ऊष्मा क्षमता: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
ऊष्मा क्षमता या ऊष्मीय क्षमता पदार्थ की एक [[भौतिक मात्रा]] है जिसे किसी वस्तु को उसके [[तापमान]] में एक इकाई परिवर्तन उत्पन्न करने के लिए आपूर्ति की जाने वाली ऊष्मा की मात्रा के रूप में परिभाषित किया जाता है।<ref>{{cite book|first1=David|last1=Halliday| author1-link =David Halliday (physicist)|first2=Robert|last2=Resnick| author2-link =Robert Resnick |title=भौतिकी के मूल तत्व|date=2013|publisher=Wiley|page=524|title-link=भौतिकी के मूल तत्व}}</ref> ताप क्षमता की [[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] जूल प्रति [[केल्विन]] (J/K) है। | ऊष्मा क्षमता या ऊष्मीय क्षमता पदार्थ की एक [[भौतिक मात्रा]] है जिसे किसी वस्तु को उसके [[तापमान]] में एक इकाई परिवर्तन उत्पन्न करने के लिए आपूर्ति की जाने वाली ऊष्मा की मात्रा के रूप में परिभाषित किया जाता है।<ref>{{cite book|first1=David|last1=Halliday| author1-link =David Halliday (physicist)|first2=Robert|last2=Resnick| author2-link =Robert Resnick |title=भौतिकी के मूल तत्व|date=2013|publisher=Wiley|page=524|title-link=भौतिकी के मूल तत्व}}</ref> ताप क्षमता की [[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] जूल प्रति [[केल्विन]] (J/K) है। | ||
ताप क्षमता एक [[व्यापक संपत्ति]] है। संबंधित [[गहन संपत्ति]] विशिष्ट ताप क्षमता है, जो किसी वस्तु की ताप क्षमता को उसके द्रव्यमान से विभाजित करके पाई जाती है। मोल्स (ईकाई) में पदार्थ की [[मात्रा]] से ऊष्मा क्षमता को विभाजित करने से इसकी [[दाढ़ ताप क्षमता]] प्राप्त होती है। [[वॉल्यूमेट्रिक ताप क्षमता]] प्रति आयतन ताप क्षमता को मापती है। [[वास्तुकला]] और [[असैनिक अभियंत्रण|असैनिक इंजीनियरिंग]] | ताप क्षमता एक [[व्यापक संपत्ति]] है। संबंधित [[गहन संपत्ति]] विशिष्ट ताप क्षमता है, जो किसी वस्तु की ताप क्षमता को उसके द्रव्यमान से विभाजित करके पाई जाती है। मोल्स (ईकाई) में पदार्थ की [[मात्रा]] से ऊष्मा क्षमता को विभाजित करने से इसकी [[दाढ़ ताप क्षमता]] प्राप्त होती है। [[वॉल्यूमेट्रिक ताप क्षमता]] प्रति आयतन ताप क्षमता को मापती है। [[वास्तुकला]] और [[असैनिक अभियंत्रण|असैनिक इंजीनियरिंग]] में एक इमारत की ताप क्षमता को अधिकांशतः इसके तापीय द्रव्यमान के रूप में संदर्भित किया जाता है। | ||
== परिभाषा == | == परिभाषा == | ||
Line 21: | Line 21: | ||
==== स्थिर दाब पर, δQ = dU + PdV (समदाबीय प्रक्रिया) ==== | ==== स्थिर दाब पर, δQ = dU + PdV (समदाबीय प्रक्रिया) ==== | ||
ऊष्मप्रवैगिकी के पहले नियम के अनुसार निरंतर दबाव पर प्रणाली | ऊष्मप्रवैगिकी के पहले नियम के अनुसार निरंतर दबाव पर प्रणाली को आपूर्ति की गई ऊष्मा किए गए [[कार्य (थर्मोडायनामिक्स)]] और [[आंतरिक ऊर्जा]] में परिवर्तन दोनों में योगदान करती है। ताप क्षमता को <math>C_P.</math> कहा जाता है और इसे इस प्रकार परिभाषित किया गया है: | ||
==== स्थिर आयतन पर, dV = 0, δQ = dU ([[आइसोकोरिक प्रक्रिया]]) ==== | ==== स्थिर आयतन पर, dV = 0, δQ = dU ([[आइसोकोरिक प्रक्रिया]]) ==== | ||
निरंतर आयतन पर एक प्रक्रिया से गुजरने वाली प्रणाली का अर्थ है कि कोई विस्तार कार्य नहीं किया गया है इसलिए आपूर्ति की गई ऊष्मा केवल आंतरिक ऊर्जा में परिवर्तन में योगदान करती है। इस तरह से प्राप्त ऊष्मा क्षमता को <math>C_V.</math> दर्शाया जाता है। <math>C_V</math> का मान सदैव <math>C_P.</math> (<math>C_V</math> < <math>C_P.</math>) | निरंतर आयतन पर एक प्रक्रिया से गुजरने वाली प्रणाली का अर्थ है कि कोई विस्तार कार्य नहीं किया गया है इसलिए आपूर्ति की गई ऊष्मा केवल आंतरिक ऊर्जा में परिवर्तन में योगदान करती है। इस तरह से प्राप्त ऊष्मा क्षमता को <math>C_V.</math> दर्शाया जाता है। <math>C_V</math> का मान सदैव <math>C_P.</math> (<math>C_V</math> < <math>C_P.</math>) के मान से कम होता है। | ||
==== गणना ''C<sub>P</sub>'' और ''C<sub>V</sub>'' | ==== गणना ''C<sub>P</sub>'' और ''C<sub>V</sub>'' एक आदर्श गैस के लिए ==== | ||
मेयर संबंध: | मेयर संबंध: | ||
Line 44: | Line 44: | ||
==== स्थिर तापमान पर (समतापीय प्रक्रिया) ==== | ==== स्थिर तापमान पर (समतापीय प्रक्रिया) ==== | ||
आंतरिक ऊर्जा में कोई परिवर्तन नहीं (चूंकि प्रणाली का तापमान पूरी प्रक्रिया में स्थिर रहता है) केवल आपूर्ति की गई कुल गर्मी द्वारा किए गए कार्य की ओर जाता है और इस प्रकार एक इकाई तापमान द्वारा प्रणाली के तापमान को बढ़ाने के लिए अनंत मात्रा में गर्मी की आवश्यकता होती है प्रणाली | आंतरिक ऊर्जा में कोई परिवर्तन नहीं (चूंकि प्रणाली का तापमान पूरी प्रक्रिया में स्थिर रहता है) केवल आपूर्ति की गई कुल गर्मी द्वारा किए गए कार्य की ओर जाता है और इस प्रकार एक इकाई तापमान द्वारा प्रणाली के तापमान को बढ़ाने के लिए अनंत मात्रा में गर्मी की आवश्यकता होती है प्रणाली की अनंत या अपरिभाषित ताप क्षमता के लिए अग्रणी है। | ||
==== चरण परिवर्तन के समय (चरण संक्रमण) ==== | ==== चरण परिवर्तन के समय (चरण संक्रमण) ==== | ||
Line 54: | Line 54: | ||
चूँकि यह गणना तभी मान्य होती है जब माप के पहले और बाद में वस्तु के सभी भाग एक ही बाहरी दबाव पर हो सकता है कि कुछ स्थिति में यह संभव न हो। उदाहरण के लिए एक लोचदार कंटेनर में गैस की मात्रा को गर्म करने पर, इसकी मात्रा और दबाव दोनों में वृद्धि होगी, तथापि कंटेनर के बाहर वायुमंडलीय दबाव स्थिर हो इसलिए उस स्थिति में गैस की प्रभावी ऊष्मा क्षमता का मान इसके समदाब रेखीय और समचिकीय क्षमताओं <math>C_\mathrm{P}</math> और <math>C_\mathrm{V}</math> के बीच मध्यवर्ती होगा। | चूँकि यह गणना तभी मान्य होती है जब माप के पहले और बाद में वस्तु के सभी भाग एक ही बाहरी दबाव पर हो सकता है कि कुछ स्थिति में यह संभव न हो। उदाहरण के लिए एक लोचदार कंटेनर में गैस की मात्रा को गर्म करने पर, इसकी मात्रा और दबाव दोनों में वृद्धि होगी, तथापि कंटेनर के बाहर वायुमंडलीय दबाव स्थिर हो इसलिए उस स्थिति में गैस की प्रभावी ऊष्मा क्षमता का मान इसके समदाब रेखीय और समचिकीय क्षमताओं <math>C_\mathrm{P}</math> और <math>C_\mathrm{V}</math> के बीच मध्यवर्ती होगा। | ||
जटिल थर्मोडायनामिक प्रणालियों के लिए कई अंतःक्रियात्मक भागों और राज्य चर के साथ या माप की स्थितियों के लिए जो न तो निरंतर दबाव और न ही स्थिर आयतन हैं या ऐसी स्थितियों के लिए जहां तापमान महत्वपूर्ण रूप से गैर-समान है ऊपर दी गई ऊष्मा क्षमता की सरल परिभाषाएँ उपयोगी या सार्थक भी नहीं हैं। आपूर्ति की जाने वाली ऊष्मा ऊर्जा मैक्रोस्कोपिक और परमाणु मापदंड पर [[गतिज ऊर्जा]] (गति की ऊर्जा) और [[संभावित ऊर्जा]] (बल क्षेत्रों में संग्रहीत ऊर्जा) के रूप में समाप्त हो सकती है। फिर तापमान में परिवर्तन उस विशेष पथ पर निर्भर करेगा जो प्रणाली | जटिल थर्मोडायनामिक प्रणालियों के लिए कई अंतःक्रियात्मक भागों और राज्य चर के साथ या माप की स्थितियों के लिए जो न तो निरंतर दबाव और न ही स्थिर आयतन हैं या ऐसी स्थितियों के लिए जहां तापमान महत्वपूर्ण रूप से गैर-समान है ऊपर दी गई ऊष्मा क्षमता की सरल परिभाषाएँ उपयोगी या सार्थक भी नहीं हैं। आपूर्ति की जाने वाली ऊष्मा ऊर्जा मैक्रोस्कोपिक और परमाणु मापदंड पर [[गतिज ऊर्जा]] (गति की ऊर्जा) और [[संभावित ऊर्जा]] (बल क्षेत्रों में संग्रहीत ऊर्जा) के रूप में समाप्त हो सकती है। फिर तापमान में परिवर्तन उस विशेष पथ पर निर्भर करेगा जो प्रणाली प्रारंभिक और अंतिम अवस्थाओं के बीच अपने [[चरण स्थान]] के माध्यम से अपनाता है। अर्थात् किसी को किसी तरह यह निर्दिष्ट करना चाहिए कि प्रारंभिक और अंतिम अवस्थाओं के बीच स्थिति वेग दबाव आयतन आदि कैसे बदल गए; और एक छोटे ऊर्जा इनपुट के लिए प्रणाली की प्रतिक्रिया की पूर्वानुमान करने के लिए [[ऊष्मप्रवैगिकी]] के सामान्य उपकरणों का उपयोग करें। निरंतर आयतन और निरंतर दबाव हीटिंग मोड असीम रूप से कई रास्तों में से दो हैं जो एक साधारण सजातीय प्रणाली का अनुसरण कर सकते हैं। | ||
== माप == | == माप == | ||
Line 104: | Line 104: | ||
== ऋणात्मक ताप क्षमता == | == ऋणात्मक ताप क्षमता == | ||
अधिकांश भौतिक प्रणालियाँ एक सकारात्मक ताप क्षमता प्रदर्शित करती हैं; स्थिर-आयतन और स्थिर-दबाव ताप क्षमता, कठोर रूप से आंशिक डेरिवेटिव के रूप में परिभाषित सजातीय निकायों के लिए सदैव सकारात्मक होते हैं।<ref name="LandauLifshitzStatPhys1">Landau, L. D.; Lifshitz, E. M. (reprinted 2011). ''Statistical Physics Part 1'', Ch.II §21, 3rd edition, Elsevier [[index.php?title=Special:BookSources/9780750633727|ISBN 978-0-7506-3372-7]]</ref> चूँकि तथापि यह पहली बार में विरोधाभासी लग सकता है<ref>{{cite journal| author1=D. Lynden-Bell |author2=R. M. Lynden-Bell |date=Nov 1977|bibcode=1977MNRAS.181..405L |title=नकारात्मक विशिष्ट ताप विरोधाभास पर|journal=[[Monthly Notices of the Royal Astronomical Society]]|volume=181|issue=3 |pages=405–419 |doi=10.1093/mnras/181.3.405|doi-access=free}}</ref><ref>{{cite journal|first=D. |last=Lynden-Bell |date=Dec 1998|title= खगोल विज्ञान, भौतिकी और रसायन विज्ञान में नकारात्मक विशिष्ट ऊष्मा|arxiv=cond-mat/9812172v1|bibcode = 1999PhyA..263..293L |doi = 10.1016/S0378-4371(98)00518-4 |journal=Physica A|volume=263|issue=1–4 |pages=293–304|s2cid=14479255 }}</ref> कुछ प्रणालियाँ हैं जिनके लिए ताप क्षमता | अधिकांश भौतिक प्रणालियाँ एक सकारात्मक ताप क्षमता प्रदर्शित करती हैं; स्थिर-आयतन और स्थिर-दबाव ताप क्षमता, कठोर रूप से आंशिक डेरिवेटिव के रूप में परिभाषित सजातीय निकायों के लिए सदैव सकारात्मक होते हैं।<ref name="LandauLifshitzStatPhys1">Landau, L. D.; Lifshitz, E. M. (reprinted 2011). ''Statistical Physics Part 1'', Ch.II §21, 3rd edition, Elsevier [[index.php?title=Special:BookSources/9780750633727|ISBN 978-0-7506-3372-7]]</ref> चूँकि तथापि यह पहली बार में विरोधाभासी लग सकता है<ref>{{cite journal| author1=D. Lynden-Bell |author2=R. M. Lynden-Bell |date=Nov 1977|bibcode=1977MNRAS.181..405L |title=नकारात्मक विशिष्ट ताप विरोधाभास पर|journal=[[Monthly Notices of the Royal Astronomical Society]]|volume=181|issue=3 |pages=405–419 |doi=10.1093/mnras/181.3.405|doi-access=free}}</ref><ref>{{cite journal|first=D. |last=Lynden-Bell |date=Dec 1998|title= खगोल विज्ञान, भौतिकी और रसायन विज्ञान में नकारात्मक विशिष्ट ऊष्मा|arxiv=cond-mat/9812172v1|bibcode = 1999PhyA..263..293L |doi = 10.1016/S0378-4371(98)00518-4 |journal=Physica A|volume=263|issue=1–4 |pages=293–304|s2cid=14479255 }}</ref> कुछ प्रणालियाँ हैं जिनके लिए ताप क्षमता <math>Q</math>/<math>\Delta T</math> ऋणात्मक है। उदाहरणों में एक उत्क्रमणीय और लगभग रूद्धोष्म रूप से विस्तारित आदर्श गैस सम्मिलित है जो <math>\Delta T</math>< 0 को ठंडा करती है जबकि ऊष्मा की एक छोटी मात्रा <math>Q</math> > 0 में डाली जाती है या बढ़ते तापमान के साथ मीथेन का दहन करती है <math>\Delta T</math>> 0 और गर्मी छोड़ती है <math>Q</math> < 0. अन्य विषम प्रणालियाँ हैं जो थर्मोडायनामिक संतुलन की सख्त परिभाषा को पूरा नहीं करती हैं। इनमें तारे और आकाशगंगा जैसी गुरुत्वाकर्षण वाली वस्तुएं सम्मिलित हैं और चरण संक्रमण के समीप कुछ दसियों परमाणुओं के कुछ नैनो-स्केल क्लस्टर भी सम्मिलित हैं।।<ref>{{cite journal| last1=Schmidt| first1=Martin| last2=Kusche| first2=Robert| last3=Hippler| first3=Thomas| last4=Donges| first4=Jörn| last5=Kronmüller| first5=Werner| last6=Issendorff, von| first6=Bernd| last7=Haberland| first7=Hellmut| title=147 सोडियम परमाणुओं के समूह के लिए नकारात्मक ताप क्षमता| journal=Physical Review Letters| volume=86| issue=7| pages=1191–4| year=2001| pmid=11178041| doi=10.1103/PhysRevLett.86.1191| bibcode=2001PhRvL..86.1191S| s2cid=31758641| url=https://semanticscholar.org/paper/80b7fd11768d96be7db317362f77b8a7bc95c1de}}</ref> एक ऋणात्मक ताप क्षमता के परिणामस्वरूप ऋणात्मक तापमान हो सकता है। | ||
=== सितारे और ब्लैक होल === | === सितारे और ब्लैक होल === | ||
[[वायरल प्रमेय]] के अनुसार किसी तारे या अंतरातारकीय गैस बादल जैसे स्व-गुरुत्वाकर्षण पिंड के लिए, औसत स्थितिज ऊर्जा U<sub>pot</sub> और औसत गतिज ऊर्जा U<sub>kin</sub> संबंध | [[वायरल प्रमेय]] के अनुसार किसी तारे या अंतरातारकीय गैस बादल जैसे स्व-गुरुत्वाकर्षण पिंड के लिए, औसत स्थितिज ऊर्जा U<sub>pot</sub> और औसत गतिज ऊर्जा U<sub>kin</sub> संबंध में एक साथ बंद हैं | ||
:<math>U_\text{pot} = -2 U_\text{kin}.</math> | :<math>U_\text{pot} = -2 U_\text{kin}.</math> | ||
Line 114: | Line 114: | ||
:<math>U = - U_\text{kin}.</math> | :<math>U = - U_\text{kin}.</math> | ||
यदि प्रणाली | यदि प्रणाली ऊर्जा खो देता है, उदाहरण के लिए, ऊर्जा को अंतरिक्ष में विकीर्ण करके औसत गतिज ऊर्जा वास्तव में बढ़ जाती है। यदि एक तापमान को औसत गतिज ऊर्जा द्वारा परिभाषित किया जाता है, तो प्रणाली को एक ऋणात्मक ताप क्षमता कहा जा सकता है।<ref>See e.g., {{cite journal|first=David |last=Wallace|url=http://philsci-archive.pitt.edu/archive/00004744/01/gravent_archive.pdf|title= Gravity, entropy, and cosmology: in search of clarity|journal=British Journal for the Philosophy of Science|doi=10.1093/bjps/axp048|format=preprint|year=2010|volume=61|issue=3|page=513|bibcode = 2010BJPS...61..513W |arxiv = 0907.0659 |citeseerx=10.1.1.314.5655}} Section 4 and onwards.</ref> | ||
इसका एक और चरम संस्करण [[ब्लैक होल]] के साथ होता है। [[ब्लैक-होल ऊष्मप्रवैगिकी]] के अनुसार एक ब्लैक होल जितना अधिक द्रव्यमान और ऊर्जा अवशोषित करता है उतना ही ठंडा हो जाता है। इसके विपरीत यदि यह [[हॉकिंग विकिरण]] के माध्यम से ऊर्जा का शुद्ध उत्सर्जक है तो यह उबलने तक गर्म और गर्म होता जाएगा। | इसका एक और चरम संस्करण [[ब्लैक होल]] के साथ होता है। [[ब्लैक-होल ऊष्मप्रवैगिकी]] के अनुसार एक ब्लैक होल जितना अधिक द्रव्यमान और ऊर्जा अवशोषित करता है उतना ही ठंडा हो जाता है। इसके विपरीत यदि यह [[हॉकिंग विकिरण]] के माध्यम से ऊर्जा का शुद्ध उत्सर्जक है तो यह उबलने तक गर्म और गर्म होता जाएगा। | ||
=== परिणाम === | === परिणाम === | ||
ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार जब अलग-अलग तापमान वाली दो प्रणालियाँ विशुद्ध रूप से थर्मल कनेक्शन के माध्यम से परस्पर क्रिया करती हैं तो ऊष्मा गर्म प्रणाली से ठंडी प्रणाली में प्रवाहित होगी (इसे तापमान यांत्रिकी से तापमान या परिभाषा से भी समझा जा सकता है)। इसलिए यदि ऐसी प्रणालियों का तापमान समान है तो वे तापीय संतुलन पर हैं। चूँकि यह संतुलन तभी स्थिर होता है जब प्रणाली | ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार जब अलग-अलग तापमान वाली दो प्रणालियाँ विशुद्ध रूप से थर्मल कनेक्शन के माध्यम से परस्पर क्रिया करती हैं तो ऊष्मा गर्म प्रणाली से ठंडी प्रणाली में प्रवाहित होगी (इसे तापमान यांत्रिकी से तापमान या परिभाषा से भी समझा जा सकता है)। इसलिए यदि ऐसी प्रणालियों का तापमान समान है तो वे तापीय संतुलन पर हैं। चूँकि यह संतुलन तभी स्थिर होता है जब प्रणाली में सकारात्मक ताप क्षमता होती है। ऐसी प्रणालियों के लिए जब ऊष्मा उच्च तापमान प्रणाली से निम्न तापमान प्रणाली में प्रवाहित होती है तो पहले का तापमान घटता है और बाद वाले का बढ़ता है जिससे दोनों संतुलन की ओर बढ़ते हैं। इसके विपरीत ऋणात्मक ताप क्षमता वाली प्रणालियों के लिए गर्म प्रणाली का तापमान और बढ़ जाएगा क्योंकि यह गर्मी खो देता है और ठंडे का तापमान और कम हो जाएगा जिससे वे संतुलन से दूर चले जाएंगे। इसका अर्थ है कि संतुलन यांत्रिक संतुलन या स्थिरता है। | ||
उदाहरण के लिए सिद्धांत के अनुसार एक ब्लैक होल जितना छोटा (कम द्रव्यमान वाला) होगा उसका [[श्वार्जस्चिल्ड त्रिज्या]] उतना ही छोटा होगा और इसलिए उसके [[घटना क्षितिज]] की [[वक्रता]] और साथ ही उसका तापमान भी उतना ही अधिक होगा। इस प्रकार ब्लैक होल जितना छोटा होगा उतना ही अधिक ऊष्मीय विकिरण उत्सर्जित होगा और उतनी ही तेज़ी से यह वाष्पित हो जाएगा। | उदाहरण के लिए सिद्धांत के अनुसार एक ब्लैक होल जितना छोटा (कम द्रव्यमान वाला) होगा उसका [[श्वार्जस्चिल्ड त्रिज्या]] उतना ही छोटा होगा और इसलिए उसके [[घटना क्षितिज]] की [[वक्रता]] और साथ ही उसका तापमान भी उतना ही अधिक होगा। इस प्रकार ब्लैक होल जितना छोटा होगा उतना ही अधिक ऊष्मीय विकिरण उत्सर्जित होगा और उतनी ही तेज़ी से यह वाष्पित हो जाएगा। | ||
'''तापीय संतुलन पर हैं। चूँकि यह संतुलन तभी स्थिर होता है जब प्रणाली | '''तापीय संतुलन पर हैं। चूँकि यह संतुलन तभी स्थिर होता है जब प्रणाली में सकारात्मक ताप क्षमता होती है।''' | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 10:28, 24 May 2023
थर्मोडायनामिक्स |
---|
ऊष्मा क्षमता या ऊष्मीय क्षमता पदार्थ की एक भौतिक मात्रा है जिसे किसी वस्तु को उसके तापमान में एक इकाई परिवर्तन उत्पन्न करने के लिए आपूर्ति की जाने वाली ऊष्मा की मात्रा के रूप में परिभाषित किया जाता है।[1] ताप क्षमता की इकाइयों की अंतर्राष्ट्रीय प्रणाली जूल प्रति केल्विन (J/K) है।
ताप क्षमता एक व्यापक संपत्ति है। संबंधित गहन संपत्ति विशिष्ट ताप क्षमता है, जो किसी वस्तु की ताप क्षमता को उसके द्रव्यमान से विभाजित करके पाई जाती है। मोल्स (ईकाई) में पदार्थ की मात्रा से ऊष्मा क्षमता को विभाजित करने से इसकी दाढ़ ताप क्षमता प्राप्त होती है। वॉल्यूमेट्रिक ताप क्षमता प्रति आयतन ताप क्षमता को मापती है। वास्तुकला और असैनिक इंजीनियरिंग में एक इमारत की ताप क्षमता को अधिकांशतः इसके तापीय द्रव्यमान के रूप में संदर्भित किया जाता है।
परिभाषा
मूल परिभाषा
द्वारा निरूपित किसी वस्तु की ऊष्मा क्षमता सीमा है
जहाँ उष्मा की वह मात्रा है जिसे वस्तु (द्रव्यमान M) में जोड़ा जाना चाहिए जिससे उसका तापमान तक बढ़ाया जा सकता है ।
इस पैरामीटर का मान सामान्यतः प्रारंभिक तापमान के आधार पर अधिक भिन्न होता है वस्तु और दबाव का उस पर आवेदन किया। विशेष रूप से, यह आम तौर पर पिघलने या वाष्पीकरण जैसे चरण संक्रमणों के साथ नाटकीय रूप से भिन्न होता है (संलयन की तापीय धारिता और वाष्पीकरण की तापीय धारिता देखें)। इसलिए उन दो चरों का एक कार्य माना जाना चाहिए ।
तापमान के साथ भिन्नता
तापमान और दबाव की संकीर्ण सीमा में वस्तुओं के साथ काम करते समय भिन्नता को संदर्भों में अनदेखा किया जा सकता है। उदाहरण के लिए एक पाउंड (द्रव्यमान) वजन वाले लोहे के ब्लॉक की ताप क्षमता लगभग 204 J/K होती है, जब इसे प्रारंभिक तापमान T = 25 °C और P = 1 atm दबाव से मापा जाता है। यह अनुमानित मान 15 डिग्री सेल्सियस और 35 डिग्री सेल्सियस के बीच के तापमान और 0 से 10 वायुमंडल के आसपास के दबावों के लिए पर्याप्त है क्योंकि उन श्रेणियों में स्पष्ट मान बहुत कम भिन्न होता है।कोई विश्वास कर सकता है कि 204 J का समान ताप इनपुट ब्लॉक के तापमान को 15 °C से 16 °C तक बढ़ा देगा या नगण्य त्रुटि के साथ 34 °C से 35 °C तक बढ़ा देगा।
विभिन्न थर्मोडायनामिक प्रक्रियाओं से गुजरने वाली एक सजातीय प्रणाली की ताप क्षमता
स्थिर दाब पर, δQ = dU + PdV (समदाबीय प्रक्रिया)
ऊष्मप्रवैगिकी के पहले नियम के अनुसार निरंतर दबाव पर प्रणाली को आपूर्ति की गई ऊष्मा किए गए कार्य (थर्मोडायनामिक्स) और आंतरिक ऊर्जा में परिवर्तन दोनों में योगदान करती है। ताप क्षमता को कहा जाता है और इसे इस प्रकार परिभाषित किया गया है:
स्थिर आयतन पर, dV = 0, δQ = dU (आइसोकोरिक प्रक्रिया)
निरंतर आयतन पर एक प्रक्रिया से गुजरने वाली प्रणाली का अर्थ है कि कोई विस्तार कार्य नहीं किया गया है इसलिए आपूर्ति की गई ऊष्मा केवल आंतरिक ऊर्जा में परिवर्तन में योगदान करती है। इस तरह से प्राप्त ऊष्मा क्षमता को दर्शाया जाता है। का मान सदैव ( < ) के मान से कम होता है।
गणना CP और CV एक आदर्श गैस के लिए
मेयर संबंध:
जहाँ
- गैस के मोल्स की संख्या है,
- गैस स्थिर है,
- ताप क्षमता अनुपात है (जिसकी गणना गैस अणु की स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान) की संख्या को जानकर की जा सकती है)।
उपरोक्त दो संबंधों का उपयोग करके विशिष्ट ऊष्मा को निम्नानुसार घटाया जा सकता है:
स्थिर तापमान पर (समतापीय प्रक्रिया)
आंतरिक ऊर्जा में कोई परिवर्तन नहीं (चूंकि प्रणाली का तापमान पूरी प्रक्रिया में स्थिर रहता है) केवल आपूर्ति की गई कुल गर्मी द्वारा किए गए कार्य की ओर जाता है और इस प्रकार एक इकाई तापमान द्वारा प्रणाली के तापमान को बढ़ाने के लिए अनंत मात्रा में गर्मी की आवश्यकता होती है प्रणाली की अनंत या अपरिभाषित ताप क्षमता के लिए अग्रणी है।
चरण परिवर्तन के समय (चरण संक्रमण)
चरण संक्रमण से गुजरने वाली प्रणाली की ताप क्षमता अनंत (गणित) है, क्योंकि गर्मी का उपयोग समग्र तापमान को बढ़ाने के अतिरिक्त पदार्थ की स्थिति को बदलने में किया जाता है।
विषम वस्तुएं
विभिन्न पदार्थो से बने अलग-अलग भागो के साथ विषम वस्तुओं के लिए भी ताप क्षमता को अच्छी तरह से परिभाषित किया जा सकता है; जैसे बिजली की मोटर किसी धातु की क्रूसिबल, या पूरी इमारत कई स्थिति में (आइसोबैरिक) ऐसी वस्तुओं की ताप क्षमता की गणना केवल अलग-अलग भागो की (आइसोबैरिक) ताप क्षमता को एक साथ जोड़कर की जा सकती है।
चूँकि यह गणना तभी मान्य होती है जब माप के पहले और बाद में वस्तु के सभी भाग एक ही बाहरी दबाव पर हो सकता है कि कुछ स्थिति में यह संभव न हो। उदाहरण के लिए एक लोचदार कंटेनर में गैस की मात्रा को गर्म करने पर, इसकी मात्रा और दबाव दोनों में वृद्धि होगी, तथापि कंटेनर के बाहर वायुमंडलीय दबाव स्थिर हो इसलिए उस स्थिति में गैस की प्रभावी ऊष्मा क्षमता का मान इसके समदाब रेखीय और समचिकीय क्षमताओं और के बीच मध्यवर्ती होगा।
जटिल थर्मोडायनामिक प्रणालियों के लिए कई अंतःक्रियात्मक भागों और राज्य चर के साथ या माप की स्थितियों के लिए जो न तो निरंतर दबाव और न ही स्थिर आयतन हैं या ऐसी स्थितियों के लिए जहां तापमान महत्वपूर्ण रूप से गैर-समान है ऊपर दी गई ऊष्मा क्षमता की सरल परिभाषाएँ उपयोगी या सार्थक भी नहीं हैं। आपूर्ति की जाने वाली ऊष्मा ऊर्जा मैक्रोस्कोपिक और परमाणु मापदंड पर गतिज ऊर्जा (गति की ऊर्जा) और संभावित ऊर्जा (बल क्षेत्रों में संग्रहीत ऊर्जा) के रूप में समाप्त हो सकती है। फिर तापमान में परिवर्तन उस विशेष पथ पर निर्भर करेगा जो प्रणाली प्रारंभिक और अंतिम अवस्थाओं के बीच अपने चरण स्थान के माध्यम से अपनाता है। अर्थात् किसी को किसी तरह यह निर्दिष्ट करना चाहिए कि प्रारंभिक और अंतिम अवस्थाओं के बीच स्थिति वेग दबाव आयतन आदि कैसे बदल गए; और एक छोटे ऊर्जा इनपुट के लिए प्रणाली की प्रतिक्रिया की पूर्वानुमान करने के लिए ऊष्मप्रवैगिकी के सामान्य उपकरणों का उपयोग करें। निरंतर आयतन और निरंतर दबाव हीटिंग मोड असीम रूप से कई रास्तों में से दो हैं जो एक साधारण सजातीय प्रणाली का अनुसरण कर सकते हैं।
माप
ऊष्मा क्षमता को सामान्यतः इसकी परिभाषा द्वारा निहित विधि द्वारा मापा जा सकता है: ज्ञात समान तापमान पर वस्तु से प्रारंभ करें इसमें ऊष्मा ऊर्जा की एक ज्ञात मात्रा जोड़ें इसके तापमान के एक समान होने की प्रतीक्षा करें और इसके तापमान में परिवर्तन को मापें यह विधि कई ठोस पदार्थों के लिए सामान्य स्पष्ट मान दे सकती है; चूँकि यह विशेष रूप से गैसों के लिए बहुत स्पष्ट माप प्रदान नहीं कर सकता है।
इकाइयां
अंतर्राष्ट्रीय प्रणाली
किसी वस्तु की ऊष्मा क्षमता के लिए एसआई इकाई जूल प्रति केल्विन (J/K or J⋅K−1) है चूँकि एक सेल्सियस मापदंड के तापमान में वृद्धि एक केल्विन की वृद्धि के समान है जो कि J/°C के समान इकाई है।
किसी वस्तु की ऊष्मा क्षमता तापमान परिवर्तन से विभाजित ऊर्जा की मात्रा है जिसका आयाम L2⋅M⋅T−2⋅Θ−1. है। इसलिए एसआई इकाई J/K किलोग्राम मीटर वर्ग प्रति सेकंड वर्ग प्रति केल्विन (kg⋅m2⋅s−2⋅K−1 ) के समान है।
अंग्रेजी (इंपीरियल) इंजीनियरिंग इकाइयां
निर्माण सिविल इंजीनियरिंग केमिकल इंजीनियरिंग और अन्य तकनीकी विषयों के कुशल विशेष रूप से संयुक्त राज्य अमेरिका में तथाकथित अंग्रेजी इंजीनियरिंग इकाइयों का उपयोग कर सकते हैं जिसमें द्रव्यमान की इकाई के रूप में पाउंड (द्रव्यमान) (lb = 0.45359237 kg) सम्मिलित है फ़ारेनहाइट या रैंकिन स्केल (5/9°K, लगभग 0.55556 °K) तापमान वृद्धि की इकाई के रूप में और ब्रिटिश थर्मल यूनिट (BTU ≈ 1055.06 J)[3][4] ऊष्मा की इकाई के रूप में उन संदर्भों में ताप क्षमता की इकाई 1 BTU/°R ≈ 1900 J/°K है।[5] बीटीयू वास्तव में परिभाषित किया गया था जिससे एक पौंड पानी की औसत ताप क्षमता 1 बीटीयू/डिग्री फ़ारेनहाइट हो। इस संबंध में द्रव्यमान के संबंध में 1 Btu/lb⋅°R ≈ 4,187 J/kg⋅°K [6]और कैलोरी (नीचे) के रूपांतरण पर ध्यान दें।
कैलोरी
रसायन विज्ञान में गर्मी की मात्रा अधिकांशतः कैलोरी में मापी जाती है। अस्पष्टतः रूप से उस नाम की दो इकाइयाँ, जिन्हें cal या Cal कहा जाता है, का उपयोग सामान्यतः ऊष्मा की मात्रा को मापने के लिए किया जाता है:
- छोटी कैलोरी (या चना-कैलोरी कैलोरी ) वास्तव में 4.184 J है। इसे मूल रूप से परिभाषित किया गया था जिससे 1 ग्राम तरल पानी की ताप क्षमता 1 कैलोरी/डिग्री सेल्सियस होगी।
- भव्य कैलोरी (यह भी किलोकैलोरी किलोग्राम-कैलोरी या भोजन कैलोरी; kcal या Cal ) 1000 cal है, यानी 4184 J, बिल्कुल इसे मूल रूप से परिभाषित किया गया था जिससे 1 किलो पानी की ताप क्षमता 1 किलो कैलोरी/डिग्री सेल्सियस हो।
ऊष्मा ऊर्जा की इन इकाइयों के साथ, ऊष्मा क्षमता की इकाइयाँ हैं
- 1 कैलोरी/डिग्री सेल्सियस = 4.184 जे/के
- 1 किलोकैलोरी/डिग्री सेल्सियस = 4184 जे/के
भौतिक आधार
ऋणात्मक ताप क्षमता
अधिकांश भौतिक प्रणालियाँ एक सकारात्मक ताप क्षमता प्रदर्शित करती हैं; स्थिर-आयतन और स्थिर-दबाव ताप क्षमता, कठोर रूप से आंशिक डेरिवेटिव के रूप में परिभाषित सजातीय निकायों के लिए सदैव सकारात्मक होते हैं।[7] चूँकि तथापि यह पहली बार में विरोधाभासी लग सकता है[8][9] कुछ प्रणालियाँ हैं जिनके लिए ताप क्षमता / ऋणात्मक है। उदाहरणों में एक उत्क्रमणीय और लगभग रूद्धोष्म रूप से विस्तारित आदर्श गैस सम्मिलित है जो < 0 को ठंडा करती है जबकि ऊष्मा की एक छोटी मात्रा > 0 में डाली जाती है या बढ़ते तापमान के साथ मीथेन का दहन करती है > 0 और गर्मी छोड़ती है < 0. अन्य विषम प्रणालियाँ हैं जो थर्मोडायनामिक संतुलन की सख्त परिभाषा को पूरा नहीं करती हैं। इनमें तारे और आकाशगंगा जैसी गुरुत्वाकर्षण वाली वस्तुएं सम्मिलित हैं और चरण संक्रमण के समीप कुछ दसियों परमाणुओं के कुछ नैनो-स्केल क्लस्टर भी सम्मिलित हैं।।[10] एक ऋणात्मक ताप क्षमता के परिणामस्वरूप ऋणात्मक तापमान हो सकता है।
सितारे और ब्लैक होल
वायरल प्रमेय के अनुसार किसी तारे या अंतरातारकीय गैस बादल जैसे स्व-गुरुत्वाकर्षण पिंड के लिए, औसत स्थितिज ऊर्जा Upot और औसत गतिज ऊर्जा Ukin संबंध में एक साथ बंद हैं
कुल ऊर्जा U (= Upot + Ukin) इसलिए पालन करता है
यदि प्रणाली ऊर्जा खो देता है, उदाहरण के लिए, ऊर्जा को अंतरिक्ष में विकीर्ण करके औसत गतिज ऊर्जा वास्तव में बढ़ जाती है। यदि एक तापमान को औसत गतिज ऊर्जा द्वारा परिभाषित किया जाता है, तो प्रणाली को एक ऋणात्मक ताप क्षमता कहा जा सकता है।[11]
इसका एक और चरम संस्करण ब्लैक होल के साथ होता है। ब्लैक-होल ऊष्मप्रवैगिकी के अनुसार एक ब्लैक होल जितना अधिक द्रव्यमान और ऊर्जा अवशोषित करता है उतना ही ठंडा हो जाता है। इसके विपरीत यदि यह हॉकिंग विकिरण के माध्यम से ऊर्जा का शुद्ध उत्सर्जक है तो यह उबलने तक गर्म और गर्म होता जाएगा।
परिणाम
ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार जब अलग-अलग तापमान वाली दो प्रणालियाँ विशुद्ध रूप से थर्मल कनेक्शन के माध्यम से परस्पर क्रिया करती हैं तो ऊष्मा गर्म प्रणाली से ठंडी प्रणाली में प्रवाहित होगी (इसे तापमान यांत्रिकी से तापमान या परिभाषा से भी समझा जा सकता है)। इसलिए यदि ऐसी प्रणालियों का तापमान समान है तो वे तापीय संतुलन पर हैं। चूँकि यह संतुलन तभी स्थिर होता है जब प्रणाली में सकारात्मक ताप क्षमता होती है। ऐसी प्रणालियों के लिए जब ऊष्मा उच्च तापमान प्रणाली से निम्न तापमान प्रणाली में प्रवाहित होती है तो पहले का तापमान घटता है और बाद वाले का बढ़ता है जिससे दोनों संतुलन की ओर बढ़ते हैं। इसके विपरीत ऋणात्मक ताप क्षमता वाली प्रणालियों के लिए गर्म प्रणाली का तापमान और बढ़ जाएगा क्योंकि यह गर्मी खो देता है और ठंडे का तापमान और कम हो जाएगा जिससे वे संतुलन से दूर चले जाएंगे। इसका अर्थ है कि संतुलन यांत्रिक संतुलन या स्थिरता है।
उदाहरण के लिए सिद्धांत के अनुसार एक ब्लैक होल जितना छोटा (कम द्रव्यमान वाला) होगा उसका श्वार्जस्चिल्ड त्रिज्या उतना ही छोटा होगा और इसलिए उसके घटना क्षितिज की वक्रता और साथ ही उसका तापमान भी उतना ही अधिक होगा। इस प्रकार ब्लैक होल जितना छोटा होगा उतना ही अधिक ऊष्मीय विकिरण उत्सर्जित होगा और उतनी ही तेज़ी से यह वाष्पित हो जाएगा।
तापीय संतुलन पर हैं। चूँकि यह संतुलन तभी स्थिर होता है जब प्रणाली में सकारात्मक ताप क्षमता होती है।
यह भी देखें
- क्वांटम सांख्यिकीय यांत्रिकी
- ताप क्षमता अनुपात
- सांख्यिकीय यांत्रिकी
- थर्मोडायनामिक समीकरण
- शुद्ध पदार्थों के लिए थर्मोडायनामिक डेटाबेस
- ऊष्मा समीकरण
- गर्मी हस्तांतरण गुणांक
- मिलाने का ताप
- अव्यक्त गर्मी
- भौतिक गुण (थर्मोडायनामिक्स)
- जॉबबैक विधि (ताप क्षमता का अनुमान)
- संलयन की तापीय धारिता (संलयन की तापीय धारिता)
- वाष्पीकरण की तापीय धारिता (वाष्पीकरण की तापीय धारिता)
- वॉल्यूमेट्रिक ताप क्षमता
- थर्मल द्रव्यमान
- आर-मूल्य (इन्सुलेशन)
- भंडारण हीटर
- फ्रेनकेल लाइन
- विशिष्ट ताप क्षमता की तालिका
संदर्भ
- ↑ Halliday, David; Resnick, Robert (2013). भौतिकी के मूल तत्व. Wiley. p. 524.
- ↑ "ऑनलाइन पानी की ताप क्षमता". Desmos (in русский). Retrieved 2022-06-03.
- ↑ Koch, Werner (2013). VDI Steam Tables (4 ed.). Springer. p. 8. ISBN 9783642529412. Published under the auspices of the Verein Deutscher Ingenieure (VDI).
- ↑ Cardarelli, Francois (2012). Scientific Unit Conversion: A Practical Guide to Metrication. M.J. Shields (translation) (2 ed.). Springer. p. 19. ISBN 9781447108054.
- ↑ 1Btu/lb⋅°R × 1055.06J/Btu x 9/5°R/°K ≈ 1899.11J/°K
- ↑ From direct values: 1Btu/lb⋅°R × 1055.06J/Btu × (1/0.45359237)lb/kg x 9/5°R/°K ≈ 4186.82J/kg⋅°K
- ↑ Landau, L. D.; Lifshitz, E. M. (reprinted 2011). Statistical Physics Part 1, Ch.II §21, 3rd edition, Elsevier ISBN 978-0-7506-3372-7
- ↑ D. Lynden-Bell; R. M. Lynden-Bell (Nov 1977). "नकारात्मक विशिष्ट ताप विरोधाभास पर". Monthly Notices of the Royal Astronomical Society. 181 (3): 405–419. Bibcode:1977MNRAS.181..405L. doi:10.1093/mnras/181.3.405.
- ↑ Lynden-Bell, D. (Dec 1998). "खगोल विज्ञान, भौतिकी और रसायन विज्ञान में नकारात्मक विशिष्ट ऊष्मा". Physica A. 263 (1–4): 293–304. arXiv:cond-mat/9812172v1. Bibcode:1999PhyA..263..293L. doi:10.1016/S0378-4371(98)00518-4. S2CID 14479255.
- ↑ Schmidt, Martin; Kusche, Robert; Hippler, Thomas; Donges, Jörn; Kronmüller, Werner; Issendorff, von, Bernd; Haberland, Hellmut (2001). "147 सोडियम परमाणुओं के समूह के लिए नकारात्मक ताप क्षमता". Physical Review Letters. 86 (7): 1191–4. Bibcode:2001PhRvL..86.1191S. doi:10.1103/PhysRevLett.86.1191. PMID 11178041. S2CID 31758641.
- ↑ See e.g., Wallace, David (2010). "Gravity, entropy, and cosmology: in search of clarity" (preprint). British Journal for the Philosophy of Science. 61 (3): 513. arXiv:0907.0659. Bibcode:2010BJPS...61..513W. CiteSeerX 10.1.1.314.5655. doi:10.1093/bjps/axp048. Section 4 and onwards.
इस पेज में लापता आंतरिक लिंक की सूची
- मामला
- गर्मी
- तिल (इकाई)
- विशिष्ट ऊष्मा क्षमता
- थर्मल द्रव्यमान
- जौल
- पौंड (द्रव्यमान)
- लोहा
- आइसोबैरिक प्रक्रिया
- ऊष्मप्रवैगिकी का पहला नियम
- गैस स्थिरांक
- इज़ोटेर्मल प्रक्रिया
- अनन्त
- विद्युत मोटर
- चर बताएं
- थर्मोडायनामिक प्रणाली
- आकार जांच
- सेल्सियस पैमाना
- अंग्रेजी इंजीनियरिंग इकाइयां
- थर्मल संतुलन
- ऊष्मप्रवैगिकी का दूसरा नियम
- आर-वैल्यू (इन्सुलेशन)
- क्वांटम सांख्यिकीय यांत्रिकी
- ताप समीकरण
आगे की पढाई
- Encyclopædia Britannica, 2015, "Heat capacity (Alternate title: thermal capacity)".