मैक्सवेल के समीकरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
{{Electromagnetism|cTopic=Electrodynamics}} | {{Electromagnetism|cTopic=Electrodynamics}} | ||
मैक्सवेल के समीकरण, या मैक्सवेल-हेविसाइड समीकरण, युग्मित [[आंशिक विभेदक समीकरण|आंशिक विभेदक समीकरणों]] का एक संग्रह हैं, जो [[लोरेंत्ज़ बल]] सिद्धांत के साथ [[शास्त्रीय विद्युत चुंबकत्व]], शास्त्रीय [[प्रकाशिकी]] और [[विद्युत परिपथ|विद्युत]] परिपथों की नींव बनाते हैं। समीकरण इलेक्ट्रिक, ऑप्टिकल और रेडियो तकनीकों के लिए एक गणितीय प्रतिरूप प्रदान करते हैं, जैसे कि बिजली उत्पादन, [[बिजली का आवेश]], [[ तार रहित |तार रहित]] संचार, लेंस, रडार आदि। वे वर्णन करते हैं कि [[विद्युत क्षेत्र|विद्युत]] और [[चुंबकीय क्षेत्र]] कैसे आवेशों, [[विद्युत प्रवाह|विद्युत धाराओं]] और क्षेत्रों के परिवर्तनों द्वारा उत्पन्न होते हैं।<ref group="note">''Electric'' and ''magnetic'' fields, according to the [[theory of relativity]], are the components of a single electromagnetic field.</ref> समीकरणों का नाम भौतिक विज्ञानी और गणितज्ञ [[जेम्स क्लर्क मैक्सवेल]] के नाम पर रखा गया है, जिन्होंने 1861 और 1862 में, समीकरणों का एक प्रारंभिक रूप प्रकाशित किया जिसमें लोरेंत्ज़ बल सिद्धांत शामिल था। मैक्सवेल ने सबसे पहले समीकरणों का उपयोग यह प्रस्तावित करने के लिए किया कि प्रकाश एक विद्युत चुम्बकीय घटना है। उनके सबसे सामान्य सूत्रीकरण में समीकरणों के आधुनिक रूप का श्रेय [[ओलिवर हीविसाइड]] को दिया जाता है।<ref name="Hampshire">{{cite journal |title=हीविसाइड संकेतन का उपयोग करते हुए मैक्सवेल के समीकरणों की व्युत्पत्ति|first1=Damian P. |last1=Hampshire |date=29 October 2018 |doi=10.1098/rsta.2017.0447 |volume=376 |issue=2134 |series=Theme issue Celebrating 125 years of Oliver Heaviside's ‘Electromagnetic Theory’ compiled and edited by Christopher Donaghy-Spargo and Alex Yakovlev PubMed:30373937 |issn=1364-503X |journal=Philosophical Transactions of the Royal Society Research Article |publisher=[[Royal Society]]|pmid=30373937 |pmc=6232579 |arxiv=1510.04309 |bibcode=2018RSPTA.37670447H }}</ref> | '''मैक्सवेल के समीकरण''', या '''मैक्सवेल-हेविसाइड समीकरण''', युग्मित [[आंशिक विभेदक समीकरण|आंशिक विभेदक समीकरणों]] का एक संग्रह हैं, जो [[लोरेंत्ज़ बल]] सिद्धांत के साथ [[शास्त्रीय विद्युत चुंबकत्व]], शास्त्रीय [[प्रकाशिकी]] और [[विद्युत परिपथ|विद्युत]] परिपथों की नींव बनाते हैं। समीकरण इलेक्ट्रिक, ऑप्टिकल और रेडियो तकनीकों के लिए एक गणितीय प्रतिरूप प्रदान करते हैं, जैसे कि बिजली उत्पादन, [[बिजली का आवेश]], [[ तार रहित |तार रहित]] संचार, लेंस, रडार आदि। वे वर्णन करते हैं कि [[विद्युत क्षेत्र|विद्युत]] और [[चुंबकीय क्षेत्र]] कैसे आवेशों, [[विद्युत प्रवाह|विद्युत धाराओं]] और क्षेत्रों के परिवर्तनों द्वारा उत्पन्न होते हैं।<ref group="note">''Electric'' and ''magnetic'' fields, according to the [[theory of relativity]], are the components of a single electromagnetic field.</ref> समीकरणों का नाम भौतिक विज्ञानी और गणितज्ञ [[जेम्स क्लर्क मैक्सवेल]] के नाम पर रखा गया है, जिन्होंने 1861 और 1862 में, समीकरणों का एक प्रारंभिक रूप प्रकाशित किया जिसमें लोरेंत्ज़ बल सिद्धांत शामिल था। मैक्सवेल ने सबसे पहले समीकरणों का उपयोग यह प्रस्तावित करने के लिए किया कि प्रकाश एक विद्युत चुम्बकीय घटना है। उनके सबसे सामान्य सूत्रीकरण में समीकरणों के आधुनिक रूप का श्रेय [[ओलिवर हीविसाइड]] को दिया जाता है।<ref name="Hampshire">{{cite journal |title=हीविसाइड संकेतन का उपयोग करते हुए मैक्सवेल के समीकरणों की व्युत्पत्ति|first1=Damian P. |last1=Hampshire |date=29 October 2018 |doi=10.1098/rsta.2017.0447 |volume=376 |issue=2134 |series=Theme issue Celebrating 125 years of Oliver Heaviside's ‘Electromagnetic Theory’ compiled and edited by Christopher Donaghy-Spargo and Alex Yakovlev PubMed:30373937 |issn=1364-503X |journal=Philosophical Transactions of the Royal Society Research Article |publisher=[[Royal Society]]|pmid=30373937 |pmc=6232579 |arxiv=1510.04309 |bibcode=2018RSPTA.37670447H }}</ref> | ||
मैक्सवेल के समीकरणों को यह प्रदर्शित करने के लिए संयोजित किया जा सकता है कि कैसे विद्युत चुम्बकीय क्षेत्रों (तरंगों) में उतार-चढ़ाव निर्वात में एक स्थिर गति से फैलता है, [[प्रकाश की गति]] ({{val|299792458|u=m/s}}).<ref name="NIST">{{cite web | url =https://physics.nist.gov/cgi-bin/cuu/Value?c | title =The NIST Reference on Constants, Units, and Uncertainty}}</ref> [[विद्युत चुम्बकीय विकिरण]] के रूप में जाना जाता है, ये तरंगें [[रेडियो तरंग|रेडियो]] तरंगों से [[गामा किरण|गामा]] किरणों तक विकिरण के एक वर्णक्रम का उत्पादन करने के लिए विभिन्न तरंग दैर्ध्य पर होती हैं। | मैक्सवेल के समीकरणों को यह प्रदर्शित करने के लिए संयोजित किया जा सकता है कि कैसे विद्युत चुम्बकीय क्षेत्रों (तरंगों) में उतार-चढ़ाव निर्वात में एक स्थिर गति से फैलता है, [[प्रकाश की गति]] ({{val|299792458|u=m/s}}).<ref name="NIST">{{cite web | url =https://physics.nist.gov/cgi-bin/cuu/Value?c | title =The NIST Reference on Constants, Units, and Uncertainty}}</ref> [[विद्युत चुम्बकीय विकिरण]] के रूप में जाना जाता है, ये तरंगें [[रेडियो तरंग|रेडियो]] तरंगों से [[गामा किरण|गामा]] किरणों तक विकिरण के एक वर्णक्रम का उत्पादन करने के लिए विभिन्न तरंग दैर्ध्य पर होती हैं। | ||
Line 14: | Line 14: | ||
== समीकरणों का इतिहास == | == समीकरणों का इतिहास == | ||
{{main| | {{main|समीकरणों का इतिहास}} | ||
== वैचारिक विवरण == | == वैचारिक विवरण == | ||
Line 43: | Line 43: | ||
अवकलन और समाकलन सूत्रीकरण गणितीय रूप से समतुल्य हैं; दोनों उपयोगी हैं। अभिन्न सूत्रीकरण अंतरिक्ष के एक क्षेत्र के भीतर क्षेत्रों को सीमा पर क्षेत्रों से संबंधित करता है और अक्सर शुल्क और धाराओं के सममित वितरण से फ़ील्ड को सरल और सीधे गणना करने के लिए उपयोग किया जा सकता है। दूसरी ओर, अंतर समीकरण पूरी तरह से स्थानीय हैं और अधिक जटिल (कम सममित) स्थितियों में क्षेत्रों की गणना के लिए एक अधिक प्राकृतिक प्रारंभिक बिंदु हैं, उदाहरण के लिए परिमित तत्व विश्लेषण का उपयोग करना।<ref>{{cite book |title=आंशिक अंतर समीकरण और परिमित तत्व विधि|last=Šolín |first=Pavel |year=2006 |publisher=John Wiley and Sons |isbn=978-0-471-72070-6 |page=273 |url=https://books.google.com/books?id=-hIG3NZrnd8C&pg=PA273}}</ref> | अवकलन और समाकलन सूत्रीकरण गणितीय रूप से समतुल्य हैं; दोनों उपयोगी हैं। अभिन्न सूत्रीकरण अंतरिक्ष के एक क्षेत्र के भीतर क्षेत्रों को सीमा पर क्षेत्रों से संबंधित करता है और अक्सर शुल्क और धाराओं के सममित वितरण से फ़ील्ड को सरल और सीधे गणना करने के लिए उपयोग किया जा सकता है। दूसरी ओर, अंतर समीकरण पूरी तरह से स्थानीय हैं और अधिक जटिल (कम सममित) स्थितियों में क्षेत्रों की गणना के लिए एक अधिक प्राकृतिक प्रारंभिक बिंदु हैं, उदाहरण के लिए परिमित तत्व विश्लेषण का उपयोग करना।<ref>{{cite book |title=आंशिक अंतर समीकरण और परिमित तत्व विधि|last=Šolín |first=Pavel |year=2006 |publisher=John Wiley and Sons |isbn=978-0-471-72070-6 |page=273 |url=https://books.google.com/books?id=-hIG3NZrnd8C&pg=PA273}}</ref> | ||
=== अंकन की कुंजी === | === अंकन की कुंजी === | ||
बोल्ड में प्रतीक [[वेक्टर (ज्यामितीय)|सदिश (ज्यामितीय)]] मात्रा का प्रतिनिधित्व करते हैं, और 'इटैलिक' में प्रतीक सदिश (भौतिकी) मात्रा का प्रतिनिधित्व करते हैं, जब तक कि अन्यथा संकेत न दिया जाए। समीकरण विद्युत क्षेत्र, {{math|'''E'''}}, एक सदिश क्षेत्र, और चुंबकीय क्षेत्र, {{math|'''B'''}}, एक [[ pseudovector |छद्म सदिश]] क्षेत्र, प्रत्येक में आम तौर पर समय और स्थान पर निर्भरता होती है। सूत्र हैं | '''बोल्ड''' में प्रतीक [[वेक्टर (ज्यामितीय)|सदिश (ज्यामितीय)]] मात्रा का प्रतिनिधित्व करते हैं, और 'इटैलिक' में प्रतीक सदिश (भौतिकी) मात्रा का प्रतिनिधित्व करते हैं, जब तक कि अन्यथा संकेत न दिया जाए। समीकरण विद्युत क्षेत्र, {{math|'''E'''}}, एक सदिश क्षेत्र, और चुंबकीय क्षेत्र, {{math|'''B'''}}, एक [[ pseudovector |छद्म सदिश]] क्षेत्र, प्रत्येक में आम तौर पर समय और स्थान पर निर्भरता होती है। सूत्र हैं | ||
* कुल विद्युत आवेश घनत्व (कुल आवेश प्रति इकाई आयतन), {{math|''ρ''}}, और | * कुल विद्युत आवेश घनत्व (कुल आवेश प्रति इकाई आयतन), {{math|''ρ''}}, और | ||
* कुल विद्युत प्रवाह घनत्व (कुल वर्तमान प्रति इकाई क्षेत्र), {{math|'''J'''}}. | * कुल विद्युत प्रवाह घनत्व (कुल वर्तमान प्रति इकाई क्षेत्र), {{math|'''J'''}}. | ||
Line 77: | Line 77: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! scope="col" style="width: 15em;" | | ! scope="col" style="width: 15em;" | नाम | ||
! scope="col" | | ! scope="col" | अभिन्न समीकरण | ||
! scope="col" | | ! scope="col" | विभेदक समीकरण | ||
|- | |- | ||
| [[Gauss's law]] | | [[Gauss's law|गॉस का सिद्धांत]] | ||
| {{oiint | | {{oiint | ||
| intsubscpt=<math>{\scriptstyle\partial \Omega }</math> | | intsubscpt=<math>{\scriptstyle\partial \Omega }</math> | ||
Line 88: | Line 88: | ||
| <math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math> | | <math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math> | ||
|- | |- | ||
| [[Gauss's law for magnetism]] | | [[Gauss's law for magnetism|चुंबकत्व के लिए गॉस का सिद्धांत]] | ||
| {{oiint | | {{oiint | ||
| intsubscpt = <math>{\scriptstyle \partial \Omega }</math> | | intsubscpt = <math>{\scriptstyle \partial \Omega }</math> | ||
Line 95: | Line 95: | ||
| <math>\nabla \cdot \mathbf{B} = 0</math> | | <math>\nabla \cdot \mathbf{B} = 0</math> | ||
|- | |- | ||
| | | मैक्सवेल-फैराडे समीकरण (फैराडे का आगमन का सिद्धांत) | ||
|<math>\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = - \frac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{B} \cdot \mathrm{d}\mathbf{S} </math> | |<math>\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = - \frac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{B} \cdot \mathrm{d}\mathbf{S} </math> | ||
| <math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math> | | <math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math> | ||
|- | |- | ||
| | | एम्पीयर का परिपथीय सिद्धांत (मैक्सवेल के जोड़ के साथ) | ||
| <math> | | <math> | ||
\begin{align} | \begin{align} | ||
Line 133: | Line 133: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! scope="col" style="width: 15em;" | | ! scope="col" style="width: 15em;" | नाम | ||
! scope="col" | | ! scope="col" | अभिन्न समीकरण | ||
! scope="col" | | ! scope="col" | विभेदक समीकरण | ||
|- | |- | ||
|[[Gauss's law]] | |[[Gauss's law|गॉस का सिद्धांत]] | ||
|{{oiint | |{{oiint | ||
| intsubscpt=<math>{\scriptstyle\partial \Omega }</math> | | intsubscpt=<math>{\scriptstyle\partial \Omega }</math> | ||
Line 144: | Line 144: | ||
| <math>\nabla \cdot \mathbf{E} = 4\pi\rho </math> | | <math>\nabla \cdot \mathbf{E} = 4\pi\rho </math> | ||
|- | |- | ||
|[[Gauss's law for magnetism]] | |[[Gauss's law for magnetism|चुंबकत्व के लिए गॉस का सिद्धांत]] | ||
|{{oiint | |{{oiint | ||
| intsubscpt = <math>{\scriptstyle \partial \Omega }</math> | | intsubscpt = <math>{\scriptstyle \partial \Omega }</math> | ||
Line 151: | Line 151: | ||
| <math>\nabla \cdot \mathbf{B} = 0</math> | | <math>\nabla \cdot \mathbf{B} = 0</math> | ||
|- | |- | ||
| | | मैक्सवेल-फैराडे समीकरण (फैराडे का आगमन का सिद्धांत) | ||
| <math>\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = -\frac{1}{c}\frac{\mathrm{d}}{\mathrm{d}t}\iint_\Sigma \mathbf{B}\cdot\mathrm{d}\mathbf{S}</math> | | <math>\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = -\frac{1}{c}\frac{\mathrm{d}}{\mathrm{d}t}\iint_\Sigma \mathbf{B}\cdot\mathrm{d}\mathbf{S}</math> | ||
| <math>\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}} {\partial t}</math> | | <math>\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}} {\partial t}</math> | ||
|- | |- | ||
| | |एम्पीयर का परिपथीय सिद्धांत (मैक्सवेल के जोड़ के साथ) | ||
| <math> | | <math> | ||
\begin{align} | \begin{align} | ||
Line 215: | Line 215: | ||
{{Further|Electromagnetic wave equation|Inhomogeneous electromagnetic wave equation|Sinusoidal plane-wave solutions of the electromagnetic wave equation|Helmholtz equation}} | {{Further|Electromagnetic wave equation|Inhomogeneous electromagnetic wave equation|Sinusoidal plane-wave solutions of the electromagnetic wave equation|Helmholtz equation}} | ||
[[File:Electromagneticwave3D.gif|thumb|यह 3डी आरेख एक विमान को रैखिक रूप से ध्रुवीकृत लहर दिखाता है जो बाएं से दाएं फैलता है, जिसे परिभाषित किया गया है {{math|1='''E''' = '''E'''<sub>0</sub> sin(−''ωt'' + '''k''' ⋅ '''r''')}} और {{math|1='''B''' = '''B'''<sub>0</sub> sin(−''ωt'' + '''k''' ⋅ '''r''')}} झिलमिलाहट बिंदु पर दोलनशील क्षेत्रों का पता लगाया जाता है। क्षैतिज तरंग दैर्ध्य λ है। {{math|1='''E'''<sub>0</sub> ⋅ '''B'''<sub>0</sub> = 0 = '''E'''<sub>0</sub> ⋅ '''k''' = '''B'''<sub>0</sub> ⋅ '''k'''}}]]बिना आवेश वाले क्षेत्र में (ρ = 0) और कोई धारा नहीं (J = 0), जैसे निर्वात में, मैक्सवेल के समीकरण कम हो जाते हैं: | [[File:Electromagneticwave3D.gif|thumb|यह 3डी आरेख एक विमान को रैखिक रूप से ध्रुवीकृत लहर दिखाता है जो बाएं से दाएं फैलता है, जिसे परिभाषित किया गया है {{math|1='''E''' = '''E'''<sub>0</sub> sin(−''ωt'' + '''k''' ⋅ '''r''')}} और {{math|1='''B''' = '''B'''<sub>0</sub> sin(−''ωt'' + '''k''' ⋅ '''r''')}} झिलमिलाहट बिंदु पर दोलनशील क्षेत्रों का पता लगाया जाता है। क्षैतिज तरंग दैर्ध्य λ है। {{math|1='''E'''<sub>0</sub> ⋅ '''B'''<sub>0</sub> = 0 = '''E'''<sub>0</sub> ⋅ '''k''' = '''B'''<sub>0</sub> ⋅ '''k'''}}]]बिना आवेश वाले क्षेत्र में (ρ = 0) और कोई धारा नहीं '''(J = 0'''), जैसे निर्वात में, मैक्सवेल के समीकरण कम हो जाते हैं: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\nabla \cdot \mathbf{E} &= 0, & \nabla \times \mathbf{E} &= -\frac{\partial\mathbf B}{\partial t}, \\ | \nabla \cdot \mathbf{E} &= 0, & \nabla \times \mathbf{E} &= -\frac{\partial\mathbf B}{\partial t}, \\ | ||
Line 245: | Line 245: | ||
सूक्ष्म संस्करण को कभी-कभी "मैक्सवेल के समीकरण एक निर्वात में" कहा जाता है: यह इस तथ्य को संदर्भित करता है कि भौतिक माध्यम समीकरणों की संरचना में निर्मित नहीं है, लेकिन केवल आवेश और वर्तमान शर्तों में प्रकट होता है। लोरेंत्ज़ द्वारा सूक्ष्म संस्करण पेश किया गया था, जिन्होंने इसके सूक्ष्म घटकों से थोक पदार्थ के स्थूल गुणों को प्राप्त करने के लिए इसका उपयोग करने की कोशिश की।<ref name="MiltonSchwinger2006">{{cite book|author1=Kimball Milton|author2=J. Schwinger|title=Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators|date=18 June 2006|publisher=Springer Science & Business Media|isbn=978-3-540-29306-4}}</ref>{{rp|5}} | सूक्ष्म संस्करण को कभी-कभी "मैक्सवेल के समीकरण एक निर्वात में" कहा जाता है: यह इस तथ्य को संदर्भित करता है कि भौतिक माध्यम समीकरणों की संरचना में निर्मित नहीं है, लेकिन केवल आवेश और वर्तमान शर्तों में प्रकट होता है। लोरेंत्ज़ द्वारा सूक्ष्म संस्करण पेश किया गया था, जिन्होंने इसके सूक्ष्म घटकों से थोक पदार्थ के स्थूल गुणों को प्राप्त करने के लिए इसका उपयोग करने की कोशिश की।<ref name="MiltonSchwinger2006">{{cite book|author1=Kimball Milton|author2=J. Schwinger|title=Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators|date=18 June 2006|publisher=Springer Science & Business Media|isbn=978-3-540-29306-4}}</ref>{{rp|5}} | ||
"मैक्सवेल के स्थूल समीकरण", जिसे '''पदार्थ में मैक्सवेल के समीकरण''' के रूप में भी जाना जाता है, मैक्सवेल द्वारा प्रस्तुत किए गए समीकरणों के समान ही हैं। | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! scope="col" style="width: 15em;" | | ! scope="col" style="width: 15em;" | नाम | ||
! scope="col" | | ! scope="col" | अभिन्न समीकरण<br /> (SI सम्मेलन) | ||
! scope="col" | | ! scope="col" | विभेदक समीकरण<br /> (SI सम्मेलन) | ||
! scope="col" | | ! scope="col" | विभेदक समीकरण<br /> (गौस्सियन सम्मेलन) | ||
|- | |- | ||
| Gauss's law | | [[Gauss's law|गॉस का सिद्धांत]] | ||
| {{oiint | | {{oiint | ||
| intsubscpt = <math>{\scriptstyle \partial \Omega }</math> | | intsubscpt = <math>{\scriptstyle \partial \Omega }</math> | ||
Line 262: | Line 262: | ||
| <math> \nabla \cdot \mathbf{D} = 4\pi\rho_\text{f}</math> | | <math> \nabla \cdot \mathbf{D} = 4\pi\rho_\text{f}</math> | ||
|- | |- | ||
| | | एम्पीयर का परिपथीय सिद्धांत (मैक्सवेल के जोड़ के साथ) | ||
| <math> | | <math> | ||
\begin{align} | \begin{align} | ||
Line 272: | Line 272: | ||
| <math> \nabla \times \mathbf{H} = \frac{1}{c} \left(4\pi\mathbf{J}_\text{f} + \frac{\partial \mathbf{D}} {\partial t} \right)</math> | | <math> \nabla \times \mathbf{H} = \frac{1}{c} \left(4\pi\mathbf{J}_\text{f} + \frac{\partial \mathbf{D}} {\partial t} \right)</math> | ||
|- | |- | ||
| Gauss's law for magnetism | | [[Gauss's law for magnetism|चुंबकत्व के लिए गॉस का सिद्धांत]] | ||
| {{oiint | | {{oiint | ||
| intsubscpt = <math>{\scriptstyle \partial \Omega }</math> | | intsubscpt = <math>{\scriptstyle \partial \Omega }</math> | ||
Line 280: | Line 280: | ||
| <math>\nabla \cdot \mathbf{B} = 0</math> | | <math>\nabla \cdot \mathbf{B} = 0</math> | ||
|- | |- | ||
| | | मैक्सवेल-फैराडे समीकरण (फैराडे का आगमन का सिद्धांत) | ||
| <math>\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = - \frac{d}{dt} \iint_{\Sigma} \mathbf B \cdot \mathrm{d}\mathbf{S} </math> | | <math>\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = - \frac{d}{dt} \iint_{\Sigma} \mathbf B \cdot \mathrm{d}\mathbf{S} </math> | ||
|<math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math> | |<math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math> | ||
Line 339: | Line 339: | ||
अनुप्रयोगों में किसी को यह भी वर्णन करना होता है कि '''E''' और '''B''' के संदर्भ में मुक्त धाराएं और आवेश घनत्व कैसे व्यवहार करते हैं, संभवतः दबाव, और द्रव्यमान, संख्या घनत्व, और चार्ज करने वाले कणों के वेग जैसे अन्य भौतिक मात्राओं के साथ मिलकर। उदाहरण के लिए, मैक्सवेल द्वारा दिए गए मूल समीकरण (मैक्सवेल के समीकरणों का इतिहास देखें) में ओम का नियम शामिल है | अनुप्रयोगों में किसी को यह भी वर्णन करना होता है कि '''E''' और '''B''' के संदर्भ में मुक्त धाराएं और आवेश घनत्व कैसे व्यवहार करते हैं, संभवतः दबाव, और द्रव्यमान, संख्या घनत्व, और चार्ज करने वाले कणों के वेग जैसे अन्य भौतिक मात्राओं के साथ मिलकर। उदाहरण के लिए, मैक्सवेल द्वारा दिए गए मूल समीकरण (मैक्सवेल के समीकरणों का इतिहास देखें) में ओम का नियम शामिल है | ||
== <math display="block">\mathbf{J}_\text{f} = \sigma \mathbf{E}.</math>वैकल्पिक सूत्रीकरण ==<!--In the table below: Lorenz is the correct name (not Lorentz).--> | |||
== वैकल्पिक सूत्रीकरण == | |||
<!--In the table below: Lorenz is the correct name (not Lorentz).--> | |||
{{For|an overview|Mathematical descriptions of the electromagnetic field}} | {{For|an overview|Mathematical descriptions of the electromagnetic field}} | ||
Line 353: | Line 350: | ||
{|class="wikitable" | {|class="wikitable" | ||
|+ [[Vector calculus]] | |+ [[Vector calculus|वेक्टर]] [[Tensor calculus|कैलकुलस]] | ||
! scope="column" | | ! scope="column" | सूत्रीकरण | ||
! scope="column" | | ! scope="column" | सजातीय समीकरण | ||
! scope="column" | | ! scope="column" | विषम समीकरण | ||
|- | |- | ||
| | | क्षेत्र | ||
3डी यूक्लिडियन स्पेस + टाइम | |||
| <math>\nabla\cdot\mathbf{B} = 0</math><br /> | | <math>\nabla\cdot\mathbf{B} = 0</math><br /> | ||
<math>\nabla\times\mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}</math> | <math>\nabla\times\mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}</math> | ||
Line 365: | Line 362: | ||
<math>\nabla\times\mathbf{B} - \frac{1}{c^2}\frac{\partial \mathbf{E}}{\partial t} = \mu_0\mathbf{J}</math> | <math>\nabla\times\mathbf{B} - \frac{1}{c^2}\frac{\partial \mathbf{E}}{\partial t} = \mu_0\mathbf{J}</math> | ||
|- | |- | ||
| | | संभावित (कोई गेज) | ||
3डी यूक्लिडियन स्पेस + टाइम | |||
| <math>\mathbf B = \mathbf \nabla \times \mathbf A</math><br /> | | <math>\mathbf B = \mathbf \nabla \times \mathbf A</math><br /> | ||
<math>\mathbf E = - \mathbf \nabla \varphi - \frac{\partial \mathbf A}{\partial t}</math> | <math>\mathbf E = - \mathbf \nabla \varphi - \frac{\partial \mathbf A}{\partial t}</math> | ||
Line 372: | Line 369: | ||
<math>\left( -\nabla^2 + \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right) \mathbf A + \mathbf \nabla \left( \mathbf \nabla \cdot \mathbf A + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right) = \mu_0 \mathbf{J}</math> | <math>\left( -\nabla^2 + \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right) \mathbf A + \mathbf \nabla \left( \mathbf \nabla \cdot \mathbf A + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right) = \mu_0 \mathbf{J}</math> | ||
|- | |- | ||
| | | संभावित (लॉरेंज गेज) | ||
3डी यूक्लिडियन स्पेस + टाइम | |||
| <math>\mathbf B = \mathbf \nabla \times \mathbf A</math><br /> | | <math>\mathbf B = \mathbf \nabla \times \mathbf A</math><br /> | ||
<math>\mathbf E = - \mathbf \nabla \varphi - \frac{\partial \mathbf A}{\partial t}</math><br /> | <math>\mathbf E = - \mathbf \nabla \varphi - \frac{\partial \mathbf A}{\partial t}</math><br /> | ||
Line 382: | Line 379: | ||
{|class="wikitable" | {|class="wikitable" | ||
|+ [[Tensor calculus]] | |+ [[Tensor calculus|टेंसर कैलकुलस]] | ||
! scope="column" | | ! scope="column" | सूत्रीकरण | ||
! scope="column" | | ! scope="column" | सजातीय समीकरण | ||
! scope="column" | | ! scope="column" | विषम समीकरण | ||
|- | |- | ||
| | | क्षेत्र | ||
अंतरिक्ष + समय | |||
समय से स्वतंत्र स्थानिक मीट्रिक | |||
|<math> | |<math> | ||
\begin{align} | \begin{align} | ||
Line 408: | Line 405: | ||
</math> | </math> | ||
|- | |- | ||
| | |क्षमता | ||
अंतरिक्ष (§ टोपोलॉजिकल प्रतिबंधों के साथ) + समय | |||
समय से स्वतंत्र स्थानिक मीट्रिक | |||
|<math> | |<math> | ||
\begin{align} | \begin{align} | ||
Line 431: | Line 428: | ||
</math> | </math> | ||
|- | |- | ||
| | |संभावित (लॉरेंज गेज) | ||
अंतरिक्ष (स्थलीय प्रतिबंधों के साथ) + समय | |||
समय से स्वतंत्र स्थानिक मीट्रिक | |||
|<math> | |<math> | ||
\begin{align} | \begin{align} | ||
Line 459: | Line 456: | ||
{|class="wikitable" | {|class="wikitable" | ||
|+ [[Exterior calculus| | |+ [[Exterior calculus|विभेदक रूप]] | ||
! scope="column" | | ! scope="column" | सूत्रीकरण | ||
! scope="column" | | ! scope="column" | सजातीय समीकरण | ||
! scope="column" | | ! scope="column" | विषम समीकरण | ||
|- | |- | ||
| | |क्षेत्र | ||
कोई स्थान + समय | |||
|<math>dB = 0</math><br /> | |<math>dB = 0</math><br /> | ||
<math>dE + \frac{\partial B}{\partial t} = 0</math> | <math>dE + \frac{\partial B}{\partial t} = 0</math> | ||
Line 471: | Line 468: | ||
<math>d{\star}B - \frac{1}{c^2} \frac{\partial{\star}E}{\partial t} = \mu_0 J</math> | <math>d{\star}B - \frac{1}{c^2} \frac{\partial{\star}E}{\partial t} = \mu_0 J</math> | ||
|- | |- | ||
| | |संभावित (और गेज) | ||
कोई भी स्थान (§ टोपोलॉजिकल प्रतिबंधों के साथ) + समय | |||
|<math>B = dA</math><br /> | |<math>B = dA</math><br /> | ||
<math>E = -d\varphi - \frac{\partial A}{\partial t}</math> | <math>E = -d\varphi - \frac{\partial A}{\partial t}</math> | ||
Line 482: | Line 479: | ||
</math> | </math> | ||
|- | |- | ||
| | |संभावित (लॉरेंज गेज) | ||
कोई भी स्थान (स्थलीय प्रतिबंधों के साथ) + समय | |||
समय से स्वतंत्र स्थानिक मीट्रिक | |||
|<math>B = dA</math><br /> | |<math>B = dA</math><br /> | ||
<math>E = -d\varphi - \frac{\partial A}{\partial t}</math><br /> | <math>E = -d\varphi - \frac{\partial A}{\partial t}</math><br /> |
Revision as of 02:38, 17 May 2023
Articles about |
Electromagnetism |
---|
मैक्सवेल के समीकरण, या मैक्सवेल-हेविसाइड समीकरण, युग्मित आंशिक विभेदक समीकरणों का एक संग्रह हैं, जो लोरेंत्ज़ बल सिद्धांत के साथ शास्त्रीय विद्युत चुंबकत्व, शास्त्रीय प्रकाशिकी और विद्युत परिपथों की नींव बनाते हैं। समीकरण इलेक्ट्रिक, ऑप्टिकल और रेडियो तकनीकों के लिए एक गणितीय प्रतिरूप प्रदान करते हैं, जैसे कि बिजली उत्पादन, बिजली का आवेश, तार रहित संचार, लेंस, रडार आदि। वे वर्णन करते हैं कि विद्युत और चुंबकीय क्षेत्र कैसे आवेशों, विद्युत धाराओं और क्षेत्रों के परिवर्तनों द्वारा उत्पन्न होते हैं।[note 1] समीकरणों का नाम भौतिक विज्ञानी और गणितज्ञ जेम्स क्लर्क मैक्सवेल के नाम पर रखा गया है, जिन्होंने 1861 और 1862 में, समीकरणों का एक प्रारंभिक रूप प्रकाशित किया जिसमें लोरेंत्ज़ बल सिद्धांत शामिल था। मैक्सवेल ने सबसे पहले समीकरणों का उपयोग यह प्रस्तावित करने के लिए किया कि प्रकाश एक विद्युत चुम्बकीय घटना है। उनके सबसे सामान्य सूत्रीकरण में समीकरणों के आधुनिक रूप का श्रेय ओलिवर हीविसाइड को दिया जाता है।[1]
मैक्सवेल के समीकरणों को यह प्रदर्शित करने के लिए संयोजित किया जा सकता है कि कैसे विद्युत चुम्बकीय क्षेत्रों (तरंगों) में उतार-चढ़ाव निर्वात में एक स्थिर गति से फैलता है, प्रकाश की गति (299792458 m/s).[2] विद्युत चुम्बकीय विकिरण के रूप में जाना जाता है, ये तरंगें रेडियो तरंगों से गामा किरणों तक विकिरण के एक वर्णक्रम का उत्पादन करने के लिए विभिन्न तरंग दैर्ध्य पर होती हैं।
समीकरणों के दो प्रमुख रूप हैं। सूक्ष्म समीकरणों में सार्वभौमिक प्रयोज्यता होती है लेकिन सामान्य गणनाओं के लिए बोझिल होते हैं। वे विद्युत और चुंबकीय क्षेत्र को कुल आवेश और कुल धारा से संबंधित करते हैं, जिसमें परमाणु मापक पर सामग्री में जटिल आवेश और धाराएँ शामिल हैं। मैक्रोस्कोपिक समीकरण दो नए सहायक क्षेत्रों को परिभाषित करते हैं जो पदार्थ के बड़े मापक पर व्यवहार का वर्णन करते हैं बिना परमाणु-मापक के शुल्क और चक्रण जैसी क्वांटम घटनाओं पर विचार किए बिना। हालांकि, उनके उपयोग के लिए सामग्री के विद्युत चुम्बकीय प्रतिक्रिया के घटनात्मक विवरण के लिए प्रयोगात्मक रूप से निर्धारित प्राचल की आवश्यकता होती है। "मैक्सवेल के समीकरण" शब्द का प्रयोग प्रायः वैकल्पिक योगों के लिए भी किया जाता है। विद्युत और चुंबकीय सदिश क्षमता के आधार पर मैक्सवेल के समीकरणों के संस्करणों को सीमा मूल्य समस्या, विश्लेषणात्मक यांत्रिकी के रूप में हल करने लिए पसंद किया जाता है। सहपरिवर्ती सूत्रीकरण (अलग-अलग स्थान और समय के बजाय स्पेसटाइम पर) विशेष सापेक्षता प्रकट के साथ मैक्सवेल के समीकरणों की अनुकूलता बनाता है। आमतौर पर उच्च-ऊर्जा और गुरुत्वाकर्षण भौतिकी में उपयोग किए किए जाने वाले, घुमावदार स्पेसटाइम में मैक्सवेल के समीकरण, सामान्य सापेक्षता के साथ संगत होते हैं।[note 2] वास्तव में, अल्बर्ट आइंस्टीन ने प्रकाश की अपरिवर्तनीय गति को समायोजित करने के लिए विशेष और सामान्य सापेक्षता विकसित की, मैक्सवेल के समीकरणों का एक परिणाम, इस सिद्धांत के साथ कि केवल सापेक्ष गति के भौतिक परिणाम होते हैं।
समीकरणों के प्रकाशन ने पहले अलग-अलग वर्णित घटनाओं के लिए एक सिद्धांत के एकीकरण (भौतिकी) को चिह्नित किया: चुंबकत्व, बिजली, प्रकाश और संबद्ध विकिरण। 20वीं शताब्दी के मध्य से, यह समझा गया है कि मैक्सवेल के समीकरण विद्युत चुंबकीय घटना का सटीक विवरण नहीं देते हैं, बल्कि क्वांटम इलेक्ट्रोडायनामिक्स के अधिक सटीक सिद्धांत की शास्त्रीय क्षेत्र सिद्धांत सीमा हैं।
समीकरणों का इतिहास
वैचारिक विवरण
गॉस का सिद्धांत
गॉस का सिद्धांत एक स्थिर विद्युत क्षेत्र और विद्युत आवेशों के बीच के संबंध का वर्णन करता है: एक स्थिर विद्युत क्षेत्र सकारात्मक आवेशों से ऋणात्मक आवेशों की ओर इशारा करता है, और एक बंद सतह के माध्यम से विद्युत क्षेत्र का शुद्ध बहिर्वाह बाध्य आवेश सहित संलग्न आवेश के समानुपाती होता है, सामग्री के ध्रुवीकरण के कारण अनुपात का गुणांक मुक्त स्थान की पारगम्यता है।
चुम्बकत्व के लिए गॉस का सिद्धांत
चुंबकत्व के लिए गॉस का सिद्धांत कहता है कि विद्युत आवेशों का कोई चुंबकीय एनालॉग नहीं होता है, जिन्हें चुंबकीय मोनोपोल कहा जाता है; अलगाव में कोई उत्तर या दक्षिण चुंबकीय ध्रुव मौजूद नहीं है।[3] इसके बजाय, एक सामग्री के चुंबकीय क्षेत्र को एक द्विध्रुवीय के लिए जिम्मेदार ठहराया जाता है, और एक बंद सतह के माध्यम से चुंबकीय क्षेत्र का शुद्ध बहिर्वाह शून्य होता है। चुंबकीय द्विध्रुव को समान और विपरीत "चुंबकीय आवेशों" के वर्तमान या अविभाज्य युग्मों के परिपथ के रूप में दर्शाया जा सकता है। संक्षेप में, गॉसियन सतह के माध्यम से कुल चुंबकीय प्रवाह शून्य है, और चुंबकीय क्षेत्र एक सोलेनोइडल वेक्टर क्षेत्र है।[note 3]
फैराडे का सिद्धांत
फैराडे के प्रेरण के सिद्धांत का मैक्सवेल-फैराडे संस्करण यह बताता है कि कैसे एक समय-भिन्न चुंबकीय क्षेत्र एक विद्युत क्षेत्र के कर्ल से मेल खाता है। अभिन्न रूप में, यह बताता है कि एक बंद परिपथ के चारों ओर प्रभार को स्थानांतरित करने के लिए आवश्यक प्रति यूनिट प्रभार का कार्य संलग्न सतह के माध्यम से चुंबकीय प्रवाह के परिवर्तन की दर के बराबर होता है।
मैक्सवेल के जोड़ के साथ एम्पीयर का सिद्धांत
एम्पीयर का मूल सिद्धांत बताता है कि चुंबकीय क्षेत्र विद्युत प्रवाह से संबंधित हैं। मैक्सवेल के जोड़ में कहा गया है कि वे बदलते विद्युत क्षेत्रों से भी संबंधित हैं, जिसे मैक्सवेल ने विस्थापन धारा कहा है। अभिन्न रूप बताता है कि विद्युत और विस्थापन धाराएं किसी भी संलग्न वक्र के साथ आनुपातिक चुंबकीय क्षेत्र से जुड़ी होती हैं।
एम्पीयर के सिद्धांत में मैक्सवेल का जुड़ाव महत्वपूर्ण है क्योंकि एम्पीयर और गॉस के सिद्धांतों को अन्यथा स्थिर क्षेत्रों के लिए समायोजित किया जाना चाहिए।[4][clarification needed] परिणामस्वरूप, यह भविष्यवाणी करता है कि एक घूर्णन चुंबकीय क्षेत्र होता है।[3][5] एक और परिणाम स्व-स्थायी विद्युत चुम्बकीय तरंगों का अस्तित्व है जो खाली जगह से यात्रा करता है।
विद्युत चुम्बकीय तरंगों के लिए गणना की गई गति, जिसकी भविष्यवाणी आवेशों और धाराओं पर किए गए प्रयोगों से की जा सकती है,[note 4] प्रकाश की गति से मेल खाती है; वास्तव में, प्रकाश विद्युत चुम्बकीय विकिरण का एक रूप है (जैसे एक्स-रे, रेडियो तरंगें और अन्य)। मैक्सवेल ने 1861 में विद्युत चुम्बकीय तरंगों और प्रकाश के बीच संबंध को समझा, जिससे विद्युत चुंबकत्व और प्रकाशिकी के सिद्धांतों को एकीकृत किया गया।
विद्युत और चुंबकीय क्षेत्र के संदर्भ में सूत्रीकरण (सूक्ष्म या निर्वात संस्करण में)
विद्युत और चुंबकीय क्षेत्र के सूत्रीकरण में चार समीकरण हैं जो दिए गए आवेश और वर्तमान वितरण के लिए क्षेत्र निर्धारित करते हैं। प्रकृति का एक अलग सिद्धांत, लोरेंत्ज़ बल सिद्धांत, वर्णन करता है कि कैसे, इसके विपरीत, विद्युत और चुंबकीय क्षेत्र आवेशित कणों और धाराओं पर कार्य करते हैं। मैक्सवेल द्वारा इस सिद्धांत के एक संस्करण को मूल समीकरणों में शामिल किया गया था, लेकिन परंपरा के अनुसार अब इसे शामिल नहीं किया गया है। ओलिवर हीविसाइड का कार्य नीचे वेक्टर कलन औपचारिकता,[6][7] मानक बन गया है। यह प्रकट रूप से घूर्णन अपरिवर्तनीय है, और इसलिए एक्स, वाई, जेड घटकों में मैक्सवेल के मूल 20 समीकरणों की तुलना में गणितीय रूप से अधिक पारदर्शी है। सापेक्षवादी योग और भी अधिक सममित और स्पष्ट रूप से लोरेंत्ज़ अपरिवर्तनीय हैं। टेंसर कैलकुलस या डिफरेंशियल फॉर्म का उपयोग करके व्यक्त किए गए समान समीकरणों के लिए, § वैकल्पिक फॉर्मूलेशन देखें।
अवकलन और समाकलन सूत्रीकरण गणितीय रूप से समतुल्य हैं; दोनों उपयोगी हैं। अभिन्न सूत्रीकरण अंतरिक्ष के एक क्षेत्र के भीतर क्षेत्रों को सीमा पर क्षेत्रों से संबंधित करता है और अक्सर शुल्क और धाराओं के सममित वितरण से फ़ील्ड को सरल और सीधे गणना करने के लिए उपयोग किया जा सकता है। दूसरी ओर, अंतर समीकरण पूरी तरह से स्थानीय हैं और अधिक जटिल (कम सममित) स्थितियों में क्षेत्रों की गणना के लिए एक अधिक प्राकृतिक प्रारंभिक बिंदु हैं, उदाहरण के लिए परिमित तत्व विश्लेषण का उपयोग करना।[8]
अंकन की कुंजी
बोल्ड में प्रतीक सदिश (ज्यामितीय) मात्रा का प्रतिनिधित्व करते हैं, और 'इटैलिक' में प्रतीक सदिश (भौतिकी) मात्रा का प्रतिनिधित्व करते हैं, जब तक कि अन्यथा संकेत न दिया जाए। समीकरण विद्युत क्षेत्र, E, एक सदिश क्षेत्र, और चुंबकीय क्षेत्र, B, एक छद्म सदिश क्षेत्र, प्रत्येक में आम तौर पर समय और स्थान पर निर्भरता होती है। सूत्र हैं
- कुल विद्युत आवेश घनत्व (कुल आवेश प्रति इकाई आयतन), ρ, और
- कुल विद्युत प्रवाह घनत्व (कुल वर्तमान प्रति इकाई क्षेत्र), J.
समीकरणों में दिखाई देने वाले सार्वभौमिक स्थिरांक (पहले दो स्पष्ट रूप से केवल SI इकाइयों के निर्माण में) हैं:
- मुक्त स्थान की पारगम्यता, ε0, और
- मुक्त स्थान की पारगम्यता, μ0, और
- प्रकाश की गति,
विभेदक समीकरण
अवकल समीकरणों में,
- नबला प्रतीक, ∇, त्रि-आयामी ढाल संचालक, की को दर्शाता है,
- द ∇⋅ प्रतीक (उच्चारण डेल डॉट) विचलन संचालक को दर्शाता है,
- द ∇× प्रतीक (उच्चारण डेल क्रॉस) कर्ल (गणित) संचालक को दर्शाता है।
अभिन्न समीकरण
अभिन्न समीकरणों में,
- Ω बंद सीमा सतह ∂Ω के साथ कोई आयतन है, और
- Σ बंद सीमा वक्र ∂Σ वाली कोई भी सतह है,
समय-स्वतंत्र सतहों और संस्करणों के साथ समीकरणों की व्याख्या करना थोड़ा आसान है। समय-स्वतंत्र सतहें और संस्करण "स्थिर" हैं और किसी निश्चित समय अंतराल में नहीं बदलते हैं। उदाहरण के लिए, चूंकि सतह समय-स्वतंत्र है, हम फैराडे के कानून में अभिन्न चिह्न के तहत भिन्नता ला सकते हैं:
- सीमा सतह ∂Ω पर एक सतह अभिन्न है, जिसमें परिपथ इंगित करता है कि सतह बंद है
- आयतन Ω का आयतन समाकलन है,
- सीमा वक्र ∂Σ के चारों ओर एक रेखा अभिन्न है, जिसमें परिपथ इंगित करता है कि वक्र बंद है।
- सतह Σ पर एक सतह अभिन्न है,
- Ω में परिबद्ध कुल विद्युत आवेश Q, आवेश घनत्व ρ के Ω से अधिक आयतन अभिन्न है (नीचे "स्थूलदर्शीय सूत्रीकरण" अनुभाग देखें): जहाँ dV आयतन तत्व है।
- शुद्ध विद्युत प्रवाह I एक निश्चित सतह से गुजरने वाले विद्युत प्रवाह घनत्व J का सतही अभिन्न अंग है, Σ:जहाँ dS सतह क्षेत्र S के विभेदक सदिश तत्व को दर्शाता है, जो सतह Σ के लिए सामान्य है। (सदिश क्षेत्र को कभी-कभी S के बजाय A द्वारा दर्शाया जाता है, लेकिन यह चुंबकीय वेक्टर क्षमता के संकेतन के साथ संघर्ष करता है)।
एसआई इकाइयों के सम्मेलन में सूत्रीकरण
नाम | अभिन्न समीकरण | विभेदक समीकरण |
---|---|---|
गॉस का सिद्धांत | ||
चुंबकत्व के लिए गॉस का सिद्धांत | ||
मैक्सवेल-फैराडे समीकरण (फैराडे का आगमन का सिद्धांत) | ||
एम्पीयर का परिपथीय सिद्धांत (मैक्सवेल के जोड़ के साथ) |
गाऊसी इकाइयों के सम्मेलन में सूत्रीकरण
परिपाटी द्वारा गणना की इकाइयों में ε0 और μ0 के आयामी कारकों को अवशोषित करके, सैद्धांतिक गणना को सरल बनाने के लिए आवेश, विद्युत क्षेत्र और चुंबकीय क्षेत्र की परिभाषाओं को बदला जा सकता है। लोरेंत्ज़ बल नियम के लिए सम्मेलन में एक समान परिवर्तन के साथ यह समान भौतिकी, यानी आवेशित कणों के प्रक्षेपवक्र, या विद्युत मोटर द्वारा किए गए कार्य का उत्पादन करता है। इन परिभाषाओं को अक्सर सैद्धांतिक और उच्च ऊर्जा भौतिकी में पसंद किया जाता है जहां विद्युत चुम्बकीय टेन्सर की उपस्थिति को सरल बनाने के लिए विद्युत और चुंबकीय क्षेत्र को समान इकाइयों के साथ लेना स्वाभाविक है: विद्युत और चुंबकीय क्षेत्र को एकीकृत करने वाले लोरेंत्ज़ कोवेरिएंट ऑब्जेक्ट में तब समान इकाई और आयाम वाले घटक होंगे।[9]: vii ऐसी संशोधित परिभाषाएँ पारंपरिक रूप से गॉसियन (CGS) इकाइयों के साथ उपयोग की जाती हैं। इन परिभाषाओं और परंपराओं का उपयोग करते हुए, बोलचाल की भाषा में "गाऊसी इकाइयों में",[10] मैक्सवेल समीकरण बन जाते हैं:[11]
नाम | अभिन्न समीकरण | विभेदक समीकरण |
---|---|---|
गॉस का सिद्धांत | ||
चुंबकत्व के लिए गॉस का सिद्धांत | ||
मैक्सवेल-फैराडे समीकरण (फैराडे का आगमन का सिद्धांत) | ||
एम्पीयर का परिपथीय सिद्धांत (मैक्सवेल के जोड़ के साथ) |
जब प्रकाश की गति में मात्राओं की एक प्रणाली को चुना जाता है, तो समीकरण थोड़ा सा सरल हो जाता है, c, का उपयोग गैर-आयामीकरण के लिए किया जाता है, ताकि, उदाहरण के लिए, सेकंड और लाइटसेकंड विनिमेय हों, और c = 1।
आगे के परिवर्तन, जिन्हें युक्तिकरण कहा जाता है, 4π के कारकों को अवशोषित करके संभव हैं, क्या कूलम्ब के नियम या गॉस के नियम में ऐसा कारक शामिल है (मुख्य रूप से कण भौतिकी में उपयोग की जाने वाली हीविसाइड-लोरेंत्ज़ इकाइयां देखें)।
अंतर और अभिन्न योगों के बीच संबंध
अंतर और अभिन्न योगों की समानता गॉस विचलन प्रमेय और केल्विन-स्टोक्स प्रमेय का एक परिणाम है।
प्रवाह और विचलन
(विशुद्ध रूप से गणितीय) गॉस डाइवर्जेंस प्रमेय के अनुसार, सीमा सतह ∂Ω के माध्यम से विद्युत प्रवाह को फिर से लिखा जा सकता है
गॉस के समीकरण का अभिन्न संस्करण इस प्रकार फिर से लिखा जा सकता है
चूंकि Ω मनमाना है (उदाहरण के लिए मनमाने केंद्र के साथ एक मनमानी छोटी गेंद), यह केवल तभी संतुष्ट होता है जब एकीकरण हर जगह शून्य हो। यह एक तुच्छ पुनर्व्यवस्था तक गॉस समीकरण का अवकल समीकरण सूत्रीकरण है।
इसी प्रकार चुम्बकत्व के लिए गॉस के नियम में चुम्बकीय फ्लक्स को समाकलित रूप में पुनः लिखने से प्राप्त होता है
जो सभी के लिए संतुष्ट है Ω अगर और केवल अगर हर जगह।
परिसंचरण और कर्ल
केल्विन-स्टोक्स प्रमेय द्वारा हम बंद सीमा वक्र ∂Σ के चारों ओर क्षेत्र के रेखा अभिन्न को "क्षेत्र का प्रचलन" (यानी उनके कर्ल) के अभिन्न अंग को एक सतह पर फिर से लिख सकते हैं, यानी।
रेखा अभिन्न और कर्ल शास्त्रीय द्रव गतिकी में मात्रा के अनुरूप होते हैं: एक तरल पदार्थ का संचलन एक बंद परिपथ के चारों ओर द्रव के प्रवाह वेग क्षेत्र का रेखा अभिन्न होता है, और तरल पदार्थ की वर्टिसिटी वेग क्षेत्र का कर्ल होता है।
प्रभार संरक्षण
आवेश के व्युत्क्रम को मैक्सवेल के समीकरणों के परिणाम के रूप में प्राप्त किया जा सकता है। संशोधित एम्पीयर के नियम के बाईं ओर डिव-कर्ल पहचान द्वारा शून्य विचलन है। दाहिने हाथ के विचलन का विस्तार करना, व्युत्पन्न का आदान-प्रदान करना और गॉस के नियम को लागू करना:
विशेष रूप से, एक पृथक प्रणाली में कुल आवेश संरक्षित होता है।
निर्वात समीकरण, विद्युत चुम्बकीय तरंगें और प्रकाश की गति
बिना आवेश वाले क्षेत्र में (ρ = 0) और कोई धारा नहीं (J = 0), जैसे निर्वात में, मैक्सवेल के समीकरण कम हो जाते हैं:
सापेक्ष पारगम्यता, εr, और सापेक्ष पारगम्यता, μr वाली सामग्रियों में, प्रकाश का चरण वेग बन जाता है
इसके साथ ही, E और B एक दूसरे के लिए लंबवत हैं और तरंग प्रसार की दिशा में हैं, और एक दूसरे के साथ चरण में हैं। एक ज्यावक्रीय समतल तरंग इन समीकरणों का एक विशेष हल है। मैक्सवेल के समीकरण बताते हैं कि कैसे ये तरंगें अंतरिक्ष के माध्यम से भौतिक रूप से फैल सकती हैं। बदलते चुंबकीय क्षेत्र फैराडे के नियम के माध्यम से एक बदलते विद्युत क्षेत्र का निर्माण करते हैं। बदले में, वह विद्युत क्षेत्र मैक्सवेल के अतिरिक्त एम्पीयर के नियम के माध्यम से एक बदलते चुंबकीय क्षेत्र का निर्माण करता है। यह सतत चक्र इन तरंगों को, जिसे अब विद्युत चुम्बकीय विकिरण के रूप में जाना जाता है, वेग c पर अंतरिक्ष के माध्यम से स्थानांतरित करने की अनुमति देता है।
स्थूलदर्शीय सूत्रीकरण
उपरोक्त समीकरण मैक्सवेल के समीकरणों के सूक्ष्म संस्करण हैं, जो विद्युत और चुंबकीय क्षेत्रों को (संभवतः परमाणु-स्तर) आवेशों और धाराओं के संदर्भ में व्यक्त करते हैं। इसे कभी-कभी "सामान्य" रूप कहा जाता है, लेकिन नीचे दिया गया स्थूलदर्शीय संस्करण समान रूप से सामान्य है, अंतर बहीखाता पद्धति का है।
सूक्ष्म संस्करण को कभी-कभी "मैक्सवेल के समीकरण एक निर्वात में" कहा जाता है: यह इस तथ्य को संदर्भित करता है कि भौतिक माध्यम समीकरणों की संरचना में निर्मित नहीं है, लेकिन केवल आवेश और वर्तमान शर्तों में प्रकट होता है। लोरेंत्ज़ द्वारा सूक्ष्म संस्करण पेश किया गया था, जिन्होंने इसके सूक्ष्म घटकों से थोक पदार्थ के स्थूल गुणों को प्राप्त करने के लिए इसका उपयोग करने की कोशिश की।[12]: 5
"मैक्सवेल के स्थूल समीकरण", जिसे पदार्थ में मैक्सवेल के समीकरण के रूप में भी जाना जाता है, मैक्सवेल द्वारा प्रस्तुत किए गए समीकरणों के समान ही हैं।
नाम | अभिन्न समीकरण (SI सम्मेलन) |
विभेदक समीकरण (SI सम्मेलन) |
विभेदक समीकरण (गौस्सियन सम्मेलन) |
---|---|---|---|
गॉस का सिद्धांत | |||
एम्पीयर का परिपथीय सिद्धांत (मैक्सवेल के जोड़ के साथ) | |||
चुंबकत्व के लिए गॉस का सिद्धांत | |||
मैक्सवेल-फैराडे समीकरण (फैराडे का आगमन का सिद्धांत) |
स्थूलदर्शीय समीकरणों में, बाध्य आवेश Qb और बाध्य विद्युत धारा Ib के प्रभाव को विस्थापन क्षेत्र D और चुम्बकीय क्षेत्र H में शामिल किया जाता है, जबकि समीकरण केवल मुक्त आवेश Qf और मुक्त विद्युत धारा If पर निर्भर करते हैं। यह कुल विद्युत आवेश Q और विद्युत धारा I (और उनके घनत्व ρ और J) को मुक्त और बाध्य भागों में विभाजित करता है:
सूक्ष्म समीकरणों के बीच अंतर के विस्तृत विवरण के लिए नीचे देखें, कुल आवेश और विद्युत धारा से निपटने के लिए भौतिक योगदान सहित, वायु / निर्वात में उपयोगी; [note 6] और स्थूलदर्शीय समीकरण, मुक्त आवेश और विद्युत धारा से निपटने के लिए व्यावहारिक सामग्री।
बाध्य आवेश और विद्युत धारा
जब एक विद्युत क्षेत्र को एक परावैघ्दुत पर अनुप्रयुक्त किया जाता है, तो इसके अणु सूक्ष्म विद्युत द्विध्रुव बनाकर प्रतिक्रिया करते हैं - उनके परमाणु नाभिक क्षेत्र की दिशा में एक छोटी दूरी की ओर बढ़ते हैं, जबकि उनके इलेक्ट्रॉन विपरीत दिशा में थोड़ी दूरी पर चलते हैं। यह सामग्री में मैक्रोस्कोपिक बाध्य आवेश पैदा करता है, भले ही इसमें शामिल सभी आवेश अलग-अलग अणुओं से बंधे हों। उदाहरण के लिए, यदि प्रत्येक अणु समान प्रतिक्रिया करता है, जैसा कि चित्र में दिखाया गया है, तो आवेश की ये छोटे-छोटे संचलन सामग्री के एक तरफ सकारात्मक बाध्य आवेश # बाध्य आवेश की एक परत और दूसरी तरफ ऋणात्मक आवेश की एक परत उत्पन्न करने के लिए संयोजित होती हैं। बाध्य आवेश को ध्रुवीकरण घनत्व P के संदर्भ में सबसे आसानी से वर्णित किया गया है प्रति इकाई आयतन में इसका द्विध्रुवीय क्षण। यदि P एक समान है, आवेश का एक स्थूल पृथक्करण केवल उन सतहों पर उत्पन्न होता है जहाँ P सामग्री में प्रवेश करता है और छोड़ता है। गैर-समान P के लिए, थोक में एक आवेश भी उत्पन्न होता है।[13]
कुछ इसी तरह, सभी सामग्रियों में घटक परमाणु चुंबकीय क्षणों को प्रदर्शित करते हैं जो आंतरिक रूप से परमाणुओं के घटकों के कोणीय गति से जुड़े होते हैं, विशेष रूप से उनके इलेक्ट्रॉन। कोणीय संवेग से संबंध सूक्ष्म धारा परिपथ के समुच्चयन की तस्वीर सुझाता है। सामग्री के बाहर, इस तरह के सूक्ष्म विद्युत धारा परिपथ की एक समुच्चयन सामग्री की सतह के चारों ओर घूमते हुए एक स्थूलदर्शीय विद्युत धारा से अलग नहीं है, इस तथ्य के बावजूद कि कोई व्यक्तिगत आवेश बड़ी दूरी की यात्रा नहीं कर रहा है। इन बाध्य धाराओं को चुंबकीयकरण M का उपयोग करके वर्णित किया जा सकता है।[14]
इसलिए, बहुत जटिल और कणिक बाध्य आवेशों और बाध्य धाराओं को P और M के संदर्भ में स्थूलदर्शीय पैमाने पर दर्शाया जा सकता है, जो इन आवेशों और धाराओं को पर्याप्त रूप से बड़े पैमाने पर औसत करते हैं ताकि व्यक्तिगत परमाणुओं की कणिकता को न देखा जा सके, लेकिन यह भी पर्याप्त रूप से छोटा है कि वे सामग्री में स्थान के साथ भिन्न होते हैं। इस प्रकार, मैक्सवेल के स्थूलदर्शीय समीकरण एक अच्छे पैमाने पर कई विवरणों को अनदेखा करते हैं जो कुछ उपयुक्त मात्रा में औसत क्षेत्रों की गणना करके सकल पैमाने पर मामलों को समझने के लिए महत्वहीन हो सकते हैं।
सहायक क्षेत्र, ध्रुवीकरण और चुंबकीयकरण
सहायक क्षेत्र की परिभाषाएँ हैं:
संवैधानिक संबंध
'मैक्सवेल के स्थूलदर्शीय समीकरणों' को लागू करने के लिए, विस्थापन क्षेत्र D और विद्युत क्षेत्र E के साथ-साथ चुंबकक्षेत्र H और चुंबकीय क्षेत्र B के बीच संबंधों को निर्दिष्ट करना आवश्यक है। समतुल्य रूप से, हमें लागू विद्युत और चुंबकीय क्षेत्र पर ध्रुवीकरण P (इसलिए बाध्य आवेश) और चुंबकीकरण M (इसलिए बाध्य धारा) की निर्भरता को निर्दिष्ट करना होगा। इस प्रतिक्रिया को निर्दिष्ट करने वाले समीकरणों को संवैधानिक संबंध कहा जाता है। वास्तविक दुनिया की सामग्रियों के लिए, संवैधानिक संबंध शायद ही कभी सरल होते हैं, सिवाय लगभग, और आमतौर पर प्रयोग द्वारा निर्धारित किए जाते हैं। पूर्ण विवरण के लिए संवैधानिक संबंधों पर मुख्य लेख देखें।[15]: 44–45
ध्रुवीकरण और चुंबकीयकरण के बिना सामग्री के लिए, संवैधानिक संबंध हैं (परिभाषा के अनुसार)[9]: 2
सूक्ष्म समीकरणों पर एक वैकल्पिक दृष्टिकोण यह है कि वे स्थूलदर्शीय समीकरण हैं जो इस कथन के साथ हैं कि निर्वात अतिरिक्त ध्रुवीकरण और चुंबकीयकरण के बिना एक पूर्ण रैखिक "सामग्री" की तरह व्यवहार करता है। अधिक आम तौर पर, रैखिक सामग्रियों के लिए संवैधानिक संबंध होते हैं[15]: 44–45
- सजातीय सामग्रियों के लिए, ε और μ सामग्री भर में स्थिर हैं, जबकि विषम सामग्रियों के लिए वे सामग्री के भीतर स्थान (और शायद समय) पर निर्भर करते हैं।[16]: 463
- समदैशिक सामग्री के लिए, ε और μ अदिश होते हैं, जबकि विषमदैशिक सामग्री के लिए (जैसे स्फटिक संरचना के कारण) वे टेन्सर होते हैं।[15]: 421 [16]: 463
- सामग्री आम तौर पर फैलाने वाली होती है, इसलिए ε और μ किसी भी घटना EM तरंगों की आवृत्ति पर निर्भर करते हैं।[15]: 625 [16]: 397
इससे भी अधिक आम तौर पर, गैर-रैखिक सामग्री के मामले में (उदाहरण के लिए गैर रेखीय प्रकाशिकी देखें), D और P आवश्यक रूप से E के आनुपातिक नहीं हैं, इसी तरह H या M आवश्यक रूप से B के आनुपातिक नहीं हैं। सामान्य तौर पर D और H, E और B दोनों पर निर्भर करते हैं, स्थान और समय पर, और संभवतः अन्य भौतिक मात्राओं पर।
अनुप्रयोगों में किसी को यह भी वर्णन करना होता है कि E और B के संदर्भ में मुक्त धाराएं और आवेश घनत्व कैसे व्यवहार करते हैं, संभवतः दबाव, और द्रव्यमान, संख्या घनत्व, और चार्ज करने वाले कणों के वेग जैसे अन्य भौतिक मात्राओं के साथ मिलकर। उदाहरण के लिए, मैक्सवेल द्वारा दिए गए मूल समीकरण (मैक्सवेल के समीकरणों का इतिहास देखें) में ओम का नियम शामिल है
वैकल्पिक सूत्रीकरण
स्थूलदर्शीय मैक्सवेल के समीकरणों को लिखने के लिए कई अन्य गणितीय औपचारिकताओं का सारांश निम्नलिखित है, जिसमें स्तम्भ दो सजातीय मैक्सवेल समीकरणों को आवेश और विद्युत धारा से जुड़े दो विषम समीकरणों से अलग करते हैं। प्रत्येक सूत्रीकरण में विद्युत और चुंबकीय क्षेत्रों के संदर्भ में सीधे संस्करण होते हैं, और अप्रत्यक्ष रूप से विद्युत क्षमता φ और सदिश क्षमता A के संदर्भ में होते हैं। सजातीय समीकरणों को हल करने के लिए संभावितों को एक सुविधाजनक तरीके के रूप में प्रस्तावित किया गया था, लेकिन यह सोचा गया था कि सभी अवलोकन योग्य भौतिकी विद्युत और चुंबकीय क्षेत्रों (या सापेक्षिक रूप से, फैराडे टेंसर) में समाहित थी। हालांकि, क्षमता प्रमात्रा यांत्रिकी में एक केंद्रीय भूमिका निभाती है, और प्रमात्रा को यांत्रिक रूप से अवलोकन योग्य परिणामों के साथ कार्य करती है, भले ही विद्युत और चुंबकीय क्षेत्र गायब हो जाएं (अहरोनोव-बोहम प्रभाव)।
प्रत्येक तालिका एक औपचारिकता का वर्णन करती है। प्रत्येक सूत्रीकरण के विवरण के लिए मुख्य लेख देखें। एसआई इकाइयों का उपयोग हर जगह किया जाता है।
सूत्रीकरण | सजातीय समीकरण | विषम समीकरण |
---|---|---|
क्षेत्र
3डी यूक्लिडियन स्पेस + टाइम |
|
|
संभावित (कोई गेज)
3डी यूक्लिडियन स्पेस + टाइम |
|
|
संभावित (लॉरेंज गेज)
3डी यूक्लिडियन स्पेस + टाइम |
|
|
सूत्रीकरण | सजातीय समीकरण | विषम समीकरण |
---|---|---|
क्षेत्र
अंतरिक्ष + समय समय से स्वतंत्र स्थानिक मीट्रिक |
||
क्षमता
अंतरिक्ष (§ टोपोलॉजिकल प्रतिबंधों के साथ) + समय समय से स्वतंत्र स्थानिक मीट्रिक |
|
|
संभावित (लॉरेंज गेज)
अंतरिक्ष (स्थलीय प्रतिबंधों के साथ) + समय समय से स्वतंत्र स्थानिक मीट्रिक |
|
|
सूत्रीकरण | सजातीय समीकरण | विषम समीकरण |
---|---|---|
क्षेत्र
कोई स्थान + समय |
|
|
संभावित (और गेज)
कोई भी स्थान (§ टोपोलॉजिकल प्रतिबंधों के साथ) + समय |
|
|
संभावित (लॉरेंज गेज)
कोई भी स्थान (स्थलीय प्रतिबंधों के साथ) + समय समय से स्वतंत्र स्थानिक मीट्रिक |
|
|
सापेक्षतावादी सूत्रीकरण
मैक्सवेल समीकरणों को अंतरिक्ष समय-जैसे मिन्कोस्की अंतरिक्ष पर भी तैयार किया जा सकता है जहां अंतरिक्ष और समय को समान स्तर पर माना जाता है। प्रत्यक्ष अंतरिक्ष समय योगों से पता चलता है कि मैक्सवेल समीकरण सापेक्ष रूप से अपरिवर्तनीय हैं। इस समरूपता के कारण, विद्युत और चुंबकीय क्षेत्रों को समान स्तर पर माना जाता है और फैराडे टेन्सर के घटकों के रूप में पहचाना जाता है। यह चार मैक्सवेल समीकरणों को दो तक कम कर देता है, जो समीकरणों को सरल करता है, हालांकि अब हम परिचित सदिश सूत्रीकरण का उपयोग नहीं कर सकते हैं। वास्तव में अंतरिक्ष + समय सूत्रीकरण में मैक्सवेल समीकरण गैलीलियो अपरिवर्तनीय नहीं हैं और लोरेंत्ज़ को एक छिपी हुई समरूपता के रूप में भिन्नता है। यह सापेक्षता सिद्धांत के विकास के लिए प्रेरणा का एक प्रमुख स्रोत था। वास्तव में, यहां तक कि सूत्रीकरण जो अंतरिक्ष और समय को अलग-अलग व्यवहार करता है, एक गैर-सापेक्षवादी सन्निकटन नहीं है और केवल चर का नाम बदलकर समान भौतिकी का वर्णन करता है। इस कारण सापेक्षवादी अपरिवर्तनीय समीकरणों को आमतौर पर मैक्सवेल समीकरण भी कहा जाता है।
नीचे दी गई प्रत्येक तालिका एक औपचारिकता का वर्णन करती है।
Formulation | Homogeneous equations | Inhomogeneous equations |
---|---|---|
Fields Minkowski space |
||
Potentials (any gauge) Minkowski space |
||
Potentials (Lorenz gauge) Minkowski space |
|
|
Fields any spacetime |
||
Potentials (any gauge) any spacetime (with §topological restrictions) |
||
Potentials (Lorenz gauge) any spacetime (with topological restrictions) |
|
Formulation | Homogeneous equations | Inhomogeneous equations |
---|---|---|
Fields any spacetime |
||
Potentials (any gauge) any spacetime (with topological restrictions) |
||
Potentials (Lorenz gauge) any spacetime (with topological restrictions) |
|
- टेन्सर कैलकुलस सूत्रीकरण में, विद्युत चुम्बकीय टेंसर Fαβ एक प्रतिसममित सहपरिवर्ती क्रम 2 टेन्सर है; चार संभावित, Aα, एक सहपरिवर्ती सदिश है; विद्युत धारा, Jα, एक सदिश है; चौकोर कोष्ठक, [ ], सूचकांकों के प्रतिसममितीकरण को दर्शाता है; ∂α निर्देशांक के संबंध में आंशिक व्युत्पन्न है, xα। मिन्कोवस्की अंतरिक्ष निर्देशांक में एक जड़त्वीय फ्रेम के संबंध में चुना जाता है; (xα) = (ct, x, y, z), जिससे कि सूचकों को बढ़ाने और घटाने के लिए प्रयुक्त मीट्रिक टेन्सर ηαβ = diag(1, −1, −1, −1) है। मिन्कोव्स्की अंतरिक्ष पर डी'अलेम्बर्ट संचालक ◻ = ∂α∂α है जैसा कि सदिश सूत्रीकरण में है। सामान्य अंतरिक्ष-समय में, समन्वय प्रणाली xα मनमाना है, सहसंयोजक व्युत्पन्न ∇α, रिक्की टेन्सर, Rαβ और सूचकांकों को ऊपर उठाना और कम करना लोरेंट्ज़ियन मीट्रिक, gαβ द्वारा परिभाषित किया गया है और डी'अलेम्बर्ट ऑपरेटर को ◻ = ∇α∇α के रूप में परिभाषित किया गया है। संस्थानिक प्रतिबंध यह है कि अंतरिक्ष का दूसरा वास्तविक सह-समरूपता समूह गायब हो जाता है (स्पष्टीकरण के लिए अंतर रूप सूत्रीकरण देखें)। मिनकोव्स्की अंतरिक्ष के लिए इसका उल्लंघन किया जाता है, जिसमें एक रेखा हटा दी जाती है, जो रेखा के पूरक पर एक बिंदु जैसे एकध्रुवीय के साथ एक (समतल) अंतरिक्ष समय प्रतिरूप कर सकती है।
- मनमाना स्थान समय पर विभेदक रूप सूत्रीकरण में, F = 1/2Fαβdxα ∧ dxβ विद्युत चुम्बकीय टेंसर को 2-रूप माना जाता है, A = Aαdxα संभावित 1-रूप है, वर्तमान 3-रूप है, d बाहरी व्युत्पन्न है, और हॉज स्टार है स्पेसटाइम के लोरेंत्ज़ियन मीट्रिक द्वारा परिभाषित रूपों पर (इसके अभिविन्यास तक, यानी इसका संकेत)। एफ जैसे 2-रूपों के विशेष मामले में, हॉज स्टार केवल अपने स्थानीय पैमाने के लिए मीट्रिक टेन्सर पर निर्भर करता है। इसका मतलब यह है कि, जैसा कि तैयार किया गया है, विभेदक रूप क्षेत्र समीकरण अनुरूप रूप से अपरिवर्तनीय हैं, लेकिन लॉरेंज गेज की स्थिति अनुरूपता को तोड़ती है। संचालक डी'अलेम्बर्ट-लैपलेस-बेल्ट्रामी संचालक है जो एक अनियंत्रित लोरेंत्ज़ियन अंतरिक्ष समय पर 1-रूपों पर है। संस्थानिक स्थिति फिर से है कि दूसरा वास्तविक सह समरूपता समूह 'तुच्छ' है (जिसका अर्थ है कि इसका रूप एक परिभाषा से होता है)। दूसरे डी रम सह समरूपता के साथ समाकृतिकता द्वारा इस स्थिति का अर्थ है कि प्रत्येक बंद 2-रूप सटीक है।
अन्य औपचारिकताओं में ज्यामितीय बीजगणित सूत्रीकरण और मैक्सवेल के समीकरणों का एक मैट्रिक्स प्रतिनिधित्व शामिल है। ऐतिहासिक रूप से, एक चतुष्कोणीय सूत्रीकरण [17][18] का उपयोग किया गया था।
समाधान
मैक्सवेल के समीकरण आंशिक अंतर समीकरण हैं जो विद्युत और चुंबकीय क्षेत्रों को एक दूसरे से और विद्युत आवेशों और धाराओं से संबंधित करते हैं। अक्सर, लोरेंत्ज़ बल समीकरण और संवैधानिक संबंधों के माध्यम से आवेश और धाराएँ स्वयं विद्युत और चुंबकीय क्षेत्रों पर निर्भर होती हैं। ये सभी युग्मित आंशिक अंतर समीकरणों का एक समूह बनाते हैं जिन्हें हल करना अक्सर बहुत मुश्किल होता है: समाधान शास्त्रीय विद्युत चुंबकत्व की सभी विविध घटनाओं को शामिल करते हैं। कुछ सामान्य टिप्पणियाँ अनुसरण करती हैं।
किसी भी अंतर समीकरण के लिए, सीमा की स्थिति [19][20][21] और प्रारंभिक स्थिति [22] एक अद्वितीय समाधान के लिए आवश्यक हैं। उदाहरण के लिए, यहां तक कि अंतरिक्ष-समय में कहीं भी कोई आवेश नहीं है और कोई विद्युत धारा नहीं है, ऐसे स्पष्ट समाधान हैं जिनके लिए E और B शून्य या स्थिर हैं, लेकिन विद्युत चुम्बकीय तरंगों के अनुरूप गैर-तुच्छ समाधान भी हैं। कुछ मामलों में, मैक्सवेल के समीकरणों को पूरे अंतरिक्ष में हल किया जाता है, और सीमा की स्थिति अनंत पर स्पर्शोन्मुख सीमा के रूप में दी जाती है।[23] अन्य मामलों में, मैक्सवेल के समीकरण अंतरिक्ष के एक परिमित क्षेत्र में हल किए जाते हैं, उस क्षेत्र की सीमा पर उपयुक्त स्थितियों के साथ, उदाहरण के लिए शेष ब्रह्मांड का प्रतिनिधित्व करने वाली एक कृत्रिम अवशोषित सीमा,[24][25] या आवधिक सीमा की स्थिति, या दीवारें जो एक छोटे से क्षेत्र को बाहरी दुनिया से अलग करती हैं (जैसा कि तरंग पथक या गुहा गुंजयमान यंत्र के साथ होता है)।[26]
जेफिमेंको के समीकरण (या निकटता से संबंधित लीनार्ड-विचर्ट क्षमताएं) विद्युत और चुंबकीय क्षेत्रों के लिए मैक्सवेल के समीकरणों का स्पष्ट समाधान हैं जो किसी दिए गए आवेश और विद्युत धारा के वितरण द्वारा बनाए गए हैं। यह तथाकथित "मंद समाधान" प्राप्त करने के लिए विशिष्ट प्रारंभिक स्थितियों को मानता है, जहां केवल वही क्षेत्र मौजूद हैं जो आरोपों द्वारा बनाए गए हैं। हालांकि, जेफिमेंको के समीकरण उन स्थितियों में मददगार नहीं होते हैं, जब आरोप और धाराएं उनके द्वारा बनाए गए क्षेत्रों से स्वयं प्रभावित होते हैं।
सटीक समाधान असंभव होने पर मैक्सवेल के समीकरणों के अनुमानित समाधान की गणना करने के लिए अंतर समीकरणों के लिए संख्यात्मक विधियों का उपयोग किया जा सकता है। इनमें परिमित तत्व विधि और परिमित-अंतर समय-डोमेन विधि शामिल हैं।[19][21][27][28][29] अधिक जानकारी के लिए, संगणनात्मक विद्युत चुम्बकीय देखें।
मैक्सवेल के समीकरणों का अधिनिर्धारण
मैक्सवेल के समीकरण अधिक निर्धारित प्रतीत होते हैं, जिसमें वे छह अज्ञात (ई और बी के तीन घटक) लेकिन आठ समीकरण (दो गॉस के सिद्धांतों में से प्रत्येक के लिए एक, फैराडे और एम्पीयर के सिद्धांतों के लिए तीन वेक्टर घटक) शामिल हैं। (धाराएं और शुल्क अज्ञात नहीं हैं, आवेश संरक्षण के अधीन स्वतंत्र रूप से निर्दिष्ट किए जा सकते हैं।) यह मैक्सवेल के समीकरणों में एक निश्चित सीमित प्रकार की अतिरेक से संबंधित है: यह सिद्ध किया जा सकता है कि फैराडे के सिद्धांत और एम्पीयर के सिद्धांत को संतुष्ट करने वाली कोई भी प्रणाली स्वचालित रूप से दोनों को भी संतुष्ट करती है। गॉस के सिद्धांत, जब तक प्रणाली की प्रारंभिक स्थिति होती है, और आवेश के संरक्षण और चुंबकीय मोनोपोल के अस्तित्व को मानते हैं।[30][31] यह स्पष्टीकरण पहली बार 1941 में जूलियस एडम्स स्ट्रैटन द्वारा पेश किया गया था।[32]
हालांकि एक संख्यात्मक कलन विधि (प्रारंभिक स्थितियों के अलावा) में गॉस के दो सिद्धांतों को आसानी से अनदेखा करना संभव है, गणनाओं की अपूर्ण सटीकता उन सिद्धांतों के लगातार बढ़ते उल्लंघन का कारण बन सकती है। इन उल्लंघनों को चित्रित करने वाले प्रतिरूप चरों को पेश करने से, चार समीकरण अतिनिर्धारित नहीं होते हैं। परिणामी सूत्रीकरण से अधिक सटीक कलन विधि हो सकते हैं जो सभी चार सिद्धांतों को ध्यान में रखते हैं।[33]
दोनों की पहचान , जो आठ समीकरणों को घटाकर छह स्वतंत्र कर देता है, अतिनिर्धारण का सही कारण हैं।[34][35]
समतुल्य रूप से, अतिनिर्धारण को विद्युत और चुंबकीय आवेश के संरक्षण के रूप में देखा जा सकता है, क्योंकि वे ऊपर वर्णित व्युत्पत्ति में आवश्यक हैं लेकिन दो गॉस के सिद्धांतों द्वारा निहित हैं।
रैखिक बीजगणितीय समीकरणों के लिए, समीकरणों और अज्ञात को फिर से लिखने के लिए कोई 'अच्छे' सिद्धांत बना सकता है। समीकरण रैखिक रूप से निर्भर हो सकते हैं। लेकिन विभेदक समीकरणों में, और विशेष रूप से पीडीई में, किसी को उपयुक्त सीमा स्थितियों की आवश्यकता होती है, जो समीकरणों पर इतने स्पष्ट तरीके से निर्भर नहीं करते हैं। इससे भी अधिक, यदि कोई उन्हें वेक्टर और सदिश क्षमता के संदर्भ में फिर से लिखता है, तो गेज फिक्सिंग के कारण समीकरणों को कम करके आंका जाता है।
QED की शास्त्रीय सीमा के रूप में मैक्सवेल के समीकरण
मैक्सवेल के समीकरण और लोरेंत्ज़ बल सिद्धांत (बाकी शास्त्रीय विद्युत चुंबकत्व के साथ) विभिन्न प्रकार की घटनाओं की व्याख्या और भविष्यवाणी करने में असाधारण रूप से सफल हैं। हालांकि वे क्वांटम प्रभावों के लिए जिम्मेदार नहीं हैं और इसलिए उनकी प्रयोज्यता का क्षेत्र सीमित है। मैक्सवेल के समीकरणों को क्वांटम इलेक्ट्रोडायनामिक्स (QED) की शास्त्रीय सीमा के रूप में माना जाता है।
कुछ देखी गई विद्युत चुम्बकीय घटनाएं मैक्सवेल के समीकरणों के साथ असंगत हैं। इनमें फोटॉन-फोटॉन बिखरने और फोटॉन या आभासी कण, गैर-शास्त्रीय प्रकाश और विद्युत चुम्बकीय क्षेत्रों के क्वांटम उलझाव से संबंधित कई अन्य घटनाएं शामिल हैं (क्वांटम प्रकाशिकी देखें)। उदा. मैक्सवेल सिद्धांत द्वारा क्वांटम क्रिप्टोग्राफी का वर्णन नहीं किया जा सकता है, लगभग भी नहीं। मैक्सवेल के समीकरणों की अनुमानित प्रकृति अत्यधिक मजबूत क्षेत्र व्यवस्था (यूलर-हाइजेनबर्ग लैग्रैंगियन देखें) या बहुत छोटी दूरी पर जाने पर अधिक से अधिक स्पष्ट हो जाती है।
अंत में, मैक्सवेल के समीकरण किसी भी घटना की व्याख्या नहीं कर सकते हैं, जिसमें प्रकाश विद्युत प्रभाव, प्लैंक का सिद्धांत, डुआन-हंट सिद्धांत, और सिंगल-फोटॉन लाइट डिटेक्टर जैसे क्वांटम पदार्थ के साथ बातचीत करने वाले व्यक्तिगत फोटॉन शामिल हैं। हालांकि, इस तरह की कई घटनाओं को शास्त्रीय विद्युत चुम्बकीय क्षेत्र के साथ युग्मित क्वांटम पदार्थ के आधे रास्ते के सिद्धांत का उपयोग करके अनुमानित किया जा सकता है, या तो बाहरी क्षेत्र के रूप में या मैक्सवेल के समीकरणों के दाहिने हाथ की ओर आवेश वर्तमान और घनत्व के अपेक्षित मूल्य के साथ।
रूपांतर
विद्युतचुंबकीय क्षेत्र के शास्त्रीय सिद्धांत के रूप में मैक्सवेल समीकरणों पर लोकप्रिय बदलाव अपेक्षाकृत दुर्लभ हैं क्योंकि मानक समीकरण समय की कसौटी पर उल्लेखनीय रूप से खरे उतरे हैं।
चुंबकीय एकाधिकार
मैक्सवेल के समीकरण बताते हैं कि ब्रह्मांड में विद्युत आवेश है, लेकिन कोई चुंबकीय आवेश (जिसे चुंबकीय मोनोपोल भी कहा जाता है) नहीं है। वास्तव में, व्यापक खोजों के बावजूद चुंबकीय आवेश कभी नहीं देखा गया है,[note 7] और मौजूद नहीं हो सकता है। यदि वे मौजूद थे, तो चुंबकत्व के लिए गॉस के सिद्धांत और फैराडे के सिद्धांत दोनों को संशोधित करने की आवश्यकता होगी, और परिणामी चार समीकरण विद्युत और चुंबकीय क्षेत्रों के आदान-प्रदान के तहत पूरी तरह से सममित होंगे।[9]: 273–275
यह भी देखें
व्याख्यात्मक नोट्स
- ↑ Electric and magnetic fields, according to the theory of relativity, are the components of a single electromagnetic field.
- ↑ In general relativity, however, they must enter, through its stress–energy tensor, into Einstein field equations that include the spacetime curvature.
- ↑ The absence of sinks/sources of the field does not imply that the field lines must be closed or escape to infinity. They can also wrap around indefinitely, without self-intersections. Moreover, around points where the field is zero (that cannot be intersected by field lines, because their direction would not be defined), there can be the simultaneous begin of some lines and end of other lines. This happens, for instance, in the middle between two identical cylindrical magnets, whose north poles face each other. In the middle between those magnets, the field is zero and the axial field lines coming from the magnets end. At the same time, an infinite number of divergent lines emanate radially from this point. The simultaneous presence of lines which end and begin around the point preserves the divergence-free character of the field. For a detailed discussion of non-closed field lines, see L. Zilberti "The Misconception of Closed Magnetic Flux Lines", IEEE Magnetics Letters, vol. 8, art. 1306005, 2017.
- ↑ The quantity we would now call 1/√ε0μ0, with units of velocity, was directly measured before Maxwell's equations, in an 1855 experiment by Wilhelm Eduard Weber and Rudolf Kohlrausch. They charged a leyden jar (a kind of capacitor), and measured the electrostatic force associated with the potential; then, they discharged it while measuring the magnetic force from the current in the discharge wire. Their result was 3.107×108 m/s, remarkably close to the speed of light. See Joseph F. Keithley, The story of electrical and magnetic measurements: from 500 B.C. to the 1940s, p. 115.
- ↑ There are cases (anomalous dispersion) where the phase velocity can exceed c, but the "signal velocity" will still be < c
- ↑ कुछ किताबों में—उदाहरण के लिए, यू. क्रे और ए. ओवेन के बेसिक थ्योरेटिकल फिजिक्स (स्प्रिंगर 2007) में—प्रभावी चार्ज शब्द का इस्तेमाल कुल चार्ज के बजाय किया जाता है, जबकि फ्री चार्ज को केवल चार्ज कहा जाता है।
- ↑ See magnetic monopole for a discussion of monopole searches. Recently, scientists have discovered that some types of condensed matter, including spin ice and topological insulators, which display emergent behavior resembling magnetic monopoles. (See sciencemag.org and nature.com.) Although these were described in the popular press as the long-awaited discovery of magnetic monopoles, they are only superficially related. A "true" magnetic monopole is something where ∇ ⋅ B ≠ 0, whereas in these condensed-matter systems, ∇ ⋅ B = 0 while only ∇ ⋅ H ≠ 0.
संदर्भ
- ↑ Hampshire, Damian P. (29 October 2018). "हीविसाइड संकेतन का उपयोग करते हुए मैक्सवेल के समीकरणों की व्युत्पत्ति". Philosophical Transactions of the Royal Society Research Article. Theme issue Celebrating 125 years of Oliver Heaviside's ‘Electromagnetic Theory’ compiled and edited by Christopher Donaghy-Spargo and Alex Yakovlev PubMed:30373937. Royal Society. 376 (2134). arXiv:1510.04309. Bibcode:2018RSPTA.37670447H. doi:10.1098/rsta.2017.0447. ISSN 1364-503X. PMC 6232579. PMID 30373937.
- ↑ "The NIST Reference on Constants, Units, and Uncertainty".
- ↑ 3.0 3.1 Jackson, John. "मैक्सवेल के समीकरण". Science Video Glossary. Berkeley Lab.
- ↑ J. D. Jackson, Classical Electrodynamics, section 6.3
- ↑ Principles of physics: a calculus-based text, by R. A. Serway, J. W. Jewett, page 809.
- ↑ Bruce J. Hunt (1991) The Maxwellians, chapter 5 and appendix, Cornell University Press
- ↑ "मैक्सवेल के समीकरण". Engineering and Technology History Wiki. 29 October 2019. Retrieved 2021-12-04.
- ↑ Šolín, Pavel (2006). आंशिक अंतर समीकरण और परिमित तत्व विधि. John Wiley and Sons. p. 273. ISBN 978-0-471-72070-6.
- ↑ 9.0 9.1 9.2 J. D. Jackson (1975-10-17). शास्त्रीय इलेक्ट्रोडायनामिक्स (3rd ed.). ISBN 978-0-471-43132-9.
- ↑ Littlejohn, Robert (Fall 2007). "Gaussian, SI and Other Systems of Units in Electromagnetic Theory" (PDF). Physics 221A, University of California, Berkeley lecture notes. Retrieved 2008-05-06.
- ↑ David J Griffiths (1999). Introduction to electrodynamics (Third ed.). Prentice Hall. pp. 559–562. ISBN 978-0-13-805326-0.
- ↑ Kimball Milton; J. Schwinger (18 June 2006). Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators. Springer Science & Business Media. ISBN 978-3-540-29306-4.
- ↑ See David J. Griffiths (1999). "4.2.2". Introduction to Electrodynamics (third ed.). Prentice Hall. ISBN 9780138053260. for a good description of how P relates to the bound charge.
- ↑ See David J. Griffiths (1999). "6.2.2". Introduction to Electrodynamics (third ed.). Prentice Hall. ISBN 9780138053260. for a good description of how M relates to the bound current.
- ↑ 15.0 15.1 15.2 15.3 Andrew Zangwill (2013). आधुनिक इलेक्ट्रोडायनामिक्स. Cambridge University Press. ISBN 978-0-521-89697-9.
- ↑ 16.0 16.1 16.2 Kittel, Charles (2005), Introduction to Solid State Physics (8th ed.), USA: John Wiley & Sons, Inc., ISBN 978-0-471-41526-8
- ↑ Jack, P. M. (2003). "Physical Space as a Quaternion Structure I: Maxwell Equations. A Brief Note". arXiv:math-ph/0307038.
- ↑ A. Waser (2000). "मैक्सवेल के क्षेत्र समीकरणों के अंकन पर" (PDF). AW-Verlag.
- ↑ 19.0 19.1 Peter Monk (2003). Finite Element Methods for Maxwell's Equations. Oxford UK: Oxford University Press. p. 1 ff. ISBN 978-0-19-850888-5.
- ↑ Thomas B. A. Senior & John Leonidas Volakis (1995-03-01). Approximate Boundary Conditions in Electromagnetics. London UK: Institution of Electrical Engineers. p. 261 ff. ISBN 978-0-85296-849-9.
- ↑ 21.0 21.1 T Hagstrom (Björn Engquist & Gregory A. Kriegsmann, Eds.) (1997). Computational Wave Propagation. Berlin: Springer. p. 1 ff. ISBN 978-0-387-94874-4.
- ↑ Henning F. Harmuth & Malek G. M. Hussain (1994). Propagation of Electromagnetic Signals. Singapore: World Scientific. p. 17. ISBN 978-981-02-1689-4.
- ↑ David M Cook (2002). The Theory of the Electromagnetic Field. Mineola NY: Courier Dover Publications. p. 335 ff. ISBN 978-0-486-42567-2.
- ↑ Jean-Michel Lourtioz (2005-05-23). Photonic Crystals: Towards Nanoscale Photonic Devices. Berlin: Springer. p. 84. ISBN 978-3-540-24431-8.
- ↑ S. G. Johnson, Notes on Perfectly Matched Layers, online MIT course notes (Aug. 2007).
- ↑ S. F. Mahmoud (1991). Electromagnetic Waveguides: Theory and Applications. London UK: Institution of Electrical Engineers. Chapter 2. ISBN 978-0-86341-232-5.
- ↑ John Leonidas Volakis, Arindam Chatterjee & Leo C. Kempel (1998). Finite element method for electromagnetics : antennas, microwave circuits, and scattering applications. New York: Wiley IEEE. p. 79 ff. ISBN 978-0-7803-3425-0.
- ↑ Bernard Friedman (1990). Principles and Techniques of Applied Mathematics. Mineola NY: Dover Publications. ISBN 978-0-486-66444-6.
- ↑ Taflove A & Hagness S C (2005). Computational Electrodynamics: The Finite-difference Time-domain Method. Boston MA: Artech House. Chapters 6 & 7. ISBN 978-1-58053-832-9.
- ↑ H Freistühler & G Warnecke (2001). Hyperbolic Problems: Theory, Numerics, Applications. p. 605. ISBN 9783764367107.
- ↑ J Rosen (1980). "विद्युत चुम्बकीय क्षेत्र और क्षमता के लिए अतिरेक और अतिप्रवाह". American Journal of Physics. 48 (12): 1071. Bibcode:1980AmJPh..48.1071R. doi:10.1119/1.12289.
- ↑ J. A. Stratton (1941). विद्युत चुम्बकीय सिद्धांत. McGraw-Hill Book Company. pp. 1–6. ISBN 9780470131534.
- ↑ B Jiang & J Wu & L. A. Povinelli (1996). "कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स में नकली समाधानों की उत्पत्ति". Journal of Computational Physics. 125 (1): 104. Bibcode:1996JCoPh.125..104J. doi:10.1006/jcph.1996.0082. hdl:2060/19950021305.
- ↑ Weinberg, Steven (1972). गुरुत्वाकर्षण और ब्रह्मांड विज्ञान. John Wiley. pp. 161–162. ISBN 978-0-471-92567-5.
- ↑ Courant, R. & Hilbert, D. (1962), Methods of Mathematical Physics: Partial Differential Equations, vol. II, New York: Wiley-Interscience, pp. 15–18, ISBN 9783527617241
अग्रिम पठन
- Imaeda, K. (1995), "Biquaternionic Formulation of Maxwell's Equations and their Solutions", in Ablamowicz, Rafał; Lounesto, Pertti (eds.), Clifford Algebras and Spinor Structures, Springer, pp. 265–280, doi:10.1007/978-94-015-8422-7_16, ISBN 978-90-481-4525-6
ऐतिहासिक प्रकाशन
- फैराडे की बल की रेखाओं पर – 1855/56। मैक्सवेल का पहला पेपर (भाग 1 और 2) - ब्लेज़ लैब्स रिसर्च (पीडीएफ) द्वारा संकलित।
- बल की भौतिक रेखाओं पर – 1861।
- जेम्स क्लर्क मैक्सवेल, विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत, फिलोसोफिकल ट्रांजैक्शन ऑफ़ द रॉयल सोसाइटी ऑफ़ लंदन '155', 459–512 (1865)। (यह लेख मैक्सवेल द्वारा रॉयल सोसाइटी के लिए 8 दिसंबर, 1864 की प्रस्तुति के साथ था।)
- विद्युत चुम्बकीय का एक गतिशील सिद्धांत फील्ड - 1865। मैक्सवेल का 1865 का पेपर उनके 20 समीकरणों का वर्णन करता है, Google पुस्तकें से लिंक।
- जे. क्लर्क मैक्सवेल (1873), बिजली और चुंबकत्व पर एक ग्रंथ :
- सापेक्षता से पहले के घटनाक्रम:
- Larmor Joseph (1897). . Phil. Trans. R. Soc. 190: 205–300.
- Lorentz Hendrik (1899). "Simplified theory of electrical and optical phenomena in moving systems". Proc. Acad. Science Amsterdam. I: 427–443.
- Lorentz Hendrik (1904). "Electromagnetic phenomena in a system moving with any velocity less than that of light". Proc. Acad. Science Amsterdam. IV: 669–678.
- हेनरी पोंकारे (1900) लोरेंत्ज़ सिद्धांत और प्रतिक्रिया सिद्धांत (in French), डच अभिलेखागार, 'वी', 253-278।
- हेनरी पोंकारे (1902) विज्ञान और परिकल्पना (in French).
- हेनरी पोंकारे (1905) इलेक्ट्रॉन की गतिशीलता पर (in French), विज्ञान अकादमी की कार्यवाही, '140', 1504-1508।
- कैट, वाल्टन और डेविडसन। वर्तमान विस्थापन का इतिहास Archived 2008-05-06 at the Wayback Machine. वायरलेस वर्ल्ड, मार्च 1979।
बाहरी संबंध
- "Maxwell equations", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- maxwells-equations.com — An intuitive tutorial of Maxwell's equations.
- The Feynman Lectures on Physics Vol. II Ch. 18: The Maxwell Equations
- Wikiversity Page on Maxwell's Equations
आधुनिक उपचार
- इलेक्ट्रोमैग्नेटिज्म (अध्याय 11), बी. क्रोवेल, फुलर्टन कॉलेज
- व्याख्यान श्रृंखला: सापेक्षता और विद्युत चुंबकत्व, आर। फिट्ज़पैट्रिक, ऑस्टिन में टेक्सास विश्वविद्यालय
- मैक्सवेल के समीकरणों से विद्युत चुम्बकीय तरंगें प्रोजेक्ट PHYSNET पर।
- MIT वीडियो व्याख्यान श्रृंखला (36 × 50 मिनट के व्याख्यान) (.mp4 प्रारूप में) - विद्युत और चुंबकत्व प्रोफेसर वाल्टर लेविन द्वारा पढ़ाया जाता है।
अन्य
- Silagadze, Z. K. (2002). "मैक्सवेल समीकरणों और अतिरिक्त आयामों की फेनमैन की व्युत्पत्ति". Annales de la Fondation Louis de Broglie. 27: 241–256. arXiv:hep-ph/0106235. Bibcode:2001hep.ph....6235S.
- प्रकृति मील के पत्थर: फोटॉन – मील का पत्थर 2 (1861) मैक्सवेल के समीकरण
श्रेणी:मैक्सवेल के समीकरण श्रेणी:विद्युत चुंबकत्व श्रेणी:भौतिकी के समीकरण श्रेणी:अंतरिक्ष और समय के कार्य श्रेणी:जेम्स क्लर्क मैक्सवेल श्रेणी:आंशिक अवकल समीकरण श्रेणी:वैज्ञानिक सिद्धांत