 77)
संदर्भ
- Choquet-Bruhat, Yvonne; DeWitt-Morette, Cécile (1977), Analysis, Manifolds and Physics, Amsterdam: Elsevier, ISBN 978-0-7204-0494-4
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996). Foundations of Differential Geometry, Vol. 1 (New ed.). Wiley Interscience. ISBN 0-471-15733-3.
- Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural Operations in Differential Geometry (PDF), Springer-Verlag
- Krupka, Demeter; Janyška, Josef (1990), Lectures on differential invariants, Univerzita J. E. Purkyně V Brně, ISBN 80-210-0165-8
- Saunders, D.J. (1989), The geometry of jet bundles, Cambridge University Press, ISBN 0-521-36948-7