प्रतिलोम समस्या: Difference between revisions
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
व्युत्क्रम समस्याओं के क्षेत्र को बाद में [[सोवियत संघ]]-अर्मेनियाई भौतिक विज्ञानी, [[विक्टर अम्बर्टसुमियन]] द्वारा छुआ गया था।<ref>[http://ambartsumian.ru/en/papers/epilogue-ambartsumian’-s-paper/ » Epilogue — Ambartsumian’ s paper Viktor Ambartsumian<!-- Bot generated title -->]</ref><ref>{{cite journal|title=खगोल भौतिकी में एक जीवन। विक्टर ए. अंबर्टसुमियन के चयनित कागजात| first=Rouben V.| last=Ambartsumian| journal=Astrophysics| volume=41| issue=4| pages=328–330| doi=10.1007/BF02894658| year = 1998| s2cid=118952753}}</ref> | व्युत्क्रम समस्याओं के क्षेत्र को बाद में [[सोवियत संघ]]-अर्मेनियाई भौतिक विज्ञानी, [[विक्टर अम्बर्टसुमियन]] द्वारा छुआ गया था।<ref>[http://ambartsumian.ru/en/papers/epilogue-ambartsumian’-s-paper/ » Epilogue — Ambartsumian’ s paper Viktor Ambartsumian<!-- Bot generated title -->]</ref><ref>{{cite journal|title=खगोल भौतिकी में एक जीवन। विक्टर ए. अंबर्टसुमियन के चयनित कागजात| first=Rouben V.| last=Ambartsumian| journal=Astrophysics| volume=41| issue=4| pages=328–330| doi=10.1007/BF02894658| year = 1998| s2cid=118952753}}</ref> | ||
अभी भी एक छात्र के रूप में, अम्बार्टसुमियन ने परमाणु संरचना के सिद्धांत, ऊर्जा स्तरों के गठन, और श्रोडिंगर समीकरण और इसके गुणों का गहन अध्ययन किया, और जब उन्होंने [[अंतर समीकरण]]ों के ईजेनवेल्यूज़ और ईजेनसदिशों के सिद्धांत में महारत हासिल की, तो उन्होंने असतत के बीच स्पष्ट सादृश्यता की ओर संकेत किया। ऊर्जा स्तर और अंतर समीकरणों के | अभी भी एक छात्र के रूप में, अम्बार्टसुमियन ने परमाणु संरचना के सिद्धांत, ऊर्जा स्तरों के गठन, और श्रोडिंगर समीकरण और इसके गुणों का गहन अध्ययन किया, और जब उन्होंने [[अंतर समीकरण]]ों के ईजेनवेल्यूज़ और ईजेनसदिशों के सिद्धांत में महारत हासिल की, तो उन्होंने असतत के बीच स्पष्ट सादृश्यता की ओर संकेत किया। ऊर्जा स्तर और अंतर समीकरणों के आइजनवैल्यूज़। उन्होंने तब पूछा: आइजनवैल्यू के एक परिवार को देखते हुए, क्या उन समीकरणों का रूप खोजना संभव है जिनके आइजनवैल्यू हैं? अनिवार्य रूप से अम्बर्टसुमियन व्युत्क्रम स्टर्म-लिउविल समस्या की जांच कर रहे थे, जो एक कंपन स्ट्रिंग के समीकरणों को निर्धारित करने से संबंधित था। यह पत्र 1929 में जर्मन भौतिकी पत्रिका ज़िट्सक्रिफ्ट फर फिजिक में प्रकाशित हुआ था और अत्यधिक लंबे समय तक गुमनामी में रहा। कई दशकों के बाद इस स्थिति का वर्णन करते हुए, अम्बार्टसुमियन ने कहा, यदि कोई खगोलशास्त्री भौतिकी पत्रिका में गणितीय सामग्री के साथ एक लेख प्रकाशित करता है, तो सबसे अधिक संभावना यह है कि विस्मरण होगा। | ||
फिर भी, द्वितीय विश्व युद्ध के अंत की ओर, 20 वर्षीय अंबार्टसुमियन द्वारा लिखित यह लेख स्वीडिश गणितज्ञों द्वारा पाया गया और व्युत्क्रम समस्याओं पर शोध के एक पूरे क्षेत्र के लिए प्रारंभिक बिंदु बन गया, जो एक संपूर्ण की नींव बन गया। अनुशासन। | फिर भी, द्वितीय विश्व युद्ध के अंत की ओर, 20 वर्षीय अंबार्टसुमियन द्वारा लिखित यह लेख स्वीडिश गणितज्ञों द्वारा पाया गया और व्युत्क्रम समस्याओं पर शोध के एक पूरे क्षेत्र के लिए प्रारंभिक बिंदु बन गया, जो एक संपूर्ण की नींव बन गया। अनुशासन। | ||
तब विशेष रूप से सोवियत संघ में [[मार्चेंको समीकरण]] द्वारा व्युत्क्रम बिखरने की समस्या के प्रत्यक्ष समाधान के लिए महत्वपूर्ण प्रयास समर्पित किए गए हैं।<ref name="sciencedirect.com">{{cite journal |last1=Burridge |first1=Robert |title=व्युत्क्रम प्रकीर्णन सिद्धांत के गेलफैंड-लेविटन, मार्चेंको, और गोपीनाथ-सोंधी अभिन्न समीकरण, व्युत्क्रम आवेग-प्रतिक्रिया समस्याओं के संदर्भ में माना जाता है|journal=Wave Motion |date=1980 |volume=2 |issue=4 |pages=305–323 |doi=10.1016/0165-2125(80)90011-6 }}</ref> उन्होंने समाधान का निर्धारण करने के लिए एक विश्लेषणात्मक रचनात्मक विधि प्रस्तावित की थी। जब कंप्यूटर उपलब्ध हो गए, तो कुछ लेखकों ने समान समस्याओं के लिए अपने दृष्टिकोण को प्रयुक्त करने की संभावना की जांच की, जैसे कि 1D तरंग समीकरण में व्युत्क्रम समस्या। लेकिन यह तेजी से निकला कि व्युत्क्रम एक अस्थिर प्रक्रिया है: | तब विशेष रूप से सोवियत संघ में [[मार्चेंको समीकरण]] द्वारा व्युत्क्रम बिखरने की समस्या के प्रत्यक्ष समाधान के लिए महत्वपूर्ण प्रयास समर्पित किए गए हैं।<ref name="sciencedirect.com">{{cite journal |last1=Burridge |first1=Robert |title=व्युत्क्रम प्रकीर्णन सिद्धांत के गेलफैंड-लेविटन, मार्चेंको, और गोपीनाथ-सोंधी अभिन्न समीकरण, व्युत्क्रम आवेग-प्रतिक्रिया समस्याओं के संदर्भ में माना जाता है|journal=Wave Motion |date=1980 |volume=2 |issue=4 |pages=305–323 |doi=10.1016/0165-2125(80)90011-6 }}</ref> उन्होंने समाधान का निर्धारण करने के लिए एक विश्लेषणात्मक रचनात्मक विधि प्रस्तावित की थी। जब कंप्यूटर उपलब्ध हो गए, तो कुछ लेखकों ने समान समस्याओं के लिए अपने दृष्टिकोण को प्रयुक्त करने की संभावना की जांच की, जैसे कि 1D तरंग समीकरण में व्युत्क्रम समस्या। लेकिन यह तेजी से निकला कि व्युत्क्रम एक अस्थिर प्रक्रिया है: रव और त्रुटियों को जबरदस्त रूप से बढ़ाया जा सकता है जिससे प्रत्यक्ष समाधान संभवतया ही व्यावहारिक हो। | ||
फिर, सत्तर के दशक के आसपास, सबसे कम-वर्ग और संभाव्य दृष्टिकोण आए और विभिन्न भौतिक प्रणालियों में सम्मिलित मापदंडों के निर्धारण के लिए बहुत सहायक सिद्ध हुए। इस दृष्टिकोण को बहुत सफलता मिली। आजकल भौतिक विज्ञान के बाहर के क्षेत्रों जैसे रसायन विज्ञान, अर्थशास्त्र और कंप्यूटर विज्ञान में भी विपरीत समस्याओं की जांच की जाती है। अंततः, जैसा कि संख्यात्मक मॉडल समाज के कई हिस्सों में प्रचलित हो जाते हैं, हम इनमें से प्रत्येक संख्यात्मक मॉडल से जुड़ी एक व्युत्क्रम समस्या की आशा कर सकते हैं। | फिर, सत्तर के दशक के आसपास, सबसे कम-वर्ग और संभाव्य दृष्टिकोण आए और विभिन्न भौतिक प्रणालियों में सम्मिलित मापदंडों के निर्धारण के लिए बहुत सहायक सिद्ध हुए। इस दृष्टिकोण को बहुत सफलता मिली। आजकल भौतिक विज्ञान के बाहर के क्षेत्रों जैसे रसायन विज्ञान, अर्थशास्त्र और कंप्यूटर विज्ञान में भी विपरीत समस्याओं की जांच की जाती है। अंततः, जैसा कि संख्यात्मक मॉडल समाज के कई हिस्सों में प्रचलित हो जाते हैं, हम इनमें से प्रत्येक संख्यात्मक मॉडल से जुड़ी एक व्युत्क्रम समस्या की आशा कर सकते हैं। | ||
Line 40: | Line 40: | ||
| [[Wave equation|तरंग समीकरण]] || तरंग-गति और घनत्व का वितरण || तरंग-क्षेत्र कृत्रिम या प्राकृतिक [[seismic source|भूकंपीय स्रोतों]] के कारण होता है || विभिन्न सतह स्थानों पर रखे गए सिस्मोमीटर द्वारा मापा गया [[Particle velocity|कण वेग]] | | [[Wave equation|तरंग समीकरण]] || तरंग-गति और घनत्व का वितरण || तरंग-क्षेत्र कृत्रिम या प्राकृतिक [[seismic source|भूकंपीय स्रोतों]] के कारण होता है || विभिन्न सतह स्थानों पर रखे गए सिस्मोमीटर द्वारा मापा गया [[Particle velocity|कण वेग]] | ||
|- | |- | ||
| [[Diffusion equation|प्रसार समीकरण]] || [[Mass diffusivity|प्रसार गुणांक]] का वितरण || अंतरिक्ष और समय के एक | | [[Diffusion equation|प्रसार समीकरण]] || [[Mass diffusivity|प्रसार गुणांक]] का वितरण || अंतरिक्ष और समय के एक फलन के रूप में सामग्री की एकाग्रता को फैलाना || विभिन्न स्थानों पर मापी गई इस सघनता की निगरानी | ||
|} | |} | ||
व्युत्क्रम समस्या दृष्टिकोण में हम, मोटे तौर पर बोलते हुए, दिए गए प्रभावों के कारणों को जानने का प्रयास करते हैं। | व्युत्क्रम समस्या दृष्टिकोण में हम, मोटे तौर पर बोलते हुए, दिए गए प्रभावों के कारणों को जानने का प्रयास करते हैं। | ||
Line 85: | Line 85: | ||
पांच समीकरणों और पांच अज्ञात वाली प्रणाली एक बहुत ही विशिष्ट स्थिति है: हमारे उदाहरण को इस विशिष्टता के साथ समाप्त करने के लिए डिज़ाइन किया गया था। सामान्य तौर पर, डेटा और अज्ञात की संख्या भिन्न होती है जिससे आव्यूह <math>F</math> वर्गाकार नहीं है। | पांच समीकरणों और पांच अज्ञात वाली प्रणाली एक बहुत ही विशिष्ट स्थिति है: हमारे उदाहरण को इस विशिष्टता के साथ समाप्त करने के लिए डिज़ाइन किया गया था। सामान्य तौर पर, डेटा और अज्ञात की संख्या भिन्न होती है जिससे आव्यूह <math>F</math> वर्गाकार नहीं है। | ||
चूंकि, एक वर्ग आव्यूह में भी कोई व्युत्क्रम नहीं हो सकता है: आव्यूह <math>F</math> [[रैंक (रैखिक बीजगणित)]] की कमी हो सकती है (अर्थात् शून्य | चूंकि, एक वर्ग आव्यूह में भी कोई व्युत्क्रम नहीं हो सकता है: आव्यूह <math>F</math> [[रैंक (रैखिक बीजगणित)]] की कमी हो सकती है (अर्थात् शून्य आइजनवैल्यूज़ है) और प्रणाली का समाधान <math>p = F^{-1} d_\text{obs} </math> अद्वितीय नहीं है। तब व्युत्क्रम समस्या का समाधान अनिर्धारित होगा। यह पहली कठिनाई है। अति-निर्धारित प्रणालियों (अज्ञात से अधिक समीकरण) में अन्य उद्देश्य हैं। | ||
साथ ही | साथ ही रव हमारे प्रेक्षणों को दूषित कर सकता है <math>d</math> संभवतः अंतरिक्ष के बाहर <math>F(P)</math> मॉडल मापदंडों के लिए संभावित प्रतिक्रियाओं की जिससे प्रणाली का समाधान <math>p = F^{-1} d_\text{obs} </math> उपस्थित नहीं हो सकता है। यह एक और कठिनाई है। | ||
==== पहली कठिनाई दूर करने के उपाय ==== | ==== पहली कठिनाई दूर करने के उपाय ==== | ||
Line 93: | Line 93: | ||
इस अतिरिक्त जानकारी का एकीकरण मूल रूप से आँकड़ों की समस्या है। यह अनुशासन वह है जो प्रश्न का उत्तर दे सकता है: विभिन्न प्रकृति की मात्राओं को कैसे मिलाया जाए? हम नीचे दिए गए बायेसियन दृष्टिकोण के अनुभाग में अधिक स्पष्ट होंगे। | इस अतिरिक्त जानकारी का एकीकरण मूल रूप से आँकड़ों की समस्या है। यह अनुशासन वह है जो प्रश्न का उत्तर दे सकता है: विभिन्न प्रकृति की मात्राओं को कैसे मिलाया जाए? हम नीचे दिए गए बायेसियन दृष्टिकोण के अनुभाग में अधिक स्पष्ट होंगे। | ||
वितरित मापदंडों के संबंध में, उनके स्थानिक वितरण के बारे में पूर्व सूचना में अधिकांशतः इन वितरित मापदंडों के कुछ डेरिवेटिव के बारे में जानकारी होती है। इसके | वितरित मापदंडों के संबंध में, उनके स्थानिक वितरण के बारे में पूर्व सूचना में अधिकांशतः इन वितरित मापदंडों के कुछ डेरिवेटिव के बारे में जानकारी होती है। इसके अतिरिक्त, यह सामान्य अभ्यास है, चूंकि कुछ हद तक कृत्रिम, सबसे सरल मॉडल की खोज करना जो डेटा से उचित रूप से मेल खाता हो। यह सामान्यतः एलपी स्पेस | पेनल्टी विधि द्वारा प्राप्त किया जाता है<math>L^1</math> मानकों के ढाल (या [[कुल भिन्नता]]) का मानदंड (इस दृष्टिकोण को एंट्रॉपी के अधिकतमकरण के रूप में भी जाना जाता है)। एक पैरामीट्रिजेशन के माध्यम से मॉडल को सरल भी बना सकता है, जो आवश्यक होने पर ही स्वतंत्रता की डिग्री प्रस्तुत करता है। | ||
मॉडल पैरामीटर या उनके कुछ कार्यों पर असमानता बाधाओं के माध्यम से अतिरिक्त जानकारी भी एकीकृत की जा सकती है। मापदंडों के लिए अवास्तविक मूल्यों (उदाहरण के लिए नकारात्मक मान) से बचने के लिए ऐसी बाधाएं महत्वपूर्ण हैं। इस स्थिति में, मॉडल मापदंडों द्वारा फैला हुआ स्थान अब एक सदिश स्थान नहीं होगा, बल्कि स्वीकार्य मॉडल का एक उपसमूह होगा जिसे निरूपित किया जाएगा <math>P_\text{adm}</math> अगली कड़ी में। | मॉडल पैरामीटर या उनके कुछ कार्यों पर असमानता बाधाओं के माध्यम से अतिरिक्त जानकारी भी एकीकृत की जा सकती है। मापदंडों के लिए अवास्तविक मूल्यों (उदाहरण के लिए नकारात्मक मान) से बचने के लिए ऐसी बाधाएं महत्वपूर्ण हैं। इस स्थिति में, मॉडल मापदंडों द्वारा फैला हुआ स्थान अब एक सदिश स्थान नहीं होगा, बल्कि स्वीकार्य मॉडल का एक उपसमूह होगा जिसे निरूपित किया जाएगा <math>P_\text{adm}</math> अगली कड़ी में। | ||
==== दूसरी कठिनाई दूर करने के उपाय ==== | ==== दूसरी कठिनाई दूर करने के उपाय ==== | ||
जैसा कि ऊपर उल्लेख किया गया है, | जैसा कि ऊपर उल्लेख किया गया है, रव ऐसा हो सकता है कि हमारे माप किसी मॉडल की छवि नहीं हैं, जिससे हम उस मॉडल की खोज न कर सकें जो डेटा उत्पन्न करता है बल्कि [[मॉडल चयन]] की खोज करता है | सबसे अच्छा (या इष्टतम) मॉडल: अर्थात्, एक जो डेटा से सबसे अच्छा मेल खाता है। यह हमें एक उद्देश्य फलन को कम करने की ओर ले जाता है, अर्थात् एक [[कार्यात्मक (गणित)]] जो यह निर्धारित करता है कि अवशेष कितने बड़े हैं या अनुमानित डेटा प्रेक्षित डेटा से कितनी दूर हैं। निस्संदेह, जब हमारे पास सही डेटा (अर्थात् कोई रव नहीं) होता है, तो बरामद मॉडल को देखे गए डेटा को पूरी तरह से फिट करना चाहिए। एक मानक [[उद्देश्य समारोह|उद्देश्य फलन]], <math>\varphi</math>, रूप है: | ||
<math>\varphi(p) = \|F p-d_\text{obs} \|^2 </math> | <math>\varphi(p) = \|F p-d_\text{obs} \|^2 </math> | ||
जहाँ <math>\| \cdot \| </math> यूक्लिडियन मानदंड है (यह <math>L^2</math> एलपी स्पेस होगा आदर्श जब माप अवशेषों के नमूने के बजाय कार्य होते हैं)। यह दृष्टिकोण [[कम से कम वर्गों]] का उपयोग करने के बराबर है, एक दृष्टिकोण जो आंकड़ों में व्यापक रूप से उपयोग किया जाता है। चूंकि, यूक्लिडियन मानदंड आउटलेयर के प्रति बहुत संवेदनशील माना जाता है: इस कठिनाई से बचने के लिए हम अन्य दूरियों का उपयोग करने के बारे में सोच सकते हैं, उदाहरण के लिए <math>L^1</math> मानदंड | जहाँ <math>\| \cdot \| </math> यूक्लिडियन मानदंड है (यह <math>L^2</math> एलपी स्पेस होगा आदर्श जब माप अवशेषों के नमूने के बजाय कार्य होते हैं)। यह दृष्टिकोण [[कम से कम वर्गों]] का उपयोग करने के बराबर है, एक दृष्टिकोण जो आंकड़ों में व्यापक रूप से उपयोग किया जाता है। चूंकि, यूक्लिडियन मानदंड आउटलेयर के प्रति बहुत संवेदनशील माना जाता है: इस कठिनाई से बचने के लिए हम अन्य दूरियों का उपयोग करने के बारे में सोच सकते हैं, उदाहरण के लिए <math>L^1</math> मानदंड के प्रतिस्थापन में <math>L^2</math> मानदंड। | ||
==== बायेसियन दृष्टिकोण ==== | ==== बायेसियन दृष्टिकोण ==== | ||
सबसे कम-वर्ग दृष्टिकोण के समान ही संभाव्य दृष्टिकोण है: यदि हम डेटा को दूषित करने वाले | सबसे कम-वर्ग दृष्टिकोण के समान ही संभाव्य दृष्टिकोण है: यदि हम डेटा को दूषित करने वाले रव के आंकड़ों को जानते हैं, तो हम सबसे संभावित मॉडल एम की मांग करने के बारे में सोच सकते हैं, जो मॉडल है जो [[अधिकतम संभावना अनुमान]] से मेल खाता है। यदि रव [[सामान्य वितरण]] है, तो अधिकतम संभावना मानदंड न्यूनतम-वर्ग मानदंड के रूप में प्रकट होता है, डेटा स्थान में यूक्लिडियन स्केलर उत्पाद को एक स्केलर उत्पाद द्वारा प्रतिस्थापित किया जा रहा है जिसमें [[सहप्रसरण]] सम्मिलित है। रव का सह-प्रसरण, इसके अतिरिक्त, क्या मॉडल मापदंडों पर पूर्व सूचना उपलब्ध होनी चाहिए, हम व्युत्क्रम समस्या का समाधान तैयार करने के लिए बायेसियन अनुमान का उपयोग करने के बारे में सोच सकते हैं। टारेंटोला की पुस्तक में इस दृष्टिकोण का विस्तार से वर्णन किया गया है।<ref>{{cite book |last1=Tarantola |first1=Albert |title=उलटा समस्या सिद्धांत|url=https://archive.org/details/inverseproblemth0000tara |url-access=registration |date=1987 |publisher=Elsevier |isbn=9780444599674 |edition=1st}}</ref> | ||
==== हमारे प्रारंभिक उदाहरण का संख्यात्मक समाधान ==== | ==== हमारे प्रारंभिक उदाहरण का संख्यात्मक समाधान ==== | ||
यहाँ हम यूक्लिडियन मानदंड का उपयोग डेटा मिसफिट को निर्धारित करने के लिए करते हैं। जैसा कि हम एक रैखिक व्युत्क्रम समस्या से निपटते हैं, उद्देश्य फलन द्विघात होता है। इसके न्यूनीकरण के लिए, समान तर्काधार का उपयोग करके इसके ग्रेडिएंट की गणना करना | यहाँ हम यूक्लिडियन मानदंड का उपयोग डेटा मिसफिट को निर्धारित करने के लिए करते हैं। जैसा कि हम एक रैखिक व्युत्क्रम समस्या से निपटते हैं, उद्देश्य फलन द्विघात होता है। इसके न्यूनीकरण के लिए, समान तर्काधार का उपयोग करके इसके ग्रेडिएंट की गणना करना मौलिक है (जैसा कि हम केवल एक चर के फलन को कम करना चाहते हैं)। इष्टतम मॉडल पर <math>p_\text{opt}</math>, यह ग्रेडिएंट लुप्त हो जाता है, जिसे इस प्रकार लिखा जा सकता है: | ||
<math display="block">\nabla_p \varphi = 2 (F^\mathrm{T} F p_\text{opt} - F^\mathrm{T} d_\text{obs}) = 0 </math> | <math display="block">\nabla_p \varphi = 2 (F^\mathrm{T} F p_\text{opt} - F^\mathrm{T} d_\text{obs}) = 0 </math> | ||
जहां | जहां F<sup>T</sup> F के [[मैट्रिक्स स्थानान्तरण|आव्यूह स्थानान्तरण]] को दर्शाता है। यह समीकरण इसे सरल करता है: | ||
<math display="block">F^\mathrm{T} F p_\text{opt} = F^\mathrm{T} d_\text{obs} </math> | <math display="block">F^\mathrm{T} F p_\text{opt} = F^\mathrm{T} d_\text{obs} </math> | ||
इस व्यंजक को [https://en.wikipedia.org/?title=Normal_equations&redirect=no | इस व्यंजक को [https://en.wikipedia.org/?title=Normal_equations&redirect=no सामान्य समीकरण] के रूप में जाना जाता है और यह हमें व्युत्क्रम समस्या का संभावित समाधान देता है। | ||
=== गणितीय और कम्प्यूटेशनल | हमारे उदाहरण आव्यूह में <math>F^\mathrm{T} F</math> सामान्यतः पूर्ण रैंक निकलता है, जिससे उपरोक्त समीकरण समझ में आता है और विशिष्ट रूप से मॉडल पैरामीटर निर्धारित करता है: हमें एक अद्वितीय समाधान के साथ समाप्त करने के लिए अतिरिक्त जानकारी को एकीकृत करने की आवश्यकता नहीं है। | ||
=== गणितीय और कम्प्यूटेशनल पहलू === | |||
सामान्यतः गणितीय मॉडलिंग में मिलने वाली अच्छी तरह से प्रस्तुत की गई समस्याओं के विपरीत व्युत्क्रम समस्याएं सामान्यतः बीमार होती हैं। [[जैक्स हैडमार्ड]] (अस्तित्व, विशिष्टता, और समाधान या समाधान की स्थिरता) द्वारा सुझाई गई एक अच्छी तरह से प्रस्तुत समस्या के लिए तीन शर्तों में से स्थिरता की स्थिति का अधिकांशतः उल्लंघन किया जाता है। [[कार्यात्मक विश्लेषण]] के अर्थ में, व्युत्क्रम समस्या को मीट्रिक रिक्त स्थान के बीच मानचित्रण द्वारा दर्शाया जाता है। जबकि व्युत्क्रम समस्याएं अधिकांशतः अनंत आयामी स्थानों में तैयार की जाती हैं, माप की एक सीमित संख्या की सीमाएं, और केवल अज्ञात मापदंडों की एक सीमित संख्या को पुनर्प्राप्त करने का व्यावहारिक विचार, असतत रूप में पुन: उत्पन्न होने वाली समस्याओं को जन्म दे सकता है। इस स्थिति में व्युत्क्रम समस्या सामान्यतः खराब स्थिति होगी। इन स्थितियों में, नियमितकरण (गणित) का उपयोग समाधान पर हल्की धारणाओं को प्रस्तुत करने और [[overfitting|ओवर फिटिंग]] को रोकने के लिए किया जा सकता है। नियमित प्रतिलोम समस्याओं के कई उदाहरणों की व्याख्या बायेसियन अनुमान के विशेष स्थितियों के रूप में की जा सकती है।<ref>{{cite book| chapter-url=http://www.ipgp.fr/~tarantola/Files/Professional/Books/InverseProblemTheory.pdf| title=उलटा समस्या सिद्धांत और मॉडल पैरामीटर अनुमान के लिए तरीके| pages=i–xii| first=Albert|last=Tarantola| publisher=SIAM| doi=10.1137/1.9780898717921.fm| chapter=Front Matter| year=2005| isbn=978-0-89871-572-9}}</ref> | |||
==== अनुकूलन समस्या का संख्यात्मक समाधान ==== | ==== अनुकूलन समस्या का संख्यात्मक समाधान ==== | ||
कुछ व्युत्क्रम समस्याओं का एक बहुत ही सरल समाधान होता है, उदाहरण के लिए, जब किसी के पास [[अघुलनशील कार्य]] | कुछ व्युत्क्रम समस्याओं का एक बहुत ही सरल समाधान होता है, उदाहरण के लिए, जब किसी के पास [[अघुलनशील कार्य]] का एक सेट होता है, जिसका अर्थ है {{tmath|n}} ऐसे कार्य करता है जो उनका मूल्यांकन करता है {{tmath|n}} अलग-अलग बिंदुओं से [[रैखिक रूप से स्वतंत्र]] वैक्टर का एक सेट प्राप्त होता है। इसका अर्थ यह है कि इन कार्यों के एक रैखिक संयोजन को देखते हुए, गुणांक की गणना वैक्टर को आव्यूह के कॉलम के रूप में व्यवस्थित करके और फिर इस आव्यूह को उल्टा करके की जा सकती है। अविलयनशील फलनों का सबसे सरल उदाहरण बहुपदों का निर्माण है, जिसमें अविलयन प्रमेय का उपयोग किया जाता है, जिससे अविलयन हो सके। ठोस रूप से, यह [[वैंडरमोंड मैट्रिक्स|वैंडरमोंड आव्यूह]] को उल्टा करके किया जाता है। लेकिन यह एक बहुत ही विशेष स्थिति है। | ||
सामान्य तौर पर, व्युत्क्रम समस्या के समाधान के लिए परिष्कृत अनुकूलन एल्गोरिदम की आवश्यकता होती है। जब मॉडल को बड़ी संख्या में पैरामीटर द्वारा वर्णित किया जाता है (कुछ विवर्तन टोमोग्राफी अनुप्रयोगों में सम्मिलित अज्ञात की संख्या एक अरब तक पहुंच सकती है), सामान्य समीकरणों से जुड़े रैखिक प्रणाली को हल करना बोझिल हो सकता है। अनुकूलन समस्या को हल करने के लिए उपयोग की जाने वाली संख्यात्मक विधि विशेष रूप से | सामान्य तौर पर, व्युत्क्रम समस्या के समाधान के लिए परिष्कृत अनुकूलन एल्गोरिदम की आवश्यकता होती है। जब मॉडल को बड़ी संख्या में पैरामीटर द्वारा वर्णित किया जाता है (कुछ विवर्तन टोमोग्राफी अनुप्रयोगों में सम्मिलित अज्ञात की संख्या एक अरब तक पहुंच सकती है), सामान्य समीकरणों से जुड़े रैखिक प्रणाली को हल करना बोझिल हो सकता है। अनुकूलन समस्या को हल करने के लिए उपयोग की जाने वाली संख्यात्मक विधि विशेष रूप से <math>F p</math> आगे की समस्या के समाधान की गणना के लिए आवश्यक व्यय पर निर्भर करती है। एक बार आगे की समस्या को हल करने के लिए उपयुक्त एल्गोरिदम चुना गया (एक सीधा आव्यूह-सदिश गुणन पर्याप्त नहीं हो सकता है जब आव्यूह <math>F</math> बहुत बड़ा है), न्यूनीकरण करने के लिए उपयुक्त एल्गोरिदम रैखिक प्रणालियों के समाधान के लिए संख्यात्मक विधियों से निपटने वाली पाठ्यपुस्तकों में और द्विघात कार्यों के न्यूनीकरण के लिए पाया जा सकता है (उदाहरण के लिए सियारलेट देखें<ref>{{cite book |last1=Ciarlet |first1=Philippe |title=Introduction à l'analyse numérique matricielle et à l'optimisation |date=1994 |publisher=Masson |location=Paris |isbn=9782225688935}}</ref> या नोसेडल<ref>{{cite book |last1=Nocedal |first1=Jorge |title=संख्यात्मक अनुकूलन|date=2006 |publisher=Springer}}</ref>)। | ||
साथ ही, उपयोगकर्ता मॉडलों में भौतिक बाधाओं को जोड़ना चाह सकते हैं: इस स्थिति में, उन्हें प्रतिबंधित अनुकूलन से परिचित होना होगा, जो कि स्वयं में एक विषय है। सभी स्थितियों में, अनुकूलन समस्या के समाधान के लिए उद्देश्य फलन के ढाल की गणना करना अधिकांशतः एक महत्वपूर्ण तत्व होता है। जैसा कि ऊपर उल्लेख किया गया है, पैरामीट्रिजेशन के माध्यम से वितरित पैरामीटर के स्थानिक वितरण के बारे में जानकारी प्रस्तुत की जा सकती है। अनुकूलन के | साथ ही, उपयोगकर्ता मॉडलों में भौतिक बाधाओं को जोड़ना चाह सकते हैं: इस स्थिति में, उन्हें प्रतिबंधित अनुकूलन से परिचित होना होगा, जो कि स्वयं में एक विषय है। सभी स्थितियों में, अनुकूलन समस्या के समाधान के लिए उद्देश्य फलन के ढाल की गणना करना अधिकांशतः एक महत्वपूर्ण तत्व होता है। जैसा कि ऊपर उल्लेख किया गया है, पैरामीट्रिजेशन के माध्यम से वितरित पैरामीटर के स्थानिक वितरण के बारे में जानकारी प्रस्तुत की जा सकती है। अनुकूलन के समय कोई भी इस पैरामीट्रिजेशन को अपनाने के बारे में सोच सकता है।<ref>{{cite journal |last1=Ben Ameur |first1=Hend |last2=Chavent |first2=Guy |last3=Jaffré |first3=Jérôme |title=Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities |journal=Inverse Problems |date=2002 |volume=18 |issue=3 |pages=775–794 |url=https://hal.inria.fr/docs/00/07/22/95/PDF/RR-4292.pdf|doi=10.1088/0266-5611/18/3/317 |bibcode=2002InvPr..18..775B |s2cid=250892174 }}</ref> क्या उद्देश्य फलन यूक्लिडियन मानदंड के अतिरिक्त किसी अन्य मानदंड पर आधारित होना चाहिए, हमें द्विघात अनुकूलन के क्षेत्र को छोड़ना होगा। परिणामस्वरूप, अनुकूलन समस्या अधिक कठिन हो जाती है। विशेष रूप से, जब <math>L^1</math> मानदंड का उपयोग डेटा मिसफिट को मापने के लिए किया जाता है, उद्देश्य फलन अब अलग नहीं होता है: इसका ढाल अब और समझ में नहीं आता है। समर्पित विधियाँ (उदाहरण के लिए लेमारेचल देखें<ref>{{cite book |last1=Lemaréchal |first1=Claude |title=ऑप्टिमाइजेशन, हैंडबुक इन ऑपरेशंस रिसर्च एंड मैनेजमेंट साइंस|date=1989 |publisher=Elsevier |pages=529–572}}</ref>) नॉन डिफरेंशियल ऑप्टिमाइज़ेशन से आते हैं। | ||
क्या उद्देश्य फलन यूक्लिडियन मानदंड के | |||
एक बार इष्टतम मॉडल की गणना हो जाने के बाद हमें इस प्रश्न का समाधान करना होगा: क्या हम इस मॉडल पर | एक बार इष्टतम मॉडल की गणना हो जाने के बाद हमें इस प्रश्न का समाधान करना होगा: क्या हम इस मॉडल पर विश्वास कर सकते हैं? प्रश्न को निम्नानुसार तैयार किया जा सकता है: मॉडल का सेट कितना बड़ा है जो डेटा के साथ-साथ इस मॉडल से भी मेल खाता है? द्विघात उद्देश्य कार्यों की स्थिति में, यह सेट एक हाइपर-एलिप्सिड, एक सबसेट <math>R^M</math> में समाहित है (<math>M</math> अज्ञात की संख्या है), जिसका आकार इस बात पर निर्भर करता है कि हम लगभग साथ ही क्या अर्थ रखते हैं, जो कि रव के स्तर पर है। इस दीर्घवृत्ताभ के सबसे बड़े अक्ष की दिशा <math>F^T F</math>) खराब निर्धारित घटकों की दिशा है: यदि हम इस दिशा का पालन करते हैं, तो हम उद्देश्य फलन के मूल्य में महत्वपूर्ण परिवर्तन किए बिना मॉडल में एक मजबूत गड़बड़ी ला सकते हैं और इस तरह एक अलग अर्ध-इष्टतम मॉडल के साथ समाप्त हो सकते हैं। हम स्पष्ट रूप से देखते हैं कि प्रश्न का उत्तर क्या हम विश्वास कर सकते हैं कि यह मॉडल रव के स्तर और ऑब्जेक्टिव फलन के [[हेसियन मैट्रिक्स|हेसियन आव्यूह]] के ईगेनवेल्यूज़ द्वारा या समकक्ष रूप से नियंत्रित किया जाता है, उस स्थिति में जहां कोई नियमितीकरण के [[एकवचन मूल्य|एकवचन मानों]] द्वारा <math>F</math> आव्यूह एकीकृत नहीं किया गया है। निस्संदेह, नियमितीकरण (या अन्य प्रकार की पूर्व सूचना) का उपयोग लगभग इष्टतम समाधानों के सेट के आकार को कम करता है और बदले में, हम गणना किए गए समाधान में विश्वास बढ़ा सकते हैं। | ||
==== अनंत आयाम में स्थिरता, नियमितीकरण और मॉडल विवेकीकरण ==== | ==== अनंत आयाम में स्थिरता, नियमितीकरण और मॉडल विवेकीकरण ==== | ||
Line 140: | Line 141: | ||
जहाँ <math>K</math> कर्नेल है, <math>x</math> और <math>y</math> के सदिश हैं <math>R^2</math>, और <math>\Omega</math> में एक डोमेन है <math>R^2</math>. यह एक 2D अनुप्रयोग के लिए है। एक 3D अनुप्रयोग के लिए, हम विचार करते हैं <math> x,y \in R^3</math>. ध्यान दें कि यहां मॉडल पैरामीटर <math>p</math> एक फलन से मिलकर बनता है और एक मॉडल की प्रतिक्रिया में एक फलन भी होता है जिसे निरूपित किया जाता है <math>d(x)</math>. यह समीकरण आव्यूह समीकरण के अनंत आयाम का विस्तार है <math>d=Fp</math> असतत समस्याओं की स्थिति में दिया गया। | जहाँ <math>K</math> कर्नेल है, <math>x</math> और <math>y</math> के सदिश हैं <math>R^2</math>, और <math>\Omega</math> में एक डोमेन है <math>R^2</math>. यह एक 2D अनुप्रयोग के लिए है। एक 3D अनुप्रयोग के लिए, हम विचार करते हैं <math> x,y \in R^3</math>. ध्यान दें कि यहां मॉडल पैरामीटर <math>p</math> एक फलन से मिलकर बनता है और एक मॉडल की प्रतिक्रिया में एक फलन भी होता है जिसे निरूपित किया जाता है <math>d(x)</math>. यह समीकरण आव्यूह समीकरण के अनंत आयाम का विस्तार है <math>d=Fp</math> असतत समस्याओं की स्थिति में दिया गया। | ||
पर्याप्त चिकनाई के लिए <math>K</math> ऊपर परिभाषित ऑपरेटर उचित Banach रिक्त स्थान जैसे Lp स्पेस पर [[कॉम्पैक्ट ऑपरेटर]] है<math>L^2</math>. कॉम्पैक्ट ऑपरेटर | एफ। रिज़्ज़ सिद्धांत कहता है कि इस तरह के एक ऑपरेटर के एकवचन मूल्यों के सेट में शून्य होता है (इसलिए शून्य-स्थान का अस्तित्व), परिमित या सबसे अधिक गणना योग्य होता है, और, बाद की स्थिति में, वे एक अनुक्रम बनाते हैं जो शून्य तक जाता है। एक सममित कर्नेल के स्थिति में, हमारे पास | पर्याप्त चिकनाई के लिए <math>K</math> ऊपर परिभाषित ऑपरेटर उचित Banach रिक्त स्थान जैसे Lp स्पेस पर [[कॉम्पैक्ट ऑपरेटर]] है<math>L^2</math>. कॉम्पैक्ट ऑपरेटर | एफ। रिज़्ज़ सिद्धांत कहता है कि इस तरह के एक ऑपरेटर के एकवचन मूल्यों के सेट में शून्य होता है (इसलिए शून्य-स्थान का अस्तित्व), परिमित या सबसे अधिक गणना योग्य होता है, और, बाद की स्थिति में, वे एक अनुक्रम बनाते हैं जो शून्य तक जाता है। एक सममित कर्नेल के स्थिति में, हमारे पास आइजनवैल्यूज़ की अनंतता है और संबद्ध eigenvectors एक हिल्बर्टियन आधार का गठन करते हैं <math>L^2</math>. इस प्रकार इस समीकरण का कोई भी समाधान शून्य-स्थान में एक योगात्मक कार्य के लिए निर्धारित होता है और, एकवचन मूल्यों की अनंतता की स्थिति में, समाधान (जिसमें मनमाना छोटे आइजनवैल्यूज़ का व्युत्क्रम सम्मिलित होता है) अस्थिर होता है: दो अवयव जो समाधान बनाते हैं इस अभिन्न समीकरण की एक विशिष्ट बीमार समस्या! चूंकि, हम सामान्यीकृत व्युत्क्रम के माध्यम से एक समाधान को परिभाषित कर सकते हैं। आगे के मानचित्र के छद्म-व्युत्क्रम (फिर से एक मनमाने ढंग से योगात्मक कार्य तक)। जब आगे का मानचित्र कॉम्पैक्ट होता है, तो मौलिक [[तिखोनोव नियमितीकरण]] काम करेगा यदि हम इसका उपयोग पूर्व सूचना को एकीकृत करने के लिए करते हैं, जिसमें कहा गया है कि <math>L^2</math> समाधान का मानदंड जितना संभव हो उतना छोटा होना चाहिए: यह व्युत्क्रम समस्या को अच्छी तरह से प्रस्तुत करेगा। फिर भी, जैसा कि परिमित आयाम की स्थिति में है, हमें उस विश्वास पर प्रश्न उठाना होगा जिसे हम संगणित समाधान में डाल सकते हैं। फिर से, मूल रूप से, जानकारी हेस्सियन ऑपरेटर के आइजनवैल्यूज़ में निहित है। यदि समाधान की गणना के लिए छोटे ईजेनवैल्यू से जुड़े ईजेनसदिश वाले उप-स्थानों का पता लगाया जाना चाहिए, तो समाधान पर संभवतया ही विश्वास किया जा सकता है: इसके कुछ घटकों को खराब विधियों से निर्धारित किया जाएगा। सबसे छोटा आइजनवेल्यू तिखोनोव नियमितीकरण में प्रस्तुत किए गए वजन के बराबर है। | ||
अनियमित गुठली एक आगे का मानचित्र उत्पन्न कर सकती है जो कॉम्पैक्ट नहीं है और यहां तक कि [[ असीमित ऑपरेटर ]] भी है अगर हम | अनियमित गुठली एक आगे का मानचित्र उत्पन्न कर सकती है जो कॉम्पैक्ट नहीं है और यहां तक कि [[ असीमित ऑपरेटर ]] भी है अगर हम <math>L^2</math> मानदंड मॉडल के स्थान को भोलेपन से लैस करते हैं। ऐसी स्थितियों में, हेस्सियन एक परिबद्ध संकारक नहीं है और आइजनवैल्यू की धारणा का अब कोई अर्थ नहीं रह गया है। इसे एक परिबद्ध संचालक बनाने और एक अच्छी तरह से प्रस्तुत समस्या को डिजाइन करने के लिए एक गणितीय विश्लेषण की आवश्यकता होती है: इसमें एक उदाहरण पाया जा सकता है।<ref>{{cite journal |last1=Delprat-Jannaud |first1=Florence |last2=Lailly |first2=Patrick |title=Ill‐posed and well‐posed formulations of the reflection travel time tomography problem|journal=Journal of Geophysical Research |date=1993 |volume=98 |issue=B4 |pages=6589–6605 |doi=10.1029/92JB02441 |bibcode=1993JGR....98.6589D }}</ref> फिर से, हमें उस विश्वास पर प्रश्न उठाना होगा जो हम गणना किए गए समाधान में डाल सकते हैं और हमें उत्तर पाने के लिए आइजनवेल्यू की धारणा को सामान्य बनाना होगा।<ref>{{cite journal |last1=Delprat-Jannaud |first1=Florence |last2=Lailly |first2=Patrick |title=पृथ्वी मॉडल पर प्रतिबिंब यात्रा समय क्या जानकारी प्रदान करता है|journal=Journal of Geophysical Research |date=1992 |volume=98 |issue=B13 |pages=827–844|doi=10.1029/92JB01739 |bibcode=1992JGR....9719827D }}</ref> | ||
हेसियन ऑपरेटर के स्पेक्ट्रम का विश्लेषण इस प्रकार यह निर्धारित करने के लिए एक महत्वपूर्ण तत्व है कि गणना समाधान कितना विश्वसनीय है। चूंकि, ऐसा विश्लेषण सामान्यतः बहुत भारी काम होता है। इसने कई लेखकों को उस स्थिति में वैकल्पिक दृष्टिकोणों की जांच करने के लिए प्रेरित किया है जहां हम अज्ञात फलन के सभी घटकों में रुचि नहीं रखते हैं, लेकिन केवल उप-अज्ञात में जो एक रैखिक ऑपरेटर द्वारा अज्ञात फलन की छवियां हैं। इन दृष्टिकोणों को बैकस और गिल्बर्ट विधि कहा जाता है<ref>{{cite journal |last1=Backus |first1=George |last2=Gilbert |first2=Freeman |title=सकल पृथ्वी डेटा की संकल्प शक्ति|journal=Geophysical Journal of the Royal Astronomical Society |date=1968 |volume=16 |issue=10 |pages=169–205 |doi=10.1111/j.1365-246X.1968.tb00216.x |bibcode=1968GeoJ...16..169B |doi-access=free }}</ref>, [[जैक्स-लुई लायंस]] प्रहरी दृष्टिकोण,<ref>{{cite journal |last1=Lions |first1=Jacques Louis |title=Sur les sentinelles des systèmes distribués |journal=C. R. Acad. Sci. Paris |date=1988 |series=I Math |pages=819–823}}</ref> और सोला विधि:<ref>{{cite journal |last1=Pijpers |first1=Frank |last2=Thompson |first2=Michael |title=हेलिओसिस्मिक उलटा के लिए SOLA विधि|journal=Astronomy and Astrophysics |date=1993 |volume=281 |issue=12 |pages=231–240|bibcode=1994A&A...281..231P }}</ref> जैसा कि चावेंट में समझाया गया है, ये दृष्टिकोण एक दूसरे के साथ दृढ़ता से जुड़े हुए हैं<ref>{{cite book |last1=Chavent |first1=Guy |title=Least-Squares, Sentinels and Substractive Optimally Localized Average in Equations aux dérivées partielles et applications |date=1998 |publisher=Gauthier Villars |location=Paris |pages=345–356 |url=https://hal.inria.fr/inria-00073357/document}}</ref> अंत में, [[ऑप्टिकल संकल्प]] की अवधारणा, जिसे अधिकांशतः भौतिकविदों द्वारा प्रयुक्त किया जाता है, इस तथ्य का एक विशिष्ट दृष्टिकोण है कि कुछ खराब निर्धारित घटक समाधान को दूषित कर सकते हैं। लेकिन, सामान्यतः बोलते हुए, मॉडल के इन खराब निर्धारित घटकों को उच्च आवृत्तियों से जरूरी नहीं जोड़ा जाता है। | हेसियन ऑपरेटर के स्पेक्ट्रम का विश्लेषण इस प्रकार यह निर्धारित करने के लिए एक महत्वपूर्ण तत्व है कि गणना समाधान कितना विश्वसनीय है। चूंकि, ऐसा विश्लेषण सामान्यतः बहुत भारी काम होता है। इसने कई लेखकों को उस स्थिति में वैकल्पिक दृष्टिकोणों की जांच करने के लिए प्रेरित किया है जहां हम अज्ञात फलन के सभी घटकों में रुचि नहीं रखते हैं, लेकिन केवल उप-अज्ञात में जो एक रैखिक ऑपरेटर द्वारा अज्ञात फलन की छवियां हैं। इन दृष्टिकोणों को बैकस और गिल्बर्ट विधि कहा जाता है<ref>{{cite journal |last1=Backus |first1=George |last2=Gilbert |first2=Freeman |title=सकल पृथ्वी डेटा की संकल्प शक्ति|journal=Geophysical Journal of the Royal Astronomical Society |date=1968 |volume=16 |issue=10 |pages=169–205 |doi=10.1111/j.1365-246X.1968.tb00216.x |bibcode=1968GeoJ...16..169B |doi-access=free }}</ref>, [[जैक्स-लुई लायंस]] प्रहरी दृष्टिकोण,<ref>{{cite journal |last1=Lions |first1=Jacques Louis |title=Sur les sentinelles des systèmes distribués |journal=C. R. Acad. Sci. Paris |date=1988 |series=I Math |pages=819–823}}</ref> और सोला विधि:<ref>{{cite journal |last1=Pijpers |first1=Frank |last2=Thompson |first2=Michael |title=हेलिओसिस्मिक उलटा के लिए SOLA विधि|journal=Astronomy and Astrophysics |date=1993 |volume=281 |issue=12 |pages=231–240|bibcode=1994A&A...281..231P }}</ref> जैसा कि चावेंट में समझाया गया है, ये दृष्टिकोण एक दूसरे के साथ दृढ़ता से जुड़े हुए हैं<ref>{{cite book |last1=Chavent |first1=Guy |title=Least-Squares, Sentinels and Substractive Optimally Localized Average in Equations aux dérivées partielles et applications |date=1998 |publisher=Gauthier Villars |location=Paris |pages=345–356 |url=https://hal.inria.fr/inria-00073357/document}}</ref> अंत में, [[ऑप्टिकल संकल्प]] की अवधारणा, जिसे अधिकांशतः भौतिकविदों द्वारा प्रयुक्त किया जाता है, इस तथ्य का एक विशिष्ट दृष्टिकोण है कि कुछ खराब निर्धारित घटक समाधान को दूषित कर सकते हैं। लेकिन, सामान्यतः बोलते हुए, मॉडल के इन खराब निर्धारित घटकों को उच्च आवृत्तियों से जरूरी नहीं जोड़ा जाता है। | ||
=== वितरित मापदंडों की वसूली के लिए कुछ | === वितरित मापदंडों की वसूली के लिए कुछ मौलिक रैखिक व्युत्क्रम समस्याएं === | ||
नीचे बताई गई समस्याएं फ्रेडहोम इंटीग्रल के विभिन्न संस्करणों के अनुरूप हैं: इनमें से प्रत्येक एक विशिष्ट कर्नेल | नीचे बताई गई समस्याएं फ्रेडहोम इंटीग्रल के विभिन्न संस्करणों के अनुरूप हैं: इनमें से प्रत्येक एक विशिष्ट कर्नेल <math>K</math> से जुड़ा हैहै | ||
==== विखंडन ==== | ==== विखंडन ==== | ||
डीकनवोल्यूशन का लक्ष्य मूल छवि या सिग्नल | डीकनवोल्यूशन का लक्ष्य मूल छवि या सिग्नल <math>p(x)</math> का पुनर्निर्माण करना है, जो डेटा <math>d(x)</math> पर नॉइज़ और ब्लर के रूप में दिखाई देता है।<ref>Kaipio, J., & Somersalo, E. (2010). Statistical and computational inverse problems. New York, NY: Springer.</ref> गणितीय दृष्टिकोण से, कर्नल <math>K(x,y)</math> यहाँ केवल <math>x</math> और <math>y</math> के बीच के अंतर पर निर्भर करता है। | ||
गणितीय दृष्टिकोण से, | |||
==== टोमोग्राफिक | ==== टोमोग्राफिक विधियाँ ==== | ||
इन विधियों में हम एक वितरित पैरामीटर को पुनर्प्राप्त करने का प्रयास करते हैं, इस पैरामीटर के इंटीग्रल के माप में सम्मिलित अवलोकन लाइनों के एक परिवार के साथ किया जाता है। हम | इन विधियों में हम एक वितरित पैरामीटर को पुनर्प्राप्त करने का प्रयास करते हैं, इस पैरामीटर के इंटीग्रल के माप में सम्मिलित अवलोकन लाइनों के एक परिवार के साथ किया जाता है। हम इसे माप बिंदु से जुड़ी इस परिवार की रेखा <math>x</math> पर <math>\Gamma_x</math> द्वारा निरूपित करते हैं। <math>x</math> पर अवलोकन इस प्रकार लिखा जा सकता है: | ||
<math display="block">d(x) = \int_{\Gamma_x} w(x,y) p(y) \, dy</math> | <math display="block">d(x) = \int_{\Gamma_x} w(x,y) p(y) \, dy</math> | ||
जहाँ <math>s</math> | जहाँ <math>s</math> <math>{\Gamma_x}</math> के साथ में चाप-लंबाई है और <math>w(x,y)</math> एक ज्ञात भार फलन है। उपरोक्त फ्रेडहोम इंटीग्रल के साथ इस समीकरण की तुलना करते हुए, हम देखते हैं कि कर्नेल <math>K(x,y)</math> एक प्रकार का [[डिराक डेल्टा समारोह|डिराक डेल्टा फलन]] है, जो <math>{\Gamma_x}</math> लाइन पर चरम पर होता है। ऐसे कर्नेल के साथ, आगे का मानचित्र कॉम्पैक्ट नहीं होता है। | ||
===== कंप्यूटेड टोमोग्राफी ===== | ===== कंप्यूटेड टोमोग्राफी ===== | ||
एक्स-रे कंप्यूटेड टोमोग्राफी में जिन लाइनों पर पैरामीटर एकीकृत होता है वे सीधी रेखाएं होती हैं: पैरामीटर वितरण का [[टोमोग्राफिक पुनर्निर्माण]] [[रैडॉन रूपांतरण]] के व्युत्क्रम पर आधारित होता है। चूंकि एक सैद्धांतिक दृष्टिकोण से कई रैखिक व्युत्क्रम समस्याओं को अच्छी तरह से समझा जाता है, रैडॉन परिवर्तन और इसके सामान्यीकरण से जुड़ी समस्याएं अभी भी कई सैद्धांतिक चुनौतियां प्रस्तुत करती हैं जिनमें डेटा की पर्याप्तता के प्रश्न अभी भी अनसुलझे हैं। इस तरह की समस्याओं में तीन आयामों में एक्स-रे ट्रांसफ़ॉर्म के लिए अधूरा डेटा और एक्स-रे ट्रांसफ़ॉर्म के टेन्सर फ़ील्ड के सामान्यीकरण से जुड़ी समस्याएं सम्मिलित हैं। खोजे गए समाधानों में [[बीजगणितीय पुनर्निर्माण तकनीक]], [[फ़िल्टर्ड बैकप्रोजेक्शन]], और जैसे-जैसे कंप्यूटिंग शक्ति में वृद्धि हुई है, | एक्स-रे कंप्यूटेड टोमोग्राफी में जिन लाइनों पर पैरामीटर एकीकृत होता है वे सीधी रेखाएं होती हैं: पैरामीटर वितरण का [[टोमोग्राफिक पुनर्निर्माण]] [[रैडॉन रूपांतरण]] के व्युत्क्रम पर आधारित होता है। चूंकि एक सैद्धांतिक दृष्टिकोण से कई रैखिक व्युत्क्रम समस्याओं को अच्छी तरह से समझा जाता है, रैडॉन परिवर्तन और इसके सामान्यीकरण से जुड़ी समस्याएं अभी भी कई सैद्धांतिक चुनौतियां प्रस्तुत करती हैं जिनमें डेटा की पर्याप्तता के प्रश्न अभी भी अनसुलझे हैं। इस तरह की समस्याओं में तीन आयामों में एक्स-रे ट्रांसफ़ॉर्म के लिए अधूरा डेटा और एक्स-रे ट्रांसफ़ॉर्म के टेन्सर फ़ील्ड के सामान्यीकरण से जुड़ी समस्याएं सम्मिलित हैं। खोजे गए समाधानों में [[बीजगणितीय पुनर्निर्माण तकनीक]], [[फ़िल्टर्ड बैकप्रोजेक्शन]], और जैसे-जैसे कंप्यूटिंग शक्ति में वृद्धि हुई है, एसएएमवी (एल्गोरिदम) जैसे पुनरावृत्त पुनर्निर्माण की विधियाँ सम्मिलित हैं।<ref name=AbeidaZhang>{{cite journal | last1=Abeida | first1=Habti | last2=Zhang | first2=Qilin | last3=Li | first3=Jian | last4=Merabtine | first4=Nadjim | title=सरणी प्रसंस्करण के लिए पुनरावृत्त विरल स्पर्शोन्मुख न्यूनतम भिन्नता आधारित दृष्टिकोण| journal=IEEE Transactions on Signal Processing | volume=61 | issue=4 | year=2013 | issn=1053-587X | doi=10.1109/tsp.2012.2231676 | pages=933–944 | url=https://qilin-zhang.github.io/_pages/pdfs/SAMVpaper.pdf | arxiv=1802.03070 | bibcode=2013ITSP...61..933A | s2cid=16276001 }}</ref> | ||
===== विवर्तन टोमोग्राफी ===== | ===== विवर्तन टोमोग्राफी ===== | ||
विवर्तन टोमोग्राफी अन्वेषण भूकम्प विज्ञान में एक | विवर्तन टोमोग्राफी अन्वेषण भूकम्प विज्ञान में एक मौलिक रेखीय व्युत्क्रम समस्या है: किसी दिए गए स्रोत-रिसीवर जोड़ी के लिए एक समय में अंकित किया गया आयाम बिंदुओं से उत्पन्न होने वाले योगदान का योग है, जैसे दूरी का योग, यात्रा के समय में मापा जाता है, स्रोत से और रिसीवर, क्रमशः, इसी रिकॉर्डिंग समय के बराबर है। 3डी में पैरामीटर को लाइनों के साथ नहीं बल्कि सतहों पर एकीकृत किया जाता है। प्रसार वेग स्थिर होना चाहिए, ऐसे बिंदुओं को दीर्घवृत्त पर वितरित किया जाता है। व्युत्क्रम समस्याओं में सर्वेक्षण के साथ रिकॉर्ड किए गए सिस्मोग्राम से विवर्तन बिंदुओं के वितरण को पुनः प्राप्त करना सम्मिलित है, वेग वितरण ज्ञात है। एक सीधा समाधान मूल रूप से [http://amath.colorado.edu/~beylkin/papers/BEYLKI-1983a.pdf बेयल्किन] और लम्बरे एट अल द्वारा प्रस्तावित किया गया है।<ref>{{cite journal |last1=Lambaré |first1=Gilles |last2=Virieux |first2=Jean |last3=Madariaga |first3=Raul |last4=Jin |first4=Side |title=ध्वनिक सन्निकटन में पुनरावृत्त स्पर्शोन्मुख उलटा|journal= Geophysics |date=1992 |volume=57 |issue=9 |pages=1138–1154 |doi=10.1190/1.1443328 |bibcode=1992Geop...57.1138L |s2cid=55836067 |url=https://semanticscholar.org/paper/3f9a47ceda54e12325ac2eb7ff9df3e2b7d780ea }}</ref> ये कार्य दृष्टिकोण के प्रारंभिक बिंदु थे, जिन्हें आयाम संरक्षित प्रवासन के रूप में जाना जाता है (बेयल्किन देखें<ref>{{cite journal |last1=Beylkin |first1=Gregory |title=उलटा समस्या और सामान्यीकृत रेडॉन परिवर्तन के अनुप्रयोग|journal=Communications on Pure and Applied Mathematics |date=1984 |volume=XXXVII |issue=5 |pages=579–599 |url=http://amath.colorado.edu/faculty/beylkin/papers/BEYLKI-1984.pdf |doi=10.1002/cpa.3160370503}}</ref><ref>{{cite journal |last1=Beylkin |first1=Gregory |title=एक सामान्य सामान्यीकृत रेडॉन परिवर्तन के व्युत्क्रम द्वारा व्युत्क्रम बिखरने की समस्या में विच्छिन्नता का इमेजिंग|journal=J. Math. Phys. |date=1985 |volume=26 |issue=1 |pages=99–108|doi=10.1063/1.526755 |bibcode=1985JMP....26...99B }}</ref> और सीसा पत्थर<ref>{{cite journal |last1=Bleistein |first1=Norman |title=पृथ्वी में परावर्तकों की इमेजिंग पर|journal=Geophysics |date=1987 |volume=52 |issue=7 |pages=931–942 |doi=10.1190/1.1442363 |url=https://semanticscholar.org/paper/f2b8da29167e31e4a46ce370b683dfa3edb04aa8 |bibcode=1987Geop...52..931B |s2cid=5095133 }}</ref>)। क्या ज्यामितीय प्रकाशिकी तकनीकों (अर्थात [https://www.encyclopediaofmath.org/index.php/Ray_method किरणों]) का उपयोग तरंग समीकरण को हल करने के लिए किया जाना चाहिए, ये विधियाँ तथाकथित न्यूनतम-वर्गों से निकटता से संबंधित हैं। प्रवास की विधियाँ<ref>{{cite journal |last1=Nemeth |first1=Tamas |last2=Wu |first2=Chengjun |last3=Schuster |first3=Gerard |title=Least‐squares migration of incomplete reflection data |journal = Geophysics |date=1999 |volume=64 |issue=1 | pages=208–221 | url=https://csim.kaust.edu.sa/web/FWI&LSM_papers/LSM/Geophysics1999Nemeth.pdf |doi=10.1190/1.1444517 |bibcode=1999Geop...64..208N }}</ref> कम से कम वर्ग दृष्टिकोण से व्युत्पन्न (लेली देखें,<ref name='Proceedings of the international conference on "Inverse Scattering, theory and applications", Tulsa, Oklahoma'>{{cite book |last1=Lailly |first1=Patrick |title=स्टैक माइग्रेशन से पहले के अनुक्रम के रूप में भूकंपीय उलटा समस्या|date=1983 |publisher=SIAM |location=Philadelphia |isbn=0-89871-190-8 |pages=206–220}}</ref> टारेंटयुला<ref>{{Cite journal | doi=10.1190/1.1441754| title=ध्वनिक सन्निकटन में भूकंपीय प्रतिबिंब डेटा का उलटा| journal=Geophysics| volume=49| issue=8| pages=1259–1266| year=1984| last1=Tarantola| first1=Albert | bibcode=1984Geop...49.1259T| s2cid=7596552| url=https://semanticscholar.org/paper/e51c0ba606e40c99b2a87f32728ba1e18c183540}}</ref>)। | ||
===== | ===== डॉपलर टोमोग्राफी (खगोल भौतिकी) ===== | ||
यदि हम एक घूमने वाली तारकीय वस्तु पर विचार करते हैं, तो वर्णक्रमीय रेखाएँ जिन्हें हम एक वर्णक्रमीय प्रोफ़ाइल पर देख सकते हैं, डॉपलर प्रभाव के कारण स्थानांतरित हो जाएंगी। डॉपलर टोमोग्राफी का उद्देश्य तारकीय वातावरण के उत्सर्जन (रेडियल वेग और आवधिक रोटेशन आंदोलन में चरण के एक | यदि हम एक घूमने वाली तारकीय वस्तु पर विचार करते हैं, तो वर्णक्रमीय रेखाएँ जिन्हें हम एक वर्णक्रमीय प्रोफ़ाइल पर देख सकते हैं, डॉपलर प्रभाव के कारण स्थानांतरित हो जाएंगी। डॉपलर टोमोग्राफी का उद्देश्य तारकीय वातावरण के उत्सर्जन (रेडियल वेग और आवधिक रोटेशन आंदोलन में चरण के एक फलन के रूप में) की 2 डी छवि में वस्तु की वर्णक्रमीय निगरानी में निहित जानकारी को परिवर्तित करना है। जैसा कि [[टॉम मार्श (खगोलविद)]] द्वारा समझाया गया है<ref>{{cite journal |last1=Marsh |first1=Tom |title=डॉपलर टोमोग्राफी|journal=Astrophysics and Space Science |volume=296 |date=2005 |issue=1–4 |pages=403–415 |doi=10.1007/s10509-005-4859-3 |arxiv=astro-ph/0011020 |bibcode=2005Ap&SS.296..403M |s2cid=15334110 }}</ref> यह रेखीय व्युत्क्रम समस्या टोमोग्राफी है जैसे: हमें एक वितरित पैरामीटर को पुनर्प्राप्त करना होगा जिसे रिकॉर्डिंग में इसके प्रभाव उत्पन्न करने के लिए लाइनों के साथ एकीकृत किया गया है। | ||
==== व्युत्क्रम ऊष्मा चालन ==== | ==== व्युत्क्रम ऊष्मा चालन ==== | ||
दफन तापमान सेंसर से वायुमंडलीय पुन: प्रवेश के | दफन तापमान सेंसर से वायुमंडलीय पुन: प्रवेश के समय सतह गर्मी प्रवाह का निर्धारण करने से व्युत्क्रम गर्मी प्रवाहकत्त्व पर प्रारंभिक प्रकाशन उत्पन्न हुए।<ref>{{Cite journal | author1 = Shumakov, N. V. | title = ठोस शरीर को गर्म करने की प्रक्रिया के प्रायोगिक अध्ययन के लिए एक विधि| journal = Soviet Physics –Technical Physics (Translated by American Institute of Physics) | volume = 2 | pages = 771 | year = 1957 }}</ref><ref>{{Cite journal | author1 = Stolz, G., Jr. | title = साधारण आकृतियों के लिए ऊष्मा चालन की व्युत्क्रम समस्या का संख्यात्मक समाधान| journal = Journal of Heat Transfer | volume = 82 | pages = 20–26 | year = 1960 | doi = 10.1115/1.3679871 }}</ref> अन्य अनुप्रयोग जहां सतह ताप प्रवाह की आवश्यकता होती है लेकिन सतह सेंसर व्यावहारिक नहीं होते हैं, उनमें प्रत्यागामी इंजन के अंदर, रॉकेट इंजन के अंदर; और, परमाणु रिएक्टर घटकों का परीक्षण सम्मिलित हैं।<ref>{{Cite book | author1 = Beck, J. V. | author2 = Blackwell, B. |author3 = St. Clair, C. R., Jr. | title = Inverse Heat Conduction. Ill‐Posed Problems | location = New York | publisher = J. Wiley & Sons | year = 1985 | isbn = 0471083194 }}</ref> तापमान संकेत में अवमंदन और पश्चताप के कारण होने वाली माप त्रुटि के प्रति अरुचिकरता और संवेदनशीलता को दूर करने के लिए विभिन्न प्रकार की संख्यात्मक तकनीकों का विकास किया गया है।<ref>{{cite journal | author1 = Beck, J. V. | author2 = Blackwell, B. |author3 = Haji-Sheikh, B. | title = प्रायोगिक डेटा का उपयोग करते हुए कुछ व्युत्क्रम ऊष्मा चालन विधियों की तुलना| journal = International Journal of Heat and Mass Transfer | volume = 39 | issue = 17 | year = 1996 | pages = 3649–3657 | doi = 10.1016/0017-9310(96)00034-8 | ||
अन्य अनुप्रयोग जहां सतह ताप प्रवाह की आवश्यकता होती है लेकिन सतह सेंसर व्यावहारिक नहीं होते हैं उनमें | |||
}}</ref><ref>{{cite book | author1 = Ozisik, M. N. |author2 = Orlande, H. R. B. | }}</ref><ref>{{cite book | author1 = Ozisik, M. N. |author2 = Orlande, H. R. B. | ||
| title = इनवर्स हीट ट्रांसफर, फंडामेंटल और एप्लीकेशन| publisher = CRC Press | year = 2021 | isbn = 9780367820671 | edition = 2nd }}</ref><ref>{{cite book | title = उलटा इंजीनियरिंग हैंडबुक, केए वुडबरी द्वारा संपादित| publisher = CRC Press | year = 2002 | isbn = 9780849308611 }}</ref> | | title = इनवर्स हीट ट्रांसफर, फंडामेंटल और एप्लीकेशन| publisher = CRC Press | year = 2021 | isbn = 9780367820671 | edition = 2nd }}</ref><ref>{{cite book | title = उलटा इंजीनियरिंग हैंडबुक, केए वुडबरी द्वारा संपादित| publisher = CRC Press | year = 2002 | isbn = 9780849308611 }}</ref> | ||
Line 179: | Line 178: | ||
== गैर-रैखिक व्युत्क्रम समस्याएं == | == गैर-रैखिक व्युत्क्रम समस्याएं == | ||
गैर-रेखीय व्युत्क्रम समस्याएं व्युत्क्रम समस्याओं के स्वाभाविक रूप से अधिक कठिन परिवार का गठन करती हैं। यहाँ आगे का मानचित्र <math>F</math> एक गैर-रैखिक ऑपरेटर है। भौतिक घटनाओं की मॉडलिंग अधिकांशतः एक आंशिक अंतर समीकरण के समाधान पर निर्भर करती है (गुरुत्वाकर्षण नियम को छोड़कर ऊपर दी गई तालिका देखें): चूंकि ये आंशिक अंतर समीकरण अधिकांशतः रैखिक होते हैं, इन समीकरणों में दिखाई देने वाले भौतिक पैरामीटर एक गैर-रैखिक | गैर-रेखीय व्युत्क्रम समस्याएं व्युत्क्रम समस्याओं के स्वाभाविक रूप से अधिक कठिन परिवार का गठन करती हैं। यहाँ आगे का मानचित्र <math>F</math> एक गैर-रैखिक ऑपरेटर है। भौतिक घटनाओं की मॉडलिंग अधिकांशतः एक आंशिक अंतर समीकरण के समाधान पर निर्भर करती है (गुरुत्वाकर्षण नियम को छोड़कर ऊपर दी गई तालिका देखें): चूंकि ये आंशिक अंतर समीकरण अधिकांशतः रैखिक होते हैं, इन समीकरणों में दिखाई देने वाले भौतिक पैरामीटर एक गैर-रैखिक विधियों पर निर्भर करते हैं, प्रणाली की स्थिति और इसलिए हम उस पर किए गए अवलोकनों पर। | ||
=== कुछ | === कुछ मौलिक गैर-रैखिक व्युत्क्रम समस्याएं === | ||
==== व्युत्क्रम बिखरने की समस्या ==== | ==== व्युत्क्रम बिखरने की समस्या ==== | ||
जबकि उन्नीसवीं शताब्दी के अंत में रैखिक प्रतिलोम समस्याओं को सैद्धांतिक दृष्टिकोण से पूरी तरह से हल कर लिया गया था {{Citation needed|reason=What specific date ? Is there a publication that marks the complete solution of linear inverse problems ?|date=November 2019}}, रूसी गणितीय स्कूल ([[मार्क ग्रिगोर्येविच करें]], [[इज़राइल गेलफैंड]], लेविटन, [[व्लादिमीर मार्चेंको]]) के मौलिक कार्य के बाद, 1970 से पहले गैर-रैखिक व्युत्क्रम समस्याओं का केवल एक वर्ग व्युत्क्रम वर्णक्रमीय और (एक स्थान आयाम) [[उलटा बिखरने की समस्या|व्युत्क्रम बिखरने की समस्या]] थी। | जबकि उन्नीसवीं शताब्दी के अंत में रैखिक प्रतिलोम समस्याओं को सैद्धांतिक दृष्टिकोण से पूरी तरह से हल कर लिया गया था {{Citation needed|reason=What specific date ? Is there a publication that marks the complete solution of linear inverse problems ?|date=November 2019}}, रूसी गणितीय स्कूल ([[मार्क ग्रिगोर्येविच करें]], [[इज़राइल गेलफैंड]], लेविटन, [[व्लादिमीर मार्चेंको]]) के मौलिक कार्य के बाद, 1970 से पहले गैर-रैखिक व्युत्क्रम समस्याओं का केवल एक वर्ग व्युत्क्रम वर्णक्रमीय और (एक स्थान आयाम) [[उलटा बिखरने की समस्या|व्युत्क्रम बिखरने की समस्या]] थी। परिणामों की एक बड़ी समीक्षा चाडन और सबेटियर ने अपनी पुस्तक इनवर्स प्रॉब्लम्स ऑफ क्वांटम स्कैटरिंग थ्योरी (अंग्रेजी में दो संस्करण, रूसी में एक) में दी है। | ||
इस तरह की समस्या में, डेटा एक रैखिक ऑपरेटर के स्पेक्ट्रम के गुण होते हैं जो बिखरने का वर्णन करते हैं। स्पेक्ट्रम [[eigenvalue| | इस तरह की समस्या में, डेटा एक रैखिक ऑपरेटर के स्पेक्ट्रम के गुण होते हैं जो बिखरने का वर्णन करते हैं। स्पेक्ट्रम [[eigenvalue|आइजनवैल्यूज़]] और [[eigenfunction|आइजन फलनों]] से बना है, जो असतत स्पेक्ट्रम और सामान्यीकरण को एक साथ बनाते हैं, जिसे निरंतर स्पेक्ट्रम कहा जाता है। बहुत ही उल्लेखनीय भौतिक बिंदु यह है कि प्रकीर्णन प्रयोग केवल निरंतर स्पेक्ट्रम के बारे में जानकारी देते हैं, और यह कि इसके पूर्ण स्पेक्ट्रम को जानना आवश्यक और बिखरने वाले ऑपरेटर को पुनर्प्राप्त करने के लिए पर्याप्त है। इसलिए हमारे पास अदृश्य पैरामीटर हैं, शून्य स्थान की तुलना में कहीं अधिक दिलचस्प है जिसमें रैखिक व्युत्क्रम समस्याओं में समान संपत्ति है। इसके अतिरिक्त, ऐसी भौतिक गतियाँ होती हैं जिनमें ऐसी गति के परिणामस्वरूप ऐसे संचालिका का स्पेक्ट्रम संरक्षित रहता है। यह घटना विशेष अरैखिक आंशिक अंतर विकास समीकरणों द्वारा नियंत्रित होती है, उदाहरण के लिए कॉर्टेवेग-डी व्रीस समीकरण। यदि ऑपरेटर के स्पेक्ट्रम को एक सिंगल आइजनवैल्यू तक कम कर दिया जाता है, तो इसकी संगत गति एक सिंगल बम्प की होती है जो निरंतर वेग से और विरूपण के बिना फैलती है, एक अकेली लहर जिसे [[सॉलिटन]] कहा जाता है। | ||
कई संभावित अनुप्रयोगों के साथ, कॉर्टेवेग-डी वेरी समीकरण या अन्य पूर्णांक गैर-रैखिक आंशिक अंतर समीकरणों के लिए एक आदर्श संकेत और इसके सामान्यीकरण बहुत रुचि रखते हैं। 1970 के दशक से इस क्षेत्र का गणितीय भौतिकी की एक शाखा के रूप में अध्ययन किया गया है। अनुप्रयुक्त विज्ञान के कई क्षेत्रों (ध्वनिकी, यांत्रिकी, क्वांटम यांत्रिकी, विद्युत चुम्बकीय बिखरने - विशेष रूप से रडार ध्वनि, भूकंपीय ध्वनि, और लगभग सभी इमेजिंग विधियों) में गैर-रैखिक व्युत्क्रम समस्याओं का भी अध्ययन किया जाता है। | कई संभावित अनुप्रयोगों के साथ, कॉर्टेवेग-डी वेरी समीकरण या अन्य पूर्णांक गैर-रैखिक आंशिक अंतर समीकरणों के लिए एक आदर्श संकेत और इसके सामान्यीकरण बहुत रुचि रखते हैं। 1970 के दशक से इस क्षेत्र का गणितीय भौतिकी की एक शाखा के रूप में अध्ययन किया गया है। अनुप्रयुक्त विज्ञान के कई क्षेत्रों (ध्वनिकी, यांत्रिकी, क्वांटम यांत्रिकी, विद्युत चुम्बकीय बिखरने - विशेष रूप से रडार ध्वनि, भूकंपीय ध्वनि, और लगभग सभी इमेजिंग विधियों) में गैर-रैखिक व्युत्क्रम समस्याओं का भी अध्ययन किया जाता है। | ||
[[रीमैन परिकल्पना]] से संबंधित एक अंतिम उदाहरण वू और स्प्रंग द्वारा दिया गया था, विचार यह है कि अर्ध- | [[रीमैन परिकल्पना]] से संबंधित एक अंतिम उदाहरण वू और स्प्रंग द्वारा दिया गया था, विचार यह है कि अर्ध-मौलिक भौतिकी में पुराने क्वांटम सिद्धांत में हैमिल्टनियन के अंदर की क्षमता का व्युत्क्रम आइजनवैल्यूज़ (ऊर्जा) गिनती फलन के आधे-व्युत्पन्न के समानुपाती होता है। | ||
==== तेल और गैस जलाशयों में पारगम्यता मिलान ==== | ==== तेल और गैस जलाशयों में पारगम्यता मिलान ==== | ||
Line 197: | Line 196: | ||
==== [[तरंग समीकरण]] | ==== [[तरंग समीकरण]] में व्युत्क्रम समस्याएं ==== | ||
लक्ष्य तरंग-गति (पी और एस तरंगों) और घनत्व वितरण को [[ सीस्मोग्राम ]] से पुनर्प्राप्त करना है। इस तरह की | लक्ष्य तरंग-गति (पी और एस तरंगों) और घनत्व वितरण को [[ सीस्मोग्राम ]] से पुनर्प्राप्त करना है। इस तरह की व्युत्क्रम समस्याएं भूकंप विज्ञान और [[अन्वेषण भूभौतिकी]] में प्रमुख रुचि हैं। | ||
हम मूल रूप से दो गणितीय मॉडल पर विचार कर सकते हैं: | हम मूल रूप से दो गणितीय मॉडल पर विचार कर सकते हैं: | ||
* वेव समीकरण (जिसमें अंतरिक्ष आयाम 2 या 3 होने पर एस तरंगों को | * वेव समीकरण (जिसमें अंतरिक्ष आयाम 2 या 3 होने पर एस तरंगों को अनदेखा कर दिया जाता है) | ||
* [[रैखिक लोच]] जिसमें | * [[रैखिक लोच]] जिसमें P और S तरंग वेग लेमे पैरामीटर और घनत्व से प्राप्त किए जा सकते हैं। | ||
इन मूलभूत [[अतिशयोक्तिपूर्ण आंशिक अंतर समीकरण]] को [[क्षीणन]], [[असमदिग्वर्ती होने की दशा]], को सम्मिलित करके उन्नत किया जा सकता है ... | इन मूलभूत [[अतिशयोक्तिपूर्ण आंशिक अंतर समीकरण]] को [[क्षीणन]], [[असमदिग्वर्ती होने की दशा]], को सम्मिलित करके उन्नत किया जा सकता है ... | ||
1D तरंग समीकरण में व्युत्क्रम समस्या का समाधान कई अध्ययनों का विषय रहा है। यह बहुत कम अरैखिक व्युत्क्रम समस्याओं में से एक है जिसके लिए हम समाधान की अद्वितीयता को सिद्ध कर सकते हैं।<ref name="sciencedirect.com"/> समाधान की स्थिरता का विश्लेषण एक अन्य चुनौती थी।<ref name="ReferenceA">{{cite journal |last1=Bamberger |first1=Alain |last2=Chavent |first2=Guy |last3=Lailly |first3=Patrick |title=1डी तरंग समीकरण में व्युत्क्रम समस्या की स्थिरता के बारे में, भूकंपीय प्रोफाइल की व्याख्या के लिए आवेदन|journal=Journal of Applied Mathematics and Optimization |date=1979 |volume=5 |pages=1–47 |doi=10.1007/bf01442542 |s2cid=122428594 }}</ref> कम से कम वर्ग दृष्टिकोण का उपयोग करते हुए व्यावहारिक अनुप्रयोग विकसित किए गए थे।<ref name="ReferenceA"/><ref>{{cite journal |last1=Macé |first1=Danièle |last2=Lailly |first2=Patrick |title=वीएसपी एक आयामी उलटा समस्या का समाधान|journal=Geophysical Prospecting |date=1986 |volume=34 |issue=7 |pages=1002–1021 |osti=6901651 |doi=10.1111/j.1365-2478.1986.tb00510.x |bibcode=1986GeopP..34.1002M }}</ref> | 1D तरंग समीकरण में व्युत्क्रम समस्या का समाधान कई अध्ययनों का विषय रहा है। यह बहुत कम अरैखिक व्युत्क्रम समस्याओं में से एक है जिसके लिए हम समाधान की अद्वितीयता को सिद्ध कर सकते हैं।<ref name="sciencedirect.com"/> समाधान की स्थिरता का विश्लेषण एक अन्य चुनौती थी।<ref name="ReferenceA">{{cite journal |last1=Bamberger |first1=Alain |last2=Chavent |first2=Guy |last3=Lailly |first3=Patrick |title=1डी तरंग समीकरण में व्युत्क्रम समस्या की स्थिरता के बारे में, भूकंपीय प्रोफाइल की व्याख्या के लिए आवेदन|journal=Journal of Applied Mathematics and Optimization |date=1979 |volume=5 |pages=1–47 |doi=10.1007/bf01442542 |s2cid=122428594 }}</ref> कम से कम वर्ग दृष्टिकोण का उपयोग करते हुए व्यावहारिक अनुप्रयोग विकसित किए गए थे।<ref name="ReferenceA"/><ref>{{cite journal |last1=Macé |first1=Danièle |last2=Lailly |first2=Patrick |title=वीएसपी एक आयामी उलटा समस्या का समाधान|journal=Geophysical Prospecting |date=1986 |volume=34 |issue=7 |pages=1002–1021 |osti=6901651 |doi=10.1111/j.1365-2478.1986.tb00510.x |bibcode=1986GeopP..34.1002M }}</ref> | ||
80 के दशक से 2डी या 3डी समस्याओं और इलास्टोडायनामिक्स समीकरणों के विस्तार का प्रयास किया गया था लेकिन यह बहुत मुश्किल सिद्ध हुआ! इस समस्या को अधिकांशतः फुल वेवफॉर्म इनवर्जन ( | 80 के दशक से 2डी या 3डी समस्याओं और इलास्टोडायनामिक्स समीकरणों के विस्तार का प्रयास किया गया था लेकिन यह बहुत मुश्किल सिद्ध हुआ! इस समस्या को अधिकांशतः फुल वेवफॉर्म इनवर्जन (एफडब्ल्यूआई) के रूप में संदर्भित किया जाता है, अभी तक पूरी तरह से हल नहीं हुई है: मुख्य कठिनाइयों में सीस्मोग्राम में गैर-गाऊसी रव का अस्तित्व, साइकिल-स्किपिंग उद्देश्य (चरण अस्पष्टता के रूप में भी जाना जाता है), और अराजक हैं। डेटा मिसफिट फलन का व्यवहार।<ref>{{cite journal |last1=Virieux |first1=Jean |last2=Operto |first2=Stéphane |title=अन्वेषण भूभौतिकी में पूर्ण-तरंग व्युत्क्रमण का अवलोकन|journal= Geophysics|date=2009 |volume=74 |issue=6 |pages=WCC1–WCC26 |url=https://www.researchgate.net/publication/228078264 |doi=10.1190/1.3238367}}</ref> कुछ लेखकों ने व्युत्क्रम समस्या को संशोधनने की संभावना की जांच की है, जिससे डेटा मिसफिट फलन की तुलना में उद्देश्य फलन को कम अराजक बनाया जा सके।<ref name="ReferenceB">{{cite journal |last1=Clément |first1=François |last2=Chavent |first2=Guy |last3=Gomez |first3=Suzana |title=Migration-based traveltime waveform inversion of 2-D simple structures: A synthetic example |journal= Geophysics |date=2001 |volume=66 |issue=3 |pages=845–860|doi=10.1190/1.1444974 |bibcode=2001Geop...66..845C }}</ref><ref name="ReferenceC">{{cite journal |last1=Symes |first1=William |last2=Carrazone |first2=Jim |title=विभेदक समानता अनुकूलन द्वारा वेग उलटा|journal= Geophysics |date=1991 |volume=56 |issue=5 |pages=654–663 |doi=10.1190/1.1443082 |bibcode=1991Geop...56..654S }}</ref> | ||
Line 213: | Line 212: | ||
==== यात्रा-समय टोमोग्राफी ==== | ==== यात्रा-समय टोमोग्राफी ==== | ||
तरंग समीकरण में व्युत्क्रम समस्या कितनी कठिन है, यह समझते हुए, भूकम्प विज्ञानियों ने ज्यामितीय प्रकाशिकी का उपयोग करते हुए एक सरल दृष्टिकोण की जांच | तरंग समीकरण में व्युत्क्रम समस्या कितनी कठिन है, यह समझते हुए, भूकम्प विज्ञानियों ने ज्यामितीय प्रकाशिकी का उपयोग करते हुए एक सरल दृष्टिकोण की जांच की थी। विशेष रूप से वे प्रसार वेग वितरण के लिए व्युत्क्रम करने के उद्देश्य से थे, जो सिस्मोग्राम पर तरंग-मोर्चों के आगमन के समय को जानते थे। ये तरंग-मोर्चों को प्रत्यक्ष आगमन या परावर्तकों से जुड़े प्रतिबिंबों से जोड़ा जा सकता है जिनकी ज्यामिति निर्धारित की जानी है, संयुक्त रूप से वेग वितरण के साथ। | ||
आगमन समय वितरण <math>{\tau}(x)</math> (<math>x</math> भौतिक स्थान में एक बिंदु है) एक बिंदु स्रोत से जारी तरंग-मोर्चे का, [[इकोनल समीकरण]] को संतुष्ट करता है: | आगमन समय वितरण <math>{\tau}(x)</math> (<math>x</math> भौतिक स्थान में एक बिंदु है) एक बिंदु स्रोत से जारी तरंग-मोर्चे का, [[इकोनल समीकरण]] को संतुष्ट करता है: | ||
<math display="block">\|\nabla \tau (x)\| = s(x),</math> | <math display="block">\|\nabla \tau (x)\| = s(x),</math> | ||
जहाँ <math>s(x)</math> धीमेपन (भूकम्प विज्ञान) (वेग का व्युत्क्रम) वितरण को दर्शाता है। | जहाँ <math>s(x)</math> धीमेपन (भूकम्प विज्ञान) (वेग का व्युत्क्रम) वितरण को दर्शाता है। <math>\| \cdot \| </math> की उपस्थिति इस समीकरण को अरैखिक बनाता है। यह बिंदु स्रोत से रे ट्रेसिंग (भौतिकी) (प्रक्षेपवक्र जिसके बारे में आगमन का समय स्थिर है) की शूटिंग करके मौलिक रूप से हल किया जाता है। | ||
यह समस्या टोमोग्राफी है जैसे: मापा आगमन समय धीमेपन के रे-पथ के साथ अभिन्न हैं। लेकिन यह टोमोग्राफी जैसी समस्या अरैखिक है, मुख्यतः क्योंकि अज्ञात किरण-पथ ज्यामिति वेग (या धीमेपन) वितरण पर निर्भर करती है। अपने गैर-रैखिक चरित्र के | यह समस्या टोमोग्राफी है जैसे: मापा आगमन समय धीमेपन के रे-पथ के साथ अभिन्न हैं। लेकिन यह टोमोग्राफी जैसी समस्या अरैखिक है, मुख्यतः क्योंकि अज्ञात किरण-पथ ज्यामिति वेग (या धीमेपन) वितरण पर निर्भर करती है। अपने गैर-रैखिक चरित्र के अतिरिक्त, यात्रा-समय टोमोग्राफी पृथ्वी या उपसतह में प्रसार वेग को निर्धारित करने के लिए बहुत प्रभावी सिद्ध हुई, बाद वाला पहलू भूकंपीय इमेजिंग के लिए एक प्रमुख तत्व है, विशेष रूप से खंड विवर्तन टोमोग्राफी में वर्णित विधियों का उपयोग करके सिद्ध किया गया है। | ||
=== गणितीय पहलू: हैडमार्ड के प्रश्न === | === गणितीय पहलू: हैडमार्ड के प्रश्न === | ||
प्रश्नों का संबंध अच्छी स्थिति से है: क्या कम से कम वर्गों की समस्या का एक अनूठा समाधान है जो निरंतर डेटा (स्थिरता की समस्या) पर निर्भर करता है? यह पहला प्रश्न है, लेकिन इसकी गैर-रैखिकता | प्रश्नों का संबंध अच्छी स्थिति से है: क्या कम से कम वर्गों की समस्या का एक अनूठा समाधान है जो निरंतर डेटा (स्थिरता की समस्या) पर निर्भर करता है? यह पहला प्रश्न है, लेकिन इसकी गैर-रैखिकता <math>F</math> के कारण यह कठिन भी है। | ||
यह देखने के लिए कि कठिनाइयाँ कहाँ से उत्पन्न होती हैं, चावेंट<ref name="Chavent">{{cite book |last1=Chavent |first1=Guy |title=व्युत्क्रम समस्याओं के लिए अरैखिक न्यूनतम वर्ग|date=2010 |publisher=Springer |isbn=978-90-481-2785-6}}</ref> अवधारणात्मक रूप से डेटा मिसफिट फलन के न्यूनीकरण को निरंतर दो चरणों में विभाजित करने का प्रस्ताव है (<math>P_\text{adm}</math> स्वीकार्य मॉडल का सबसेट है): | यह देखने के लिए कि कठिनाइयाँ कहाँ से उत्पन्न होती हैं, चावेंट<ref name="Chavent">{{cite book |last1=Chavent |first1=Guy |title=व्युत्क्रम समस्याओं के लिए अरैखिक न्यूनतम वर्ग|date=2010 |publisher=Springer |isbn=978-90-481-2785-6}}</ref> अवधारणात्मक रूप से डेटा मिसफिट फलन के न्यूनीकरण को निरंतर दो चरणों में विभाजित करने का प्रस्ताव है (<math>P_\text{adm}</math> स्वीकार्य मॉडल का सबसेट है): | ||
* प्रोजेक्शन स्टेप: दिया गया <math>d_\text{obs}</math> पर एक प्रक्षेपण | * प्रोजेक्शन स्टेप: दिया गया <math>d_\text{obs}</math> पर एक प्रक्षेपण <math>F(P_\text{adm})</math> खोजें (निकटतम बिंदु पर <math>F(P_\text{adm})</math> उद्देश्य फलन की परिभाषा में सम्मिलित दूरी के अनुसार) | ||
* इस प्रक्षेपण को देखते हुए एक पूर्व-छवि खोजें जो एक मॉडल है जिसकी छवि ऑपरेटर | * इस प्रक्षेपण को देखते हुए एक पूर्व-छवि खोजें जो एक मॉडल है जिसकी छवि ऑपरेटर <math>F</math> द्वारा है क्या यह प्रक्षेपण है। | ||
कठिनाइयाँ - और सामान्यतः - दोनों चरणों में उत्पन्न हो सकती हैं: | कठिनाइयाँ - और सामान्यतः - दोनों चरणों में उत्पन्न हो सकती हैं: | ||
# ऑपरेटर <math>F</math> एक-से-एक होने की संभावना नहीं है, इसलिए एक से अधिक पूर्व-छवि हो सकती हैं, | # ऑपरेटर <math>F</math> एक-से-एक होने की संभावना नहीं है, इसलिए एक से अधिक पूर्व-छवि हो सकती हैं, | ||
# यहां तक कि जब <math>F</math> एक-से-एक है, इसका व्युत्क्रम | # यहां तक कि जब <math>F</math> एक-से-एक है, इसका व्युत्क्रम <math>F(P)</math> निरंतर नहीं हो सकता है, | ||
# प्रक्षेपण | # प्रक्षेपण <math>F(P_\text{adm})</math> प्रारंभ हो सकता है उपस्थित न हो, क्या यह सेट बंद नहीं होना चाहिए, | ||
# प्रक्षेपण | # प्रक्षेपण <math>F(P_\text{adm})</math> प्रारंभ गैर-अद्वितीय हो सकता है और निरंतर नहीं हो सकता है क्योंकि यह गैर-रैखिकता <math>F</math> के कारण गैर-उत्तल हो सकता है। | ||
हम चावेंट का उल्लेख करते | इन बिंदुओं के गणितीय विश्लेषण के लिए, हम चावेंट का उल्लेख करते हैं।<ref name=Chavent/> | ||
=== कम्प्यूटेशनल पहलुओं === | === कम्प्यूटेशनल पहलुओं === | ||
Line 239: | Line 238: | ||
==== एक गैर-उत्तल डेटा मिसफिट फलन ==== | ==== एक गैर-उत्तल डेटा मिसफिट फलन ==== | ||
आगे का मानचित्र अरैखिक होने के कारण, डेटा मिसफिट फलन के गैर-उत्तल होने की संभावना है, जिससे स्थानीय न्यूनीकरण तकनीक अक्षम हो जाती है। इस कठिनाई को दूर करने के लिए कई दृष्टिकोणों की जांच की गई है: | आगे का मानचित्र अरैखिक होने के कारण, डेटा मिसफिट फलन के गैर-उत्तल होने की संभावना है, जिससे स्थानीय न्यूनीकरण तकनीक अक्षम हो जाती है। इस कठिनाई को दूर करने के लिए कई दृष्टिकोणों की जांच की गई है: | ||
* वैश्विक अनुकूलन तकनीकों का उपयोग जैसे पश्च घनत्व | * वैश्विक अनुकूलन तकनीकों का उपयोग जैसे पश्च घनत्व फलन का नमूनाकरण और व्युत्क्रम समस्या संभाव्य ढांचे में मेट्रोपोलिस-हेस्टिंग्स एल्गोरिथम,<ref>{{cite journal |last1=Koren |first1=Zvi |last2=Mosegaard |first2=Klaus |last3=Landa |first3=Evgeny |last4=Thore |first4=Pierre |last5=Tarantola |first5=Albert |title=मोंटे कार्लो अनुमान और भूकंपीय पृष्ठभूमि वेग का संकल्प विश्लेषण|journal=Journal of Geophysical Research |date=1991 |volume=96 |issue=B12|pages=20289–20299 |doi=10.1029/91JB02278 |bibcode=1991JGR....9620289K }}</ref> जेनेटिक एल्गोरिदम (अकेले या मेट्रोपोलिस एल्गोरिथम के संयोजन में: देखें<ref>{{cite journal| last1=Tahmasebi|first1=Pejman| last2=Javadpour|first2=Farzam| last3=Sahimi|first3=Muhammad| title=Stochastic shale permeability matching: Three-dimensional characterization and modeling| journal=International Journal of Coal Geology| date=August 2016| volume=165| pages=231–242| doi=10.1016/j.coal.2016.08.024| url=https://www.researchgate.net/publication/307626119}}</ref> पारगम्यता के निर्धारण के लिए एक अनुप्रयोग के लिए जो उपस्थिता पारगम्यता डेटा से मेल खाता है), तंत्रिका नेटवर्क, बहुस्तरीय विश्लेषण सहित नियमितीकरण तकनीक; | ||
* कम से कम वर्ग उद्देश्य | * कम से कम वर्ग उद्देश्य फलन का संशोधन जिससे इसे आसान बनाया जा सके (देखें<ref name="ReferenceB"/><ref name="ReferenceC"/>तरंग समीकरणों में व्युत्क्रम समस्या के लिए।) | ||
==== उद्देश्य फलन के ग्रेडिएंट की गणना ==== | ==== उद्देश्य फलन के ग्रेडिएंट की गणना ==== | ||
व्युत्क्रम समस्याएं, विशेष रूप से अनंत आयाम में, बड़े आकार की हो सकती हैं, इस प्रकार महत्वपूर्ण कंप्यूटिंग समय की आवश्यकता होती है। जब आगे का मानचित्र अरेखीय होता है, तो कम्प्यूटेशनल कठिनाइयाँ बढ़ जाती हैं और उद्देश्य | व्युत्क्रम समस्याएं, विशेष रूप से अनंत आयाम में, बड़े आकार की हो सकती हैं, इस प्रकार महत्वपूर्ण कंप्यूटिंग समय की आवश्यकता होती है। जब आगे का मानचित्र अरेखीय होता है, तो कम्प्यूटेशनल कठिनाइयाँ बढ़ जाती हैं और उद्देश्य फलन को कम करना मुश्किल हो सकता है। रैखिक स्थिति के विपरीत, सामान्य समीकरणों को हल करने के लिए हेस्सियन आव्यूह का एक स्पष्ट उपयोग यहां समझ में नहीं आता है: हेस्सियन आव्यूह मॉडल के साथ भिन्न होता है। कुछ मॉडलों के लिए उद्देश्य फलन के ढाल का मूल्यांकन अधिक प्रभावी है। जब हम [[जेकोबियन मैट्रिक्स और निर्धारक|जेकोबियन आव्यूह और निर्धारक]] (जिसे अधिकांशतः फ्रेचेट डेरिवेटिव कहा जाता है) की बहुत भारी गणना से बच सकते हैं, तो महत्वपूर्ण कम्प्यूटेशनल प्रयास को बचाया जा सकता है: चावेंट और लायंस द्वारा प्रस्तावित आसन्न अवस्था विधि,<ref>{{cite book |last1=Chavent |first1=Guy |title=Identification de coefficients répartis dans les équations aux dérivées partielles |date=1971 |publisher=Thèse d'Etat |location=Université Paris 6}}</ref> इस भारी संगणना से बचने का लक्ष्य है। यह अब बहुत व्यापक रूप से उपयोग किया जाता है।<ref>{{cite journal |last1=Plessix |first1=René |title=भूभौतिकीय अनुप्रयोगों के साथ कार्यात्मक के ढाल की गणना के लिए आसन्न-राज्य पद्धति की समीक्षा|journal=Geophysical Journal International |date=2006 |volume=167 |issue=2 |pages=495–503 |doi=10.1111/j.1365-246X.2006.02978.x |bibcode=2006GeoJI.167..495P |doi-access=free }}</ref> | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
व्युत्क्रम समस्या सिद्धांत का मौसम की भविष्यवाणी, समुद्र विज्ञान, जल विज्ञान और पेट्रोलियम इंजीनियरिंग में बड़े पैमाने पर उपयोग किया जाता है।<ref name="Wunsch1996">{{cite book| author=Carl Wunsch| title=महासागर परिसंचरण उलटा समस्या| url=https://books.google.com/books?id=ugHsLF1RNacC&pg=PR9| date=13 June 1996| publisher=Cambridge University Press| isbn=978-0-521-48090-1|pages=9–}}</ref><ref>{{cite journal| last1=Tahmasebi|first1=Pejman| last2=Javadpour|first2=Farzam| last3=Sahimi|first3=Muhammad| title=Stochastic shale permeability matching: Three-dimensional characterization and modeling| journal=International Journal of Coal Geology| date=August 2016| volume=165| pages=231–242| doi=10.1016/j.coal.2016.08.024}}</ref><ref>{{Cite journal| last1=Knighton|first1=James| last2=Singh|first2=Kanishka| last3=Evaristo|first3=Jaivime| date=2020| title=इनवर्स इकोहाइड्रोलॉजिकल मॉडलिंग के माध्यम से महाद्वीपीय संयुक्त राज्य भर में कैचमेंट-स्केल फ़ॉरेस्ट रूट वाटर अपटेक रणनीतियाँ समझना| url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085937 | journal=Geophysical Research Letters |language=en|volume=47|issue=1 | pages=e2019GL085937 | doi=10.1029/2019GL085937| bibcode=2020GeoRL..4785937K| s2cid=213914582| issn=1944-8007}}</ref> | व्युत्क्रम समस्या सिद्धांत का मौसम की भविष्यवाणी, समुद्र विज्ञान, जल विज्ञान और पेट्रोलियम इंजीनियरिंग में बड़े पैमाने पर उपयोग किया जाता है।<ref name="Wunsch1996">{{cite book| author=Carl Wunsch| title=महासागर परिसंचरण उलटा समस्या| url=https://books.google.com/books?id=ugHsLF1RNacC&pg=PR9| date=13 June 1996| publisher=Cambridge University Press| isbn=978-0-521-48090-1|pages=9–}}</ref><ref>{{cite journal| last1=Tahmasebi|first1=Pejman| last2=Javadpour|first2=Farzam| last3=Sahimi|first3=Muhammad| title=Stochastic shale permeability matching: Three-dimensional characterization and modeling| journal=International Journal of Coal Geology| date=August 2016| volume=165| pages=231–242| doi=10.1016/j.coal.2016.08.024}}</ref><ref>{{Cite journal| last1=Knighton|first1=James| last2=Singh|first2=Kanishka| last3=Evaristo|first3=Jaivime| date=2020| title=इनवर्स इकोहाइड्रोलॉजिकल मॉडलिंग के माध्यम से महाद्वीपीय संयुक्त राज्य भर में कैचमेंट-स्केल फ़ॉरेस्ट रूट वाटर अपटेक रणनीतियाँ समझना| url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085937 | journal=Geophysical Research Letters |language=en|volume=47|issue=1 | pages=e2019GL085937 | doi=10.1029/2019GL085937| bibcode=2020GeoRL..4785937K| s2cid=213914582| issn=1944-8007}}</ref> उष्मा अंतरण के क्षेत्र में व्युत्क्रम समस्याएँ भी पाई जाती हैं, जहाँ सतही ताप प्रवाह होता है<ref name="Figueiredo2014">{{cite book|author=Patric Figueiredo| title=बहुआयामी उलटा ऊष्मा चालन समस्याओं को हल करने के लिए एक पुनरावृत्त विधि का विकास|url=https://www.academia.edu/9823088 |date=December 2014|publisher=Lehrstuhl für Wärme- und Stoffübertragung RWTH Aachen}}</ref> एक कठोर शरीर के अंदर मापा गया तापमान डेटा से बाहर जाने का अनुमान है; और, पौधे-पदार्थ क्षय पर नियंत्रण को समझने में का अनुमान है।<ref>{{Cite journal| last1=Forney|first1=David C.| last2=Rothman|first2=Daniel H.| date=2012-09-07 |title=पादप-पदार्थ क्षय की विषमता में सामान्य संरचना|journal=Journal of the Royal Society Interface |volume=9|issue=74|pages=2255–2267 |doi=10.1098/rsif.2012.0122 |pmc=3405759 |pmid=22535699}}</ref> रैखिक व्युत्क्रम समस्या वर्णक्रमीय घनत्व अनुमान और सिग्नल प्रोसेसिंग में [[आगमन की दिशा]] (डीओए) अनुमान का मूल भी है। | ||
उष्मा अंतरण के क्षेत्र में | |||
[[ अर्धचालक उपकरण निर्माण ]] के लिए [[ photomask ]] डिजाइन में [[उलटा लिथोग्राफी|व्युत्क्रम लिथोग्राफी]] का उपयोग किया जाता है। | [[ अर्धचालक उपकरण निर्माण ]] के लिए [[ photomask | फोटो मास्क]] डिजाइन में [[उलटा लिथोग्राफी|व्युत्क्रम लिथोग्राफी]] का उपयोग किया जाता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 270: | Line 268: | ||
=== शैक्षणिक पत्रिकाएं === | === शैक्षणिक पत्रिकाएं === | ||
चार मुख्य अकादमिक पत्रिकाएँ सामान्य रूप से | चार मुख्य अकादमिक पत्रिकाएँ सामान्य रूप से व्युत्क्रम समस्याओं को कवर करती हैं: | ||
* [[उलटा समस्याएं|व्युत्क्रम समस्याएं]] | * [[उलटा समस्याएं|व्युत्क्रम समस्याएं]] | ||
*जर्नल ऑफ़ इनवर्स एंड इल-पोज़्ड प्रॉब्लम्स<ref>{{cite web | url = http://www.reference-global.com/loi/jiip | archive-url = https://archive.today/20130201045242/http://www.reference-global.com/loi/jiip | url-status = dead | archive-date = February 1, 2013 | title = Journal of Inverse and Ill-posed Problems }}</ref> | *जर्नल ऑफ़ इनवर्स एंड इल-पोज़्ड प्रॉब्लम्स<ref>{{cite web | url = http://www.reference-global.com/loi/jiip | archive-url = https://archive.today/20130201045242/http://www.reference-global.com/loi/jiip | url-status = dead | archive-date = February 1, 2013 | title = Journal of Inverse and Ill-posed Problems }}</ref> | ||
*विज्ञान और इंजीनियरिंग में प्रतिलोम समस्याएं<ref>{{cite web| url = http://www.tandf.co.uk/journals/titles/17415977.asp | title= Inverse Problems in Science and Engineering: Vol 25, No 4}}</ref> | *विज्ञान और इंजीनियरिंग में प्रतिलोम समस्याएं<ref>{{cite web| url = http://www.tandf.co.uk/journals/titles/17415977.asp | title= Inverse Problems in Science and Engineering: Vol 25, No 4}}</ref> | ||
* व्युत्क्रम समस्याएं और इमेजिंग<ref>{{cite web|url=http://aimsciences.org/journals/ipi/ipi_online.jsp |title=आईपीआई|url-status=dead |archive-url=https://web.archive.org/web/20061011090005/http://aimsciences.org/journals/ipi/ipi_online.jsp |archive-date=11 October 2006 }}</ref> | * व्युत्क्रम समस्याएं और इमेजिंग<ref>{{cite web|url=http://aimsciences.org/journals/ipi/ipi_online.jsp |title=आईपीआई|url-status=dead |archive-url=https://web.archive.org/web/20061011090005/http://aimsciences.org/journals/ipi/ipi_online.jsp |archive-date=11 October 2006 }}</ref> | ||
मेडिकल इमेजिंग, भूभौतिकी, गैर-विनाशकारी परीक्षण आदि पर कई पत्रिकाओं में उन क्षेत्रों में | मेडिकल इमेजिंग, भूभौतिकी, गैर-विनाशकारी परीक्षण आदि पर कई पत्रिकाओं में उन क्षेत्रों में व्युत्क्रम समस्याओं का बोलबाला है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 01:10, 22 June 2023
विज्ञान में एक व्युत्क्रम समस्या अवलोकनों के एक सेट से गणना करने की प्रक्रिया है जो उन्हें उत्पन्न करने वाले कारण कारक हैं: उदाहरण के लिए, एक्स-रे कंप्यूटेड टोमोग्राफी में एक छवि की गणना, ध्वनिकी में ध्वनि स्रोत पुनर्निर्माण, या माप से पृथ्वी के घनत्व की गणना इसके गुरुत्वाकर्षण क्षेत्र की। इसे व्युत्क्रम समस्या कहा जाता है क्योंकि यह प्रभावों से प्रारंभ होता है और फिर कारणों की गणना करता है। यह आगे की समस्या का विपरीत है, जो कारणों से प्रारंभ होती है और फिर प्रभावों की गणना करती है।
व्युत्क्रम समस्याएं विज्ञान और गणित की सबसे महत्वपूर्ण गणितीय समस्याओं में से कुछ हैं क्योंकि वे हमें उन मापदंडों के बारे में बताती हैं, जिनका हम सीधे निरीक्षण नहीं कर सकते हैं। उनके पास प्रणाली पहचान, प्रकाशिकी, राडार, ध्वनिकी, संचार सिद्धांत, संकेत आगे बढ़ाना , मेडिकल इमेजिंग, कंप्यूटर दृष्टि, में व्यापक अनुप्रयोग है।[1][2] भूभौतिकी, समुद्र विज्ञान, खगोल विज्ञान, सुदूर संवेदन, प्राकृतिक भाषा प्रसंस्करण, यंत्र अधिगम ,[3] गैर-विनाशकारी परीक्षण, ढलान स्थिरता विश्लेषण[4] और कई अन्य क्षेत्र।[citation needed]
इतिहास
कारणों की खोज के लिए प्रभावों के साथ प्रारंभ करना सदियों से भौतिकविदों को चिंतित करता रहा है। एक ऐतिहासिक उदाहरण जॉन काउच एडम्स और शहरी ले वेरियर की गणना है, जिसने अरुण ग्रह के परेशान प्रक्षेपवक्र से नेपच्यून की खोज की। चूंकि, 20वीं शताब्दी तक व्युत्क्रम समस्याओं का एक औपचारिक अध्ययन प्रारंभ नहीं किया गया था।
व्युत्क्रम समस्या के समाधान के प्रारंभिक उदाहरणों में से एक हरमन वेइल द्वारा खोजा गया था और 1911 में प्रकाशित किया गया था, जिसमें लाप्लास-बेल्ट्रामी ऑपरेटर के ईजेनवैल्यूज़ के स्पर्शोन्मुख व्यवहार का वर्णन किया गया था।[5] आज वेइल के नियम के रूप में जाना जाता है, यह संभवतया इस प्रश्न के जवाब के रूप में सबसे सरलता से समझा जा सकता है कि क्या ड्रम के आकार को सुनना संभव है। वेइल ने अनुमान लगाया कि एक ड्रम की ईजेनफ्रीक्वेंसी एक विशेष समीकरण द्वारा ड्रम के क्षेत्र और परिधि से संबंधित होगी, जिसके परिणामस्वरूप बाद के गणितज्ञों द्वारा संशोधन किया गया।
व्युत्क्रम समस्याओं के क्षेत्र को बाद में सोवियत संघ-अर्मेनियाई भौतिक विज्ञानी, विक्टर अम्बर्टसुमियन द्वारा छुआ गया था।[6][7]
अभी भी एक छात्र के रूप में, अम्बार्टसुमियन ने परमाणु संरचना के सिद्धांत, ऊर्जा स्तरों के गठन, और श्रोडिंगर समीकरण और इसके गुणों का गहन अध्ययन किया, और जब उन्होंने अंतर समीकरणों के ईजेनवेल्यूज़ और ईजेनसदिशों के सिद्धांत में महारत हासिल की, तो उन्होंने असतत के बीच स्पष्ट सादृश्यता की ओर संकेत किया। ऊर्जा स्तर और अंतर समीकरणों के आइजनवैल्यूज़। उन्होंने तब पूछा: आइजनवैल्यू के एक परिवार को देखते हुए, क्या उन समीकरणों का रूप खोजना संभव है जिनके आइजनवैल्यू हैं? अनिवार्य रूप से अम्बर्टसुमियन व्युत्क्रम स्टर्म-लिउविल समस्या की जांच कर रहे थे, जो एक कंपन स्ट्रिंग के समीकरणों को निर्धारित करने से संबंधित था। यह पत्र 1929 में जर्मन भौतिकी पत्रिका ज़िट्सक्रिफ्ट फर फिजिक में प्रकाशित हुआ था और अत्यधिक लंबे समय तक गुमनामी में रहा। कई दशकों के बाद इस स्थिति का वर्णन करते हुए, अम्बार्टसुमियन ने कहा, यदि कोई खगोलशास्त्री भौतिकी पत्रिका में गणितीय सामग्री के साथ एक लेख प्रकाशित करता है, तो सबसे अधिक संभावना यह है कि विस्मरण होगा।
फिर भी, द्वितीय विश्व युद्ध के अंत की ओर, 20 वर्षीय अंबार्टसुमियन द्वारा लिखित यह लेख स्वीडिश गणितज्ञों द्वारा पाया गया और व्युत्क्रम समस्याओं पर शोध के एक पूरे क्षेत्र के लिए प्रारंभिक बिंदु बन गया, जो एक संपूर्ण की नींव बन गया। अनुशासन।
तब विशेष रूप से सोवियत संघ में मार्चेंको समीकरण द्वारा व्युत्क्रम बिखरने की समस्या के प्रत्यक्ष समाधान के लिए महत्वपूर्ण प्रयास समर्पित किए गए हैं।[8] उन्होंने समाधान का निर्धारण करने के लिए एक विश्लेषणात्मक रचनात्मक विधि प्रस्तावित की थी। जब कंप्यूटर उपलब्ध हो गए, तो कुछ लेखकों ने समान समस्याओं के लिए अपने दृष्टिकोण को प्रयुक्त करने की संभावना की जांच की, जैसे कि 1D तरंग समीकरण में व्युत्क्रम समस्या। लेकिन यह तेजी से निकला कि व्युत्क्रम एक अस्थिर प्रक्रिया है: रव और त्रुटियों को जबरदस्त रूप से बढ़ाया जा सकता है जिससे प्रत्यक्ष समाधान संभवतया ही व्यावहारिक हो।
फिर, सत्तर के दशक के आसपास, सबसे कम-वर्ग और संभाव्य दृष्टिकोण आए और विभिन्न भौतिक प्रणालियों में सम्मिलित मापदंडों के निर्धारण के लिए बहुत सहायक सिद्ध हुए। इस दृष्टिकोण को बहुत सफलता मिली। आजकल भौतिक विज्ञान के बाहर के क्षेत्रों जैसे रसायन विज्ञान, अर्थशास्त्र और कंप्यूटर विज्ञान में भी विपरीत समस्याओं की जांच की जाती है। अंततः, जैसा कि संख्यात्मक मॉडल समाज के कई हिस्सों में प्रचलित हो जाते हैं, हम इनमें से प्रत्येक संख्यात्मक मॉडल से जुड़ी एक व्युत्क्रम समस्या की आशा कर सकते हैं।
वैचारिक समझ
न्यूटन के बाद से, वैज्ञानिकों ने बड़े पैमाने पर विश्व को मॉडल बनाने का प्रयास किया है। विशेष रूप से, जब एक गणितीय मॉडल उपलब्ध होता है (उदाहरण के लिए, न्यूटन का गुरुत्वाकर्षण नियम या इलेक्ट्रोस्टैटिक्स के लिए कूलम्ब का समीकरण), हम भौतिक प्रणाली (जैसे द्रव्यमान का वितरण या विद्युत आवेशों का वितरण) का वर्णन करने वाले कुछ मापदंडों को देखते हुए देख सकते हैं। प्रणाली का व्यवहार। इस दृष्टिकोण को गणितीय मॉडलिंग के रूप में जाना जाता है और उपर्युक्त भौतिक मापदंडों को मॉडल पैरामीटर या केवल मॉडल कहा जाता है। स्पष्ट होने के लिए, हम भौतिक प्रणाली की स्थिति की धारणा का परिचय देते हैं: यह गणितीय मॉडल के समीकरण का समाधान है। इष्टतम नियंत्रण में, इन समीकरणों को राज्य-अंतरिक्ष प्रतिनिधित्व के रूप में संदर्भित किया जाता है। कई स्थितियों में हम वास्तव में भौतिक स्थिति को जानने में रुचि नहीं रखते हैं, लेकिन केवल कुछ वस्तुओं पर इसके प्रभाव (उदाहरण के लिए, किसी विशिष्ट ग्रह पर गुरुत्वाकर्षण क्षेत्र के प्रभाव) को जानने में रुचि रखते हैं। इसलिए हमें एक अन्य ऑपरेटर को प्रस्तुत करना होगा, जिसे ऑब्जर्वेशन ऑपरेटर कहा जाता है, जो भौतिक प्रणाली की स्थिति (यहाँ अनुमानित गुरुत्वाकर्षण क्षेत्र) को उस चीज़ में परिवर्तित करता है, जिसे हम देखना चाहते हैं (यहाँ माने गए ग्रह की गति)। अब हम तथाकथित आगे की समस्या का परिचय दे सकते हैं, जिसमें दो चरण होते हैं:
- इसका वर्णन करने वाले भौतिक मापदंडों से प्रणाली की स्थिति का निर्धारण
- प्रणाली की अनुमानित स्थिति के लिए अवलोकन ऑपरेटर का अनुप्रयोग जिससे हम जो निरीक्षण करना चाहते हैं उसके व्यवहार की भविष्यवाणी कर सकें।
इससे दूसरे ऑपरेटर (गणित) का परिचय होता है (एफ आगे के लिए खड़ा है) जो मॉडल मापदंडों को मैप करता है में , वह डेटा जो मॉडल करता है भविष्यवाणी करता है कि इस दो-चरणीय प्रक्रिया का परिणाम है। ऑपरेटर फॉरवर्ड ऑपरेटर या फॉरवर्ड मैप कहा जाता है।
इस दृष्टिकोण में हम मूल रूप से कारणों को जानकर प्रभावों की भविष्यवाणी करने का प्रयास करते हैं।
नीचे दी गई तालिका दिखाती है, पृथ्वी को भौतिक प्रणाली के रूप में माना जाता है और विभिन्न भौतिक घटनाओं के लिए, मॉडल पैरामीटर जो प्रणाली का वर्णन करते हैं, भौतिक मात्रा जो भौतिक प्रणाली की स्थिति का वर्णन करती है और सामान्यतः प्रणाली की स्थिति पर किए गए अवलोकन।
समीकरणों संचालन | मॉडल पैरामीटर (मॉडल का इनपुट) | भौतिक प्रणाली की अवस्था | प्रणाली पर सामान्य अवलोकन | |
---|---|---|---|---|
न्यूटन का गुरुत्वाकर्षण का नियम | द्रव्यमान का वितरण | गुरुत्वाकर्षण क्षेत्र | विभिन्न सतह स्थानों पर ग्रेविमीटर द्वारा किए गए मापन | |
मैक्सवेल के समीकरण | चुंबकीय संवेदनशीलता का वितरण | चुंबकीय क्षेत्र | मैग्नेटोमीटर द्वारा विभिन्न सतह स्थानों पर मापा गया चुंबकीय क्षेत्र (स्थिर अवस्था की स्थिति) | |
तरंग समीकरण | तरंग-गति और घनत्व का वितरण | तरंग-क्षेत्र कृत्रिम या प्राकृतिक भूकंपीय स्रोतों के कारण होता है | विभिन्न सतह स्थानों पर रखे गए सिस्मोमीटर द्वारा मापा गया कण वेग | |
प्रसार समीकरण | प्रसार गुणांक का वितरण | अंतरिक्ष और समय के एक फलन के रूप में सामग्री की एकाग्रता को फैलाना | विभिन्न स्थानों पर मापी गई इस सघनता की निगरानी |
व्युत्क्रम समस्या दृष्टिकोण में हम, मोटे तौर पर बोलते हुए, दिए गए प्रभावों के कारणों को जानने का प्रयास करते हैं।
प्रतिलोम समस्या का सामान्य कथन
व्युत्क्रम समस्या आगे की समस्या का व्युत्क्रम है: विशेष मॉडल मापदंडों द्वारा उत्पादित डेटा का निर्धारण करने के बजाय, हम डेटा उत्पन्न करने वाले मॉडल मापदंडों को निर्धारित करना चाहते हैं यह वह अवलोकन है जिसे हमने रिकॉर्ड किया है (सबस्क्रिप्ट ऑब्जर्व का अर्थ मनाया जाता है)।
हमारा लक्ष्य, दूसरे शब्दों में, मॉडल पैरामीटर निर्धारित करना है ऐसा कि (कम से कम लगभग)
हम कुछ उपयोगी अवधारणाओं और संबंधित नोटेशन प्रस्तुत करते हैं जिनका उपयोग नीचे किया जाएगा:
- द्वारा निरूपित मॉडल का स्थान: मॉडल पैरामीटर द्वारा फैला सदिश स्थल ; यह आयाम है;
- द्वारा निरूपित डेटा का स्थान: यदि हम मापे गए नमूनों को सदिश में व्यवस्थित करते हैं घटक (हमारे माप में कार्य सम्मिलित हैं, अनंत आयामों वाला एक सदिश स्थान है);
- : मॉडल की प्रतिक्रिया ; इसमें मॉडल द्वारा अनुमानित डेटा सम्मिलित है ;
- : की छवि आगे के मानचित्र से, यह का एक उपसमुच्चय है (लेकिन उप-स्थान नहीं जब तक रैखिक है) सभी मॉडलों की प्रतिक्रियाओं से बना है;
- : मॉडल से जुड़ा डेटा मिसफिट (या अवशिष्ट)। : उन्हें एक सदिश के रूप में व्यवस्थित किया जा सकता है, का एक तत्व .
अवशिष्टों की अवधारणा बहुत महत्वपूर्ण है: डेटा से मेल खाने वाले मॉडल को खोजने की सीमा में, उनके विश्लेषण से पता चलता है कि विचार किए गए मॉडल को यथार्थवादी माना जा सकता है या नहीं। डेटा और मॉडल प्रतिक्रियाओं के बीच व्यवस्थित अवास्तविक विसंगतियों से यह भी पता चलता है कि आगे का मानचित्र अपर्याप्त है और एक उत्तम आगे के मानचित्र के बारे में जानकारी दे सकता है।
जब ऑपरेटर रैखिक है, व्युत्क्रम समस्या रैखिक है। अन्यथा, यह सबसे अधिक बार होता है, व्युत्क्रम समस्या अरैखिक होती है। साथ ही, मॉडलों को सदैव परिमित संख्या में पैरामीटर द्वारा वर्णित नहीं किया जा सकता है। यह स्थिति है, जब हम वितरित पैरामीटर प्रणाली (उदाहरण के लिए तरंग-गति का वितरण) की खोज करते हैं: ऐसी स्थितियों में व्युत्क्रम समस्या का लक्ष्य एक या कई कार्यों को पुनः प्राप्त करना है। ऐसी प्रतिलोम समस्याएँ अनंत आयाम वाली प्रतिलोम समस्याएँ हैं।
लीनियर इनवर्स प्रॉब्लम
एक रेखीय आगे के मानचित्र की स्थिति में और जब हम मॉडल मापदंडों की एक सीमित संख्या से निपटते हैं, तो आगे के मानचित्र को एक रेखीय प्रणाली के रूप में लिखा जा सकता है
एक प्रारंभिक उदाहरण: पृथ्वी का गुरुत्वाकर्षण क्षेत्र
मॉडल पैरामीटर के संबंध में केवल कुछ भौतिक प्रणालियां वास्तव में रैखिक हैं। भूभौतिकी से ऐसी ही एक प्रणाली पृथ्वी के गुरुत्वाकर्षण क्षेत्र की है। पृथ्वी का गुरुत्वाकर्षण क्षेत्र उपसतह में पृथ्वी के घनत्व वितरण द्वारा निर्धारित किया जाता है। क्योंकि पृथ्वी की लिथोलॉजी में अत्यधिक परिवर्तन आया है, हम पृथ्वी की सतह पर पृथ्वी के गुरुत्वाकर्षण क्षेत्र में सूक्ष्म अंतर देखने में सक्षम हैं। गुरुत्वाकर्षण (न्यूटन के गुरुत्वाकर्षण के नियम) की हमारी समझ से, हम जानते हैं कि गुरुत्वाकर्षण के लिए गणितीय अभिव्यक्ति है:
उपरोक्त अभिव्यक्ति को असतत करके, हम पृथ्वी की सतह पर असतत डेटा टिप्पणियों को उपसतह में असतत मॉडल मापदंडों (घनत्व) से संबंधित करने में सक्षम हैं, जिसके बारे में हम और जानना चाहते हैं। उदाहरण के लिए, उस स्थिति पर विचार करें जहां हमने पृथ्वी की सतह पर 5 स्थानों पर मापन किया है। इस स्थिति में, हमारा डेटा सदिश, आयाम का एक स्तंभ सदिश (5×1) है: इसका -वाँ घटक, -वाँ अवलोकन स्थान से जुड़ा हुआ है। हम यह भी जानते हैं कि हमारे पास केवल पाँच अज्ञात द्रव्यमान हैं, ज्ञात स्थान के साथ उपसतह में (अवास्तविक लेकिन अवधारणा को प्रदर्शित करने के लिए उपयोग किया जाता है): -वें अवलोकन स्थान और -वाँ द्रव्यमान के बीच की दूरी हम द्वारा निरूपित करते हैं। इस प्रकार, हम पाँच अज्ञात द्रव्यमानों को पाँच डेटा बिंदुओं से संबंधित रैखिक प्रणाली का निर्माण इस प्रकार कर सकते हैं:
चूंकि, एक वर्ग आव्यूह में भी कोई व्युत्क्रम नहीं हो सकता है: आव्यूह रैंक (रैखिक बीजगणित) की कमी हो सकती है (अर्थात् शून्य आइजनवैल्यूज़ है) और प्रणाली का समाधान अद्वितीय नहीं है। तब व्युत्क्रम समस्या का समाधान अनिर्धारित होगा। यह पहली कठिनाई है। अति-निर्धारित प्रणालियों (अज्ञात से अधिक समीकरण) में अन्य उद्देश्य हैं। साथ ही रव हमारे प्रेक्षणों को दूषित कर सकता है संभवतः अंतरिक्ष के बाहर मॉडल मापदंडों के लिए संभावित प्रतिक्रियाओं की जिससे प्रणाली का समाधान उपस्थित नहीं हो सकता है। यह एक और कठिनाई है।
पहली कठिनाई दूर करने के उपाय
पहली कठिनाई एक महत्वपूर्ण समस्या को दर्शाती है: हमारी टिप्पणियों में पर्याप्त जानकारी नहीं है और अतिरिक्त डेटा की आवश्यकता है। अतिरिक्त डेटा भौतिक पूर्व सूचना से पैरामीटर मानों पर, उनके स्थानिक वितरण पर या अधिक सामान्यतः, उनकी पारस्परिक निर्भरता पर आ सकता है। यह अन्य प्रयोगों से भी आ सकता है: उदाहरण के लिए, हम घनत्व के उत्तम अनुमान के लिए ग्रेविमीटर और सिस्मोग्राफ द्वारा रिकॉर्ड किए गए डेटा को एकीकृत करने के बारे में सोच सकते हैं।
इस अतिरिक्त जानकारी का एकीकरण मूल रूप से आँकड़ों की समस्या है। यह अनुशासन वह है जो प्रश्न का उत्तर दे सकता है: विभिन्न प्रकृति की मात्राओं को कैसे मिलाया जाए? हम नीचे दिए गए बायेसियन दृष्टिकोण के अनुभाग में अधिक स्पष्ट होंगे।
वितरित मापदंडों के संबंध में, उनके स्थानिक वितरण के बारे में पूर्व सूचना में अधिकांशतः इन वितरित मापदंडों के कुछ डेरिवेटिव के बारे में जानकारी होती है। इसके अतिरिक्त, यह सामान्य अभ्यास है, चूंकि कुछ हद तक कृत्रिम, सबसे सरल मॉडल की खोज करना जो डेटा से उचित रूप से मेल खाता हो। यह सामान्यतः एलपी स्पेस | पेनल्टी विधि द्वारा प्राप्त किया जाता है मानकों के ढाल (या कुल भिन्नता) का मानदंड (इस दृष्टिकोण को एंट्रॉपी के अधिकतमकरण के रूप में भी जाना जाता है)। एक पैरामीट्रिजेशन के माध्यम से मॉडल को सरल भी बना सकता है, जो आवश्यक होने पर ही स्वतंत्रता की डिग्री प्रस्तुत करता है।
मॉडल पैरामीटर या उनके कुछ कार्यों पर असमानता बाधाओं के माध्यम से अतिरिक्त जानकारी भी एकीकृत की जा सकती है। मापदंडों के लिए अवास्तविक मूल्यों (उदाहरण के लिए नकारात्मक मान) से बचने के लिए ऐसी बाधाएं महत्वपूर्ण हैं। इस स्थिति में, मॉडल मापदंडों द्वारा फैला हुआ स्थान अब एक सदिश स्थान नहीं होगा, बल्कि स्वीकार्य मॉडल का एक उपसमूह होगा जिसे निरूपित किया जाएगा अगली कड़ी में।
दूसरी कठिनाई दूर करने के उपाय
जैसा कि ऊपर उल्लेख किया गया है, रव ऐसा हो सकता है कि हमारे माप किसी मॉडल की छवि नहीं हैं, जिससे हम उस मॉडल की खोज न कर सकें जो डेटा उत्पन्न करता है बल्कि मॉडल चयन की खोज करता है | सबसे अच्छा (या इष्टतम) मॉडल: अर्थात्, एक जो डेटा से सबसे अच्छा मेल खाता है। यह हमें एक उद्देश्य फलन को कम करने की ओर ले जाता है, अर्थात् एक कार्यात्मक (गणित) जो यह निर्धारित करता है कि अवशेष कितने बड़े हैं या अनुमानित डेटा प्रेक्षित डेटा से कितनी दूर हैं। निस्संदेह, जब हमारे पास सही डेटा (अर्थात् कोई रव नहीं) होता है, तो बरामद मॉडल को देखे गए डेटा को पूरी तरह से फिट करना चाहिए। एक मानक उद्देश्य फलन, , रूप है:
जहाँ यूक्लिडियन मानदंड है (यह एलपी स्पेस होगा आदर्श जब माप अवशेषों के नमूने के बजाय कार्य होते हैं)। यह दृष्टिकोण कम से कम वर्गों का उपयोग करने के बराबर है, एक दृष्टिकोण जो आंकड़ों में व्यापक रूप से उपयोग किया जाता है। चूंकि, यूक्लिडियन मानदंड आउटलेयर के प्रति बहुत संवेदनशील माना जाता है: इस कठिनाई से बचने के लिए हम अन्य दूरियों का उपयोग करने के बारे में सोच सकते हैं, उदाहरण के लिए मानदंड के प्रतिस्थापन में मानदंड।
बायेसियन दृष्टिकोण
सबसे कम-वर्ग दृष्टिकोण के समान ही संभाव्य दृष्टिकोण है: यदि हम डेटा को दूषित करने वाले रव के आंकड़ों को जानते हैं, तो हम सबसे संभावित मॉडल एम की मांग करने के बारे में सोच सकते हैं, जो मॉडल है जो अधिकतम संभावना अनुमान से मेल खाता है। यदि रव सामान्य वितरण है, तो अधिकतम संभावना मानदंड न्यूनतम-वर्ग मानदंड के रूप में प्रकट होता है, डेटा स्थान में यूक्लिडियन स्केलर उत्पाद को एक स्केलर उत्पाद द्वारा प्रतिस्थापित किया जा रहा है जिसमें सहप्रसरण सम्मिलित है। रव का सह-प्रसरण, इसके अतिरिक्त, क्या मॉडल मापदंडों पर पूर्व सूचना उपलब्ध होनी चाहिए, हम व्युत्क्रम समस्या का समाधान तैयार करने के लिए बायेसियन अनुमान का उपयोग करने के बारे में सोच सकते हैं। टारेंटोला की पुस्तक में इस दृष्टिकोण का विस्तार से वर्णन किया गया है।[9]
हमारे प्रारंभिक उदाहरण का संख्यात्मक समाधान
यहाँ हम यूक्लिडियन मानदंड का उपयोग डेटा मिसफिट को निर्धारित करने के लिए करते हैं। जैसा कि हम एक रैखिक व्युत्क्रम समस्या से निपटते हैं, उद्देश्य फलन द्विघात होता है। इसके न्यूनीकरण के लिए, समान तर्काधार का उपयोग करके इसके ग्रेडिएंट की गणना करना मौलिक है (जैसा कि हम केवल एक चर के फलन को कम करना चाहते हैं)। इष्टतम मॉडल पर , यह ग्रेडिएंट लुप्त हो जाता है, जिसे इस प्रकार लिखा जा सकता है:
हमारे उदाहरण आव्यूह में सामान्यतः पूर्ण रैंक निकलता है, जिससे उपरोक्त समीकरण समझ में आता है और विशिष्ट रूप से मॉडल पैरामीटर निर्धारित करता है: हमें एक अद्वितीय समाधान के साथ समाप्त करने के लिए अतिरिक्त जानकारी को एकीकृत करने की आवश्यकता नहीं है।
गणितीय और कम्प्यूटेशनल पहलू
सामान्यतः गणितीय मॉडलिंग में मिलने वाली अच्छी तरह से प्रस्तुत की गई समस्याओं के विपरीत व्युत्क्रम समस्याएं सामान्यतः बीमार होती हैं। जैक्स हैडमार्ड (अस्तित्व, विशिष्टता, और समाधान या समाधान की स्थिरता) द्वारा सुझाई गई एक अच्छी तरह से प्रस्तुत समस्या के लिए तीन शर्तों में से स्थिरता की स्थिति का अधिकांशतः उल्लंघन किया जाता है। कार्यात्मक विश्लेषण के अर्थ में, व्युत्क्रम समस्या को मीट्रिक रिक्त स्थान के बीच मानचित्रण द्वारा दर्शाया जाता है। जबकि व्युत्क्रम समस्याएं अधिकांशतः अनंत आयामी स्थानों में तैयार की जाती हैं, माप की एक सीमित संख्या की सीमाएं, और केवल अज्ञात मापदंडों की एक सीमित संख्या को पुनर्प्राप्त करने का व्यावहारिक विचार, असतत रूप में पुन: उत्पन्न होने वाली समस्याओं को जन्म दे सकता है। इस स्थिति में व्युत्क्रम समस्या सामान्यतः खराब स्थिति होगी। इन स्थितियों में, नियमितकरण (गणित) का उपयोग समाधान पर हल्की धारणाओं को प्रस्तुत करने और ओवर फिटिंग को रोकने के लिए किया जा सकता है। नियमित प्रतिलोम समस्याओं के कई उदाहरणों की व्याख्या बायेसियन अनुमान के विशेष स्थितियों के रूप में की जा सकती है।[10]
अनुकूलन समस्या का संख्यात्मक समाधान
कुछ व्युत्क्रम समस्याओं का एक बहुत ही सरल समाधान होता है, उदाहरण के लिए, जब किसी के पास अघुलनशील कार्य का एक सेट होता है, जिसका अर्थ है ऐसे कार्य करता है जो उनका मूल्यांकन करता है अलग-अलग बिंदुओं से रैखिक रूप से स्वतंत्र वैक्टर का एक सेट प्राप्त होता है। इसका अर्थ यह है कि इन कार्यों के एक रैखिक संयोजन को देखते हुए, गुणांक की गणना वैक्टर को आव्यूह के कॉलम के रूप में व्यवस्थित करके और फिर इस आव्यूह को उल्टा करके की जा सकती है। अविलयनशील फलनों का सबसे सरल उदाहरण बहुपदों का निर्माण है, जिसमें अविलयन प्रमेय का उपयोग किया जाता है, जिससे अविलयन हो सके। ठोस रूप से, यह वैंडरमोंड आव्यूह को उल्टा करके किया जाता है। लेकिन यह एक बहुत ही विशेष स्थिति है।
सामान्य तौर पर, व्युत्क्रम समस्या के समाधान के लिए परिष्कृत अनुकूलन एल्गोरिदम की आवश्यकता होती है। जब मॉडल को बड़ी संख्या में पैरामीटर द्वारा वर्णित किया जाता है (कुछ विवर्तन टोमोग्राफी अनुप्रयोगों में सम्मिलित अज्ञात की संख्या एक अरब तक पहुंच सकती है), सामान्य समीकरणों से जुड़े रैखिक प्रणाली को हल करना बोझिल हो सकता है। अनुकूलन समस्या को हल करने के लिए उपयोग की जाने वाली संख्यात्मक विधि विशेष रूप से आगे की समस्या के समाधान की गणना के लिए आवश्यक व्यय पर निर्भर करती है। एक बार आगे की समस्या को हल करने के लिए उपयुक्त एल्गोरिदम चुना गया (एक सीधा आव्यूह-सदिश गुणन पर्याप्त नहीं हो सकता है जब आव्यूह बहुत बड़ा है), न्यूनीकरण करने के लिए उपयुक्त एल्गोरिदम रैखिक प्रणालियों के समाधान के लिए संख्यात्मक विधियों से निपटने वाली पाठ्यपुस्तकों में और द्विघात कार्यों के न्यूनीकरण के लिए पाया जा सकता है (उदाहरण के लिए सियारलेट देखें[11] या नोसेडल[12])।
साथ ही, उपयोगकर्ता मॉडलों में भौतिक बाधाओं को जोड़ना चाह सकते हैं: इस स्थिति में, उन्हें प्रतिबंधित अनुकूलन से परिचित होना होगा, जो कि स्वयं में एक विषय है। सभी स्थितियों में, अनुकूलन समस्या के समाधान के लिए उद्देश्य फलन के ढाल की गणना करना अधिकांशतः एक महत्वपूर्ण तत्व होता है। जैसा कि ऊपर उल्लेख किया गया है, पैरामीट्रिजेशन के माध्यम से वितरित पैरामीटर के स्थानिक वितरण के बारे में जानकारी प्रस्तुत की जा सकती है। अनुकूलन के समय कोई भी इस पैरामीट्रिजेशन को अपनाने के बारे में सोच सकता है।[13] क्या उद्देश्य फलन यूक्लिडियन मानदंड के अतिरिक्त किसी अन्य मानदंड पर आधारित होना चाहिए, हमें द्विघात अनुकूलन के क्षेत्र को छोड़ना होगा। परिणामस्वरूप, अनुकूलन समस्या अधिक कठिन हो जाती है। विशेष रूप से, जब मानदंड का उपयोग डेटा मिसफिट को मापने के लिए किया जाता है, उद्देश्य फलन अब अलग नहीं होता है: इसका ढाल अब और समझ में नहीं आता है। समर्पित विधियाँ (उदाहरण के लिए लेमारेचल देखें[14]) नॉन डिफरेंशियल ऑप्टिमाइज़ेशन से आते हैं।
एक बार इष्टतम मॉडल की गणना हो जाने के बाद हमें इस प्रश्न का समाधान करना होगा: क्या हम इस मॉडल पर विश्वास कर सकते हैं? प्रश्न को निम्नानुसार तैयार किया जा सकता है: मॉडल का सेट कितना बड़ा है जो डेटा के साथ-साथ इस मॉडल से भी मेल खाता है? द्विघात उद्देश्य कार्यों की स्थिति में, यह सेट एक हाइपर-एलिप्सिड, एक सबसेट में समाहित है ( अज्ञात की संख्या है), जिसका आकार इस बात पर निर्भर करता है कि हम लगभग साथ ही क्या अर्थ रखते हैं, जो कि रव के स्तर पर है। इस दीर्घवृत्ताभ के सबसे बड़े अक्ष की दिशा ) खराब निर्धारित घटकों की दिशा है: यदि हम इस दिशा का पालन करते हैं, तो हम उद्देश्य फलन के मूल्य में महत्वपूर्ण परिवर्तन किए बिना मॉडल में एक मजबूत गड़बड़ी ला सकते हैं और इस तरह एक अलग अर्ध-इष्टतम मॉडल के साथ समाप्त हो सकते हैं। हम स्पष्ट रूप से देखते हैं कि प्रश्न का उत्तर क्या हम विश्वास कर सकते हैं कि यह मॉडल रव के स्तर और ऑब्जेक्टिव फलन के हेसियन आव्यूह के ईगेनवेल्यूज़ द्वारा या समकक्ष रूप से नियंत्रित किया जाता है, उस स्थिति में जहां कोई नियमितीकरण के एकवचन मानों द्वारा आव्यूह एकीकृत नहीं किया गया है। निस्संदेह, नियमितीकरण (या अन्य प्रकार की पूर्व सूचना) का उपयोग लगभग इष्टतम समाधानों के सेट के आकार को कम करता है और बदले में, हम गणना किए गए समाधान में विश्वास बढ़ा सकते हैं।
अनंत आयाम में स्थिरता, नियमितीकरण और मॉडल विवेकीकरण
हम यहां वितरित पैरामीटर की पुनर्प्राप्ति पर ध्यान केंद्रित करते हैं। वितरित मापदंडों की खोज करते समय हमें इन अज्ञात कार्यों को अलग करना होगा। ऐसा करने से, हम समस्या के आयाम को कुछ सीमित कर देते हैं। लेकिन अब, प्रश्न यह है: क्या हमारे द्वारा गणना किए गए समाधान और प्रारंभिक समस्या में से एक के बीच कोई संबंध है? फिर एक और प्रश्न: प्रारंभिक समस्या के समाधान से हमारा क्या तात्पर्य है? चूंकि डेटा की एक सीमित संख्या अज्ञात की अनंतता के निर्धारण की अनुमति नहीं देती है, समाधान की विशिष्टता सुनिश्चित करने के लिए मूल डेटा मिसफिट कार्यात्मक को नियमित किया जाना चाहिए। कई बार, अज्ञात को परिमित-आयामी स्थान में कम करने से पर्याप्त नियमितीकरण मिलेगा: गणना किया गया समाधान उस समाधान के असतत संस्करण की तरह दिखेगा जिसकी हम खोज कर रहे थे। उदाहरण के लिए, एक भोली विवेकशीलता अधिकांशतः विसंक्रमण समस्या को हल करने के लिए काम करेगी: यह तब तक काम करेगी जब तक हम लापता आवृत्तियों को संख्यात्मक समाधान में दिखाने की अनुमति नहीं देते हैं। लेकिन कई बार, नियमितीकरण को वस्तुनिष्ठ कार्य में स्पष्ट रूप से एकीकृत करना पड़ता है।
यह समझने के लिए कि क्या हो सकता है, हमें यह ध्यान में रखना होगा कि इस तरह की रैखिक व्युत्क्रम समस्या को हल करना पहली तरह के फ्रेडहोम इंटीग्रल समीकरण को हल करने के बराबर है:
जहाँ कर्नेल है, और के सदिश हैं , और में एक डोमेन है . यह एक 2D अनुप्रयोग के लिए है। एक 3D अनुप्रयोग के लिए, हम विचार करते हैं . ध्यान दें कि यहां मॉडल पैरामीटर एक फलन से मिलकर बनता है और एक मॉडल की प्रतिक्रिया में एक फलन भी होता है जिसे निरूपित किया जाता है . यह समीकरण आव्यूह समीकरण के अनंत आयाम का विस्तार है असतत समस्याओं की स्थिति में दिया गया।
पर्याप्त चिकनाई के लिए ऊपर परिभाषित ऑपरेटर उचित Banach रिक्त स्थान जैसे Lp स्पेस पर कॉम्पैक्ट ऑपरेटर है. कॉम्पैक्ट ऑपरेटर | एफ। रिज़्ज़ सिद्धांत कहता है कि इस तरह के एक ऑपरेटर के एकवचन मूल्यों के सेट में शून्य होता है (इसलिए शून्य-स्थान का अस्तित्व), परिमित या सबसे अधिक गणना योग्य होता है, और, बाद की स्थिति में, वे एक अनुक्रम बनाते हैं जो शून्य तक जाता है। एक सममित कर्नेल के स्थिति में, हमारे पास आइजनवैल्यूज़ की अनंतता है और संबद्ध eigenvectors एक हिल्बर्टियन आधार का गठन करते हैं . इस प्रकार इस समीकरण का कोई भी समाधान शून्य-स्थान में एक योगात्मक कार्य के लिए निर्धारित होता है और, एकवचन मूल्यों की अनंतता की स्थिति में, समाधान (जिसमें मनमाना छोटे आइजनवैल्यूज़ का व्युत्क्रम सम्मिलित होता है) अस्थिर होता है: दो अवयव जो समाधान बनाते हैं इस अभिन्न समीकरण की एक विशिष्ट बीमार समस्या! चूंकि, हम सामान्यीकृत व्युत्क्रम के माध्यम से एक समाधान को परिभाषित कर सकते हैं। आगे के मानचित्र के छद्म-व्युत्क्रम (फिर से एक मनमाने ढंग से योगात्मक कार्य तक)। जब आगे का मानचित्र कॉम्पैक्ट होता है, तो मौलिक तिखोनोव नियमितीकरण काम करेगा यदि हम इसका उपयोग पूर्व सूचना को एकीकृत करने के लिए करते हैं, जिसमें कहा गया है कि समाधान का मानदंड जितना संभव हो उतना छोटा होना चाहिए: यह व्युत्क्रम समस्या को अच्छी तरह से प्रस्तुत करेगा। फिर भी, जैसा कि परिमित आयाम की स्थिति में है, हमें उस विश्वास पर प्रश्न उठाना होगा जिसे हम संगणित समाधान में डाल सकते हैं। फिर से, मूल रूप से, जानकारी हेस्सियन ऑपरेटर के आइजनवैल्यूज़ में निहित है। यदि समाधान की गणना के लिए छोटे ईजेनवैल्यू से जुड़े ईजेनसदिश वाले उप-स्थानों का पता लगाया जाना चाहिए, तो समाधान पर संभवतया ही विश्वास किया जा सकता है: इसके कुछ घटकों को खराब विधियों से निर्धारित किया जाएगा। सबसे छोटा आइजनवेल्यू तिखोनोव नियमितीकरण में प्रस्तुत किए गए वजन के बराबर है।
अनियमित गुठली एक आगे का मानचित्र उत्पन्न कर सकती है जो कॉम्पैक्ट नहीं है और यहां तक कि असीमित ऑपरेटर भी है अगर हम मानदंड मॉडल के स्थान को भोलेपन से लैस करते हैं। ऐसी स्थितियों में, हेस्सियन एक परिबद्ध संकारक नहीं है और आइजनवैल्यू की धारणा का अब कोई अर्थ नहीं रह गया है। इसे एक परिबद्ध संचालक बनाने और एक अच्छी तरह से प्रस्तुत समस्या को डिजाइन करने के लिए एक गणितीय विश्लेषण की आवश्यकता होती है: इसमें एक उदाहरण पाया जा सकता है।[15] फिर से, हमें उस विश्वास पर प्रश्न उठाना होगा जो हम गणना किए गए समाधान में डाल सकते हैं और हमें उत्तर पाने के लिए आइजनवेल्यू की धारणा को सामान्य बनाना होगा।[16]
हेसियन ऑपरेटर के स्पेक्ट्रम का विश्लेषण इस प्रकार यह निर्धारित करने के लिए एक महत्वपूर्ण तत्व है कि गणना समाधान कितना विश्वसनीय है। चूंकि, ऐसा विश्लेषण सामान्यतः बहुत भारी काम होता है। इसने कई लेखकों को उस स्थिति में वैकल्पिक दृष्टिकोणों की जांच करने के लिए प्रेरित किया है जहां हम अज्ञात फलन के सभी घटकों में रुचि नहीं रखते हैं, लेकिन केवल उप-अज्ञात में जो एक रैखिक ऑपरेटर द्वारा अज्ञात फलन की छवियां हैं। इन दृष्टिकोणों को बैकस और गिल्बर्ट विधि कहा जाता है[17], जैक्स-लुई लायंस प्रहरी दृष्टिकोण,[18] और सोला विधि:[19] जैसा कि चावेंट में समझाया गया है, ये दृष्टिकोण एक दूसरे के साथ दृढ़ता से जुड़े हुए हैं[20] अंत में, ऑप्टिकल संकल्प की अवधारणा, जिसे अधिकांशतः भौतिकविदों द्वारा प्रयुक्त किया जाता है, इस तथ्य का एक विशिष्ट दृष्टिकोण है कि कुछ खराब निर्धारित घटक समाधान को दूषित कर सकते हैं। लेकिन, सामान्यतः बोलते हुए, मॉडल के इन खराब निर्धारित घटकों को उच्च आवृत्तियों से जरूरी नहीं जोड़ा जाता है।
वितरित मापदंडों की वसूली के लिए कुछ मौलिक रैखिक व्युत्क्रम समस्याएं
नीचे बताई गई समस्याएं फ्रेडहोम इंटीग्रल के विभिन्न संस्करणों के अनुरूप हैं: इनमें से प्रत्येक एक विशिष्ट कर्नेल से जुड़ा हैहै
विखंडन
डीकनवोल्यूशन का लक्ष्य मूल छवि या सिग्नल का पुनर्निर्माण करना है, जो डेटा पर नॉइज़ और ब्लर के रूप में दिखाई देता है।[21] गणितीय दृष्टिकोण से, कर्नल यहाँ केवल और के बीच के अंतर पर निर्भर करता है।
टोमोग्राफिक विधियाँ
इन विधियों में हम एक वितरित पैरामीटर को पुनर्प्राप्त करने का प्रयास करते हैं, इस पैरामीटर के इंटीग्रल के माप में सम्मिलित अवलोकन लाइनों के एक परिवार के साथ किया जाता है। हम इसे माप बिंदु से जुड़ी इस परिवार की रेखा पर द्वारा निरूपित करते हैं। पर अवलोकन इस प्रकार लिखा जा सकता है:
कंप्यूटेड टोमोग्राफी
एक्स-रे कंप्यूटेड टोमोग्राफी में जिन लाइनों पर पैरामीटर एकीकृत होता है वे सीधी रेखाएं होती हैं: पैरामीटर वितरण का टोमोग्राफिक पुनर्निर्माण रैडॉन रूपांतरण के व्युत्क्रम पर आधारित होता है। चूंकि एक सैद्धांतिक दृष्टिकोण से कई रैखिक व्युत्क्रम समस्याओं को अच्छी तरह से समझा जाता है, रैडॉन परिवर्तन और इसके सामान्यीकरण से जुड़ी समस्याएं अभी भी कई सैद्धांतिक चुनौतियां प्रस्तुत करती हैं जिनमें डेटा की पर्याप्तता के प्रश्न अभी भी अनसुलझे हैं। इस तरह की समस्याओं में तीन आयामों में एक्स-रे ट्रांसफ़ॉर्म के लिए अधूरा डेटा और एक्स-रे ट्रांसफ़ॉर्म के टेन्सर फ़ील्ड के सामान्यीकरण से जुड़ी समस्याएं सम्मिलित हैं। खोजे गए समाधानों में बीजगणितीय पुनर्निर्माण तकनीक, फ़िल्टर्ड बैकप्रोजेक्शन, और जैसे-जैसे कंप्यूटिंग शक्ति में वृद्धि हुई है, एसएएमवी (एल्गोरिदम) जैसे पुनरावृत्त पुनर्निर्माण की विधियाँ सम्मिलित हैं।[22]
विवर्तन टोमोग्राफी
विवर्तन टोमोग्राफी अन्वेषण भूकम्प विज्ञान में एक मौलिक रेखीय व्युत्क्रम समस्या है: किसी दिए गए स्रोत-रिसीवर जोड़ी के लिए एक समय में अंकित किया गया आयाम बिंदुओं से उत्पन्न होने वाले योगदान का योग है, जैसे दूरी का योग, यात्रा के समय में मापा जाता है, स्रोत से और रिसीवर, क्रमशः, इसी रिकॉर्डिंग समय के बराबर है। 3डी में पैरामीटर को लाइनों के साथ नहीं बल्कि सतहों पर एकीकृत किया जाता है। प्रसार वेग स्थिर होना चाहिए, ऐसे बिंदुओं को दीर्घवृत्त पर वितरित किया जाता है। व्युत्क्रम समस्याओं में सर्वेक्षण के साथ रिकॉर्ड किए गए सिस्मोग्राम से विवर्तन बिंदुओं के वितरण को पुनः प्राप्त करना सम्मिलित है, वेग वितरण ज्ञात है। एक सीधा समाधान मूल रूप से बेयल्किन और लम्बरे एट अल द्वारा प्रस्तावित किया गया है।[23] ये कार्य दृष्टिकोण के प्रारंभिक बिंदु थे, जिन्हें आयाम संरक्षित प्रवासन के रूप में जाना जाता है (बेयल्किन देखें[24][25] और सीसा पत्थर[26])। क्या ज्यामितीय प्रकाशिकी तकनीकों (अर्थात किरणों) का उपयोग तरंग समीकरण को हल करने के लिए किया जाना चाहिए, ये विधियाँ तथाकथित न्यूनतम-वर्गों से निकटता से संबंधित हैं। प्रवास की विधियाँ[27] कम से कम वर्ग दृष्टिकोण से व्युत्पन्न (लेली देखें,[28] टारेंटयुला[29])।
डॉपलर टोमोग्राफी (खगोल भौतिकी)
यदि हम एक घूमने वाली तारकीय वस्तु पर विचार करते हैं, तो वर्णक्रमीय रेखाएँ जिन्हें हम एक वर्णक्रमीय प्रोफ़ाइल पर देख सकते हैं, डॉपलर प्रभाव के कारण स्थानांतरित हो जाएंगी। डॉपलर टोमोग्राफी का उद्देश्य तारकीय वातावरण के उत्सर्जन (रेडियल वेग और आवधिक रोटेशन आंदोलन में चरण के एक फलन के रूप में) की 2 डी छवि में वस्तु की वर्णक्रमीय निगरानी में निहित जानकारी को परिवर्तित करना है। जैसा कि टॉम मार्श (खगोलविद) द्वारा समझाया गया है[30] यह रेखीय व्युत्क्रम समस्या टोमोग्राफी है जैसे: हमें एक वितरित पैरामीटर को पुनर्प्राप्त करना होगा जिसे रिकॉर्डिंग में इसके प्रभाव उत्पन्न करने के लिए लाइनों के साथ एकीकृत किया गया है।
व्युत्क्रम ऊष्मा चालन
दफन तापमान सेंसर से वायुमंडलीय पुन: प्रवेश के समय सतह गर्मी प्रवाह का निर्धारण करने से व्युत्क्रम गर्मी प्रवाहकत्त्व पर प्रारंभिक प्रकाशन उत्पन्न हुए।[31][32] अन्य अनुप्रयोग जहां सतह ताप प्रवाह की आवश्यकता होती है लेकिन सतह सेंसर व्यावहारिक नहीं होते हैं, उनमें प्रत्यागामी इंजन के अंदर, रॉकेट इंजन के अंदर; और, परमाणु रिएक्टर घटकों का परीक्षण सम्मिलित हैं।[33] तापमान संकेत में अवमंदन और पश्चताप के कारण होने वाली माप त्रुटि के प्रति अरुचिकरता और संवेदनशीलता को दूर करने के लिए विभिन्न प्रकार की संख्यात्मक तकनीकों का विकास किया गया है।[34][35][36]
गैर-रैखिक व्युत्क्रम समस्याएं
गैर-रेखीय व्युत्क्रम समस्याएं व्युत्क्रम समस्याओं के स्वाभाविक रूप से अधिक कठिन परिवार का गठन करती हैं। यहाँ आगे का मानचित्र एक गैर-रैखिक ऑपरेटर है। भौतिक घटनाओं की मॉडलिंग अधिकांशतः एक आंशिक अंतर समीकरण के समाधान पर निर्भर करती है (गुरुत्वाकर्षण नियम को छोड़कर ऊपर दी गई तालिका देखें): चूंकि ये आंशिक अंतर समीकरण अधिकांशतः रैखिक होते हैं, इन समीकरणों में दिखाई देने वाले भौतिक पैरामीटर एक गैर-रैखिक विधियों पर निर्भर करते हैं, प्रणाली की स्थिति और इसलिए हम उस पर किए गए अवलोकनों पर।
कुछ मौलिक गैर-रैखिक व्युत्क्रम समस्याएं
व्युत्क्रम बिखरने की समस्या
जबकि उन्नीसवीं शताब्दी के अंत में रैखिक प्रतिलोम समस्याओं को सैद्धांतिक दृष्टिकोण से पूरी तरह से हल कर लिया गया था[citation needed], रूसी गणितीय स्कूल (मार्क ग्रिगोर्येविच करें, इज़राइल गेलफैंड, लेविटन, व्लादिमीर मार्चेंको) के मौलिक कार्य के बाद, 1970 से पहले गैर-रैखिक व्युत्क्रम समस्याओं का केवल एक वर्ग व्युत्क्रम वर्णक्रमीय और (एक स्थान आयाम) व्युत्क्रम बिखरने की समस्या थी। परिणामों की एक बड़ी समीक्षा चाडन और सबेटियर ने अपनी पुस्तक इनवर्स प्रॉब्लम्स ऑफ क्वांटम स्कैटरिंग थ्योरी (अंग्रेजी में दो संस्करण, रूसी में एक) में दी है।
इस तरह की समस्या में, डेटा एक रैखिक ऑपरेटर के स्पेक्ट्रम के गुण होते हैं जो बिखरने का वर्णन करते हैं। स्पेक्ट्रम आइजनवैल्यूज़ और आइजन फलनों से बना है, जो असतत स्पेक्ट्रम और सामान्यीकरण को एक साथ बनाते हैं, जिसे निरंतर स्पेक्ट्रम कहा जाता है। बहुत ही उल्लेखनीय भौतिक बिंदु यह है कि प्रकीर्णन प्रयोग केवल निरंतर स्पेक्ट्रम के बारे में जानकारी देते हैं, और यह कि इसके पूर्ण स्पेक्ट्रम को जानना आवश्यक और बिखरने वाले ऑपरेटर को पुनर्प्राप्त करने के लिए पर्याप्त है। इसलिए हमारे पास अदृश्य पैरामीटर हैं, शून्य स्थान की तुलना में कहीं अधिक दिलचस्प है जिसमें रैखिक व्युत्क्रम समस्याओं में समान संपत्ति है। इसके अतिरिक्त, ऐसी भौतिक गतियाँ होती हैं जिनमें ऐसी गति के परिणामस्वरूप ऐसे संचालिका का स्पेक्ट्रम संरक्षित रहता है। यह घटना विशेष अरैखिक आंशिक अंतर विकास समीकरणों द्वारा नियंत्रित होती है, उदाहरण के लिए कॉर्टेवेग-डी व्रीस समीकरण। यदि ऑपरेटर के स्पेक्ट्रम को एक सिंगल आइजनवैल्यू तक कम कर दिया जाता है, तो इसकी संगत गति एक सिंगल बम्प की होती है जो निरंतर वेग से और विरूपण के बिना फैलती है, एक अकेली लहर जिसे सॉलिटन कहा जाता है।
कई संभावित अनुप्रयोगों के साथ, कॉर्टेवेग-डी वेरी समीकरण या अन्य पूर्णांक गैर-रैखिक आंशिक अंतर समीकरणों के लिए एक आदर्श संकेत और इसके सामान्यीकरण बहुत रुचि रखते हैं। 1970 के दशक से इस क्षेत्र का गणितीय भौतिकी की एक शाखा के रूप में अध्ययन किया गया है। अनुप्रयुक्त विज्ञान के कई क्षेत्रों (ध्वनिकी, यांत्रिकी, क्वांटम यांत्रिकी, विद्युत चुम्बकीय बिखरने - विशेष रूप से रडार ध्वनि, भूकंपीय ध्वनि, और लगभग सभी इमेजिंग विधियों) में गैर-रैखिक व्युत्क्रम समस्याओं का भी अध्ययन किया जाता है।
रीमैन परिकल्पना से संबंधित एक अंतिम उदाहरण वू और स्प्रंग द्वारा दिया गया था, विचार यह है कि अर्ध-मौलिक भौतिकी में पुराने क्वांटम सिद्धांत में हैमिल्टनियन के अंदर की क्षमता का व्युत्क्रम आइजनवैल्यूज़ (ऊर्जा) गिनती फलन के आधे-व्युत्पन्न के समानुपाती होता है।
तेल और गैस जलाशयों में पारगम्यता मिलान
लक्ष्य डिफ्यूजन समीकरण में प्रसार गुणांक को पुनर्प्राप्त करना है जो झरझरा मीडिया में एकल चरण द्रव प्रवाहित करता है। सत्तर के दशक के प्रारंभ में किए गए एक अग्रणी कार्य के बाद से यह समस्या कई अध्ययनों का विषय रही है।[37] दो-चरण प्रवाह के संबंध में एक महत्वपूर्ण समस्या सापेक्ष पारगम्यता और केशिका दबावों का अनुमान लगाना है।[38]
तरंग समीकरण में व्युत्क्रम समस्याएं
लक्ष्य तरंग-गति (पी और एस तरंगों) और घनत्व वितरण को सीस्मोग्राम से पुनर्प्राप्त करना है। इस तरह की व्युत्क्रम समस्याएं भूकंप विज्ञान और अन्वेषण भूभौतिकी में प्रमुख रुचि हैं। हम मूल रूप से दो गणितीय मॉडल पर विचार कर सकते हैं:
- वेव समीकरण (जिसमें अंतरिक्ष आयाम 2 या 3 होने पर एस तरंगों को अनदेखा कर दिया जाता है)
- रैखिक लोच जिसमें P और S तरंग वेग लेमे पैरामीटर और घनत्व से प्राप्त किए जा सकते हैं।
इन मूलभूत अतिशयोक्तिपूर्ण आंशिक अंतर समीकरण को क्षीणन, असमदिग्वर्ती होने की दशा, को सम्मिलित करके उन्नत किया जा सकता है ...
1D तरंग समीकरण में व्युत्क्रम समस्या का समाधान कई अध्ययनों का विषय रहा है। यह बहुत कम अरैखिक व्युत्क्रम समस्याओं में से एक है जिसके लिए हम समाधान की अद्वितीयता को सिद्ध कर सकते हैं।[8] समाधान की स्थिरता का विश्लेषण एक अन्य चुनौती थी।[39] कम से कम वर्ग दृष्टिकोण का उपयोग करते हुए व्यावहारिक अनुप्रयोग विकसित किए गए थे।[39][40]
80 के दशक से 2डी या 3डी समस्याओं और इलास्टोडायनामिक्स समीकरणों के विस्तार का प्रयास किया गया था लेकिन यह बहुत मुश्किल सिद्ध हुआ! इस समस्या को अधिकांशतः फुल वेवफॉर्म इनवर्जन (एफडब्ल्यूआई) के रूप में संदर्भित किया जाता है, अभी तक पूरी तरह से हल नहीं हुई है: मुख्य कठिनाइयों में सीस्मोग्राम में गैर-गाऊसी रव का अस्तित्व, साइकिल-स्किपिंग उद्देश्य (चरण अस्पष्टता के रूप में भी जाना जाता है), और अराजक हैं। डेटा मिसफिट फलन का व्यवहार।[41] कुछ लेखकों ने व्युत्क्रम समस्या को संशोधनने की संभावना की जांच की है, जिससे डेटा मिसफिट फलन की तुलना में उद्देश्य फलन को कम अराजक बनाया जा सके।[42][43]
यात्रा-समय टोमोग्राफी
तरंग समीकरण में व्युत्क्रम समस्या कितनी कठिन है, यह समझते हुए, भूकम्प विज्ञानियों ने ज्यामितीय प्रकाशिकी का उपयोग करते हुए एक सरल दृष्टिकोण की जांच की थी। विशेष रूप से वे प्रसार वेग वितरण के लिए व्युत्क्रम करने के उद्देश्य से थे, जो सिस्मोग्राम पर तरंग-मोर्चों के आगमन के समय को जानते थे। ये तरंग-मोर्चों को प्रत्यक्ष आगमन या परावर्तकों से जुड़े प्रतिबिंबों से जोड़ा जा सकता है जिनकी ज्यामिति निर्धारित की जानी है, संयुक्त रूप से वेग वितरण के साथ।
आगमन समय वितरण ( भौतिक स्थान में एक बिंदु है) एक बिंदु स्रोत से जारी तरंग-मोर्चे का, इकोनल समीकरण को संतुष्ट करता है:
यह समस्या टोमोग्राफी है जैसे: मापा आगमन समय धीमेपन के रे-पथ के साथ अभिन्न हैं। लेकिन यह टोमोग्राफी जैसी समस्या अरैखिक है, मुख्यतः क्योंकि अज्ञात किरण-पथ ज्यामिति वेग (या धीमेपन) वितरण पर निर्भर करती है। अपने गैर-रैखिक चरित्र के अतिरिक्त, यात्रा-समय टोमोग्राफी पृथ्वी या उपसतह में प्रसार वेग को निर्धारित करने के लिए बहुत प्रभावी सिद्ध हुई, बाद वाला पहलू भूकंपीय इमेजिंग के लिए एक प्रमुख तत्व है, विशेष रूप से खंड विवर्तन टोमोग्राफी में वर्णित विधियों का उपयोग करके सिद्ध किया गया है।
गणितीय पहलू: हैडमार्ड के प्रश्न
प्रश्नों का संबंध अच्छी स्थिति से है: क्या कम से कम वर्गों की समस्या का एक अनूठा समाधान है जो निरंतर डेटा (स्थिरता की समस्या) पर निर्भर करता है? यह पहला प्रश्न है, लेकिन इसकी गैर-रैखिकता के कारण यह कठिन भी है।
यह देखने के लिए कि कठिनाइयाँ कहाँ से उत्पन्न होती हैं, चावेंट[44] अवधारणात्मक रूप से डेटा मिसफिट फलन के न्यूनीकरण को निरंतर दो चरणों में विभाजित करने का प्रस्ताव है ( स्वीकार्य मॉडल का सबसेट है):
- प्रोजेक्शन स्टेप: दिया गया पर एक प्रक्षेपण खोजें (निकटतम बिंदु पर उद्देश्य फलन की परिभाषा में सम्मिलित दूरी के अनुसार)
- इस प्रक्षेपण को देखते हुए एक पूर्व-छवि खोजें जो एक मॉडल है जिसकी छवि ऑपरेटर द्वारा है क्या यह प्रक्षेपण है।
कठिनाइयाँ - और सामान्यतः - दोनों चरणों में उत्पन्न हो सकती हैं:
- ऑपरेटर एक-से-एक होने की संभावना नहीं है, इसलिए एक से अधिक पूर्व-छवि हो सकती हैं,
- यहां तक कि जब एक-से-एक है, इसका व्युत्क्रम निरंतर नहीं हो सकता है,
- प्रक्षेपण प्रारंभ हो सकता है उपस्थित न हो, क्या यह सेट बंद नहीं होना चाहिए,
- प्रक्षेपण प्रारंभ गैर-अद्वितीय हो सकता है और निरंतर नहीं हो सकता है क्योंकि यह गैर-रैखिकता के कारण गैर-उत्तल हो सकता है।
इन बिंदुओं के गणितीय विश्लेषण के लिए, हम चावेंट का उल्लेख करते हैं।[44]
कम्प्यूटेशनल पहलुओं
एक गैर-उत्तल डेटा मिसफिट फलन
आगे का मानचित्र अरैखिक होने के कारण, डेटा मिसफिट फलन के गैर-उत्तल होने की संभावना है, जिससे स्थानीय न्यूनीकरण तकनीक अक्षम हो जाती है। इस कठिनाई को दूर करने के लिए कई दृष्टिकोणों की जांच की गई है:
- वैश्विक अनुकूलन तकनीकों का उपयोग जैसे पश्च घनत्व फलन का नमूनाकरण और व्युत्क्रम समस्या संभाव्य ढांचे में मेट्रोपोलिस-हेस्टिंग्स एल्गोरिथम,[45] जेनेटिक एल्गोरिदम (अकेले या मेट्रोपोलिस एल्गोरिथम के संयोजन में: देखें[46] पारगम्यता के निर्धारण के लिए एक अनुप्रयोग के लिए जो उपस्थिता पारगम्यता डेटा से मेल खाता है), तंत्रिका नेटवर्क, बहुस्तरीय विश्लेषण सहित नियमितीकरण तकनीक;
- कम से कम वर्ग उद्देश्य फलन का संशोधन जिससे इसे आसान बनाया जा सके (देखें[42][43]तरंग समीकरणों में व्युत्क्रम समस्या के लिए।)
उद्देश्य फलन के ग्रेडिएंट की गणना
व्युत्क्रम समस्याएं, विशेष रूप से अनंत आयाम में, बड़े आकार की हो सकती हैं, इस प्रकार महत्वपूर्ण कंप्यूटिंग समय की आवश्यकता होती है। जब आगे का मानचित्र अरेखीय होता है, तो कम्प्यूटेशनल कठिनाइयाँ बढ़ जाती हैं और उद्देश्य फलन को कम करना मुश्किल हो सकता है। रैखिक स्थिति के विपरीत, सामान्य समीकरणों को हल करने के लिए हेस्सियन आव्यूह का एक स्पष्ट उपयोग यहां समझ में नहीं आता है: हेस्सियन आव्यूह मॉडल के साथ भिन्न होता है। कुछ मॉडलों के लिए उद्देश्य फलन के ढाल का मूल्यांकन अधिक प्रभावी है। जब हम जेकोबियन आव्यूह और निर्धारक (जिसे अधिकांशतः फ्रेचेट डेरिवेटिव कहा जाता है) की बहुत भारी गणना से बच सकते हैं, तो महत्वपूर्ण कम्प्यूटेशनल प्रयास को बचाया जा सकता है: चावेंट और लायंस द्वारा प्रस्तावित आसन्न अवस्था विधि,[47] इस भारी संगणना से बचने का लक्ष्य है। यह अब बहुत व्यापक रूप से उपयोग किया जाता है।[48]
अनुप्रयोग
व्युत्क्रम समस्या सिद्धांत का मौसम की भविष्यवाणी, समुद्र विज्ञान, जल विज्ञान और पेट्रोलियम इंजीनियरिंग में बड़े पैमाने पर उपयोग किया जाता है।[49][50][51] उष्मा अंतरण के क्षेत्र में व्युत्क्रम समस्याएँ भी पाई जाती हैं, जहाँ सतही ताप प्रवाह होता है[52] एक कठोर शरीर के अंदर मापा गया तापमान डेटा से बाहर जाने का अनुमान है; और, पौधे-पदार्थ क्षय पर नियंत्रण को समझने में का अनुमान है।[53] रैखिक व्युत्क्रम समस्या वर्णक्रमीय घनत्व अनुमान और सिग्नल प्रोसेसिंग में आगमन की दिशा (डीओए) अनुमान का मूल भी है।
अर्धचालक उपकरण निर्माण के लिए फोटो मास्क डिजाइन में व्युत्क्रम लिथोग्राफी का उपयोग किया जाता है।
यह भी देखें
- वायुमंडलीय ध्वनि
- बैकस-गिल्बर्ट विधि
- परिकलित टोमोग्राफी
- बीजगणितीय पुनर्निर्माण तकनीक
- फ़िल्टर्ड बैकप्रोजेक्शन
- पुनरावृत्त पुनर्निर्माण
- डेटा आत्मसात
- इंजीनियरिंग अनुकूलन
- ग्रे बॉक्स मॉडल
- गणितीय भूभौतिकी
- इष्टतम अनुमान
- भूकंपीय व्युत्क्रम
- तिखोनोव नियमितीकरण
- संकुचित संवेदन
शैक्षणिक पत्रिकाएं
चार मुख्य अकादमिक पत्रिकाएँ सामान्य रूप से व्युत्क्रम समस्याओं को कवर करती हैं:
- व्युत्क्रम समस्याएं
- जर्नल ऑफ़ इनवर्स एंड इल-पोज़्ड प्रॉब्लम्स[54]
- विज्ञान और इंजीनियरिंग में प्रतिलोम समस्याएं[55]
- व्युत्क्रम समस्याएं और इमेजिंग[56]
मेडिकल इमेजिंग, भूभौतिकी, गैर-विनाशकारी परीक्षण आदि पर कई पत्रिकाओं में उन क्षेत्रों में व्युत्क्रम समस्याओं का बोलबाला है।
संदर्भ
- ↑ Mohamad-Djafari, Ali (2013-01-29). Inverse Problems in Vision and 3D Tomography (in English). John Wiley & Sons. ISBN 978-1-118-60046-7.
- ↑ Pizlo, Zygmunt. "Perception viewed as an inverse problem." Vision research 41.24 (2001): 3145-3161.
- ↑ Vito, Ernesto De, et al. "Learning from examples as an inverse problem." Journal of Machine Learning Research 6.May (2005): 883-904.
- ↑ Cardenas, IC (2019). "ढलान स्थिरता विश्लेषण में अनिश्चितताओं का विश्लेषण करने के लिए मेटा-मॉडलिंग दृष्टिकोण के रूप में बायेसियन नेटवर्क के उपयोग पर". Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 13 (1): 53–65. doi:10.1080/17499518.2018.1498524. S2CID 216590427.
- ↑ Weyl, Hermann (1911). "Über die asymptotische Verteilung der Eigenwerte". Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen: 110–117. Archived from the original on 2013-08-01. Retrieved 2018-05-14.
- ↑ » Epilogue — Ambartsumian’ s paper Viktor Ambartsumian
- ↑ Ambartsumian, Rouben V. (1998). "खगोल भौतिकी में एक जीवन। विक्टर ए. अंबर्टसुमियन के चयनित कागजात". Astrophysics. 41 (4): 328–330. doi:10.1007/BF02894658. S2CID 118952753.
- ↑ 8.0 8.1 Burridge, Robert (1980). "व्युत्क्रम प्रकीर्णन सिद्धांत के गेलफैंड-लेविटन, मार्चेंको, और गोपीनाथ-सोंधी अभिन्न समीकरण, व्युत्क्रम आवेग-प्रतिक्रिया समस्याओं के संदर्भ में माना जाता है". Wave Motion. 2 (4): 305–323. doi:10.1016/0165-2125(80)90011-6.
- ↑ Tarantola, Albert (1987). उलटा समस्या सिद्धांत (1st ed.). Elsevier. ISBN 9780444599674.
- ↑ Tarantola, Albert (2005). "Front Matter" (PDF). उलटा समस्या सिद्धांत और मॉडल पैरामीटर अनुमान के लिए तरीके. SIAM. pp. i–xii. doi:10.1137/1.9780898717921.fm. ISBN 978-0-89871-572-9.
- ↑ Ciarlet, Philippe (1994). Introduction à l'analyse numérique matricielle et à l'optimisation. Paris: Masson. ISBN 9782225688935.
- ↑ Nocedal, Jorge (2006). संख्यात्मक अनुकूलन. Springer.
- ↑ Ben Ameur, Hend; Chavent, Guy; Jaffré, Jérôme (2002). "Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities" (PDF). Inverse Problems. 18 (3): 775–794. Bibcode:2002InvPr..18..775B. doi:10.1088/0266-5611/18/3/317. S2CID 250892174.
- ↑ Lemaréchal, Claude (1989). ऑप्टिमाइजेशन, हैंडबुक इन ऑपरेशंस रिसर्च एंड मैनेजमेंट साइंस. Elsevier. pp. 529–572.
- ↑ Delprat-Jannaud, Florence; Lailly, Patrick (1993). "Ill‐posed and well‐posed formulations of the reflection travel time tomography problem". Journal of Geophysical Research. 98 (B4): 6589–6605. Bibcode:1993JGR....98.6589D. doi:10.1029/92JB02441.
- ↑ Delprat-Jannaud, Florence; Lailly, Patrick (1992). "पृथ्वी मॉडल पर प्रतिबिंब यात्रा समय क्या जानकारी प्रदान करता है". Journal of Geophysical Research. 98 (B13): 827–844. Bibcode:1992JGR....9719827D. doi:10.1029/92JB01739.
- ↑ Backus, George; Gilbert, Freeman (1968). "सकल पृथ्वी डेटा की संकल्प शक्ति". Geophysical Journal of the Royal Astronomical Society. 16 (10): 169–205. Bibcode:1968GeoJ...16..169B. doi:10.1111/j.1365-246X.1968.tb00216.x.
- ↑ Lions, Jacques Louis (1988). "Sur les sentinelles des systèmes distribués". C. R. Acad. Sci. Paris. I Math: 819–823.
- ↑ Pijpers, Frank; Thompson, Michael (1993). "हेलिओसिस्मिक उलटा के लिए SOLA विधि". Astronomy and Astrophysics. 281 (12): 231–240. Bibcode:1994A&A...281..231P.
- ↑ Chavent, Guy (1998). Least-Squares, Sentinels and Substractive Optimally Localized Average in Equations aux dérivées partielles et applications. Paris: Gauthier Villars. pp. 345–356.
- ↑ Kaipio, J., & Somersalo, E. (2010). Statistical and computational inverse problems. New York, NY: Springer.
- ↑ Abeida, Habti; Zhang, Qilin; Li, Jian; Merabtine, Nadjim (2013). "सरणी प्रसंस्करण के लिए पुनरावृत्त विरल स्पर्शोन्मुख न्यूनतम भिन्नता आधारित दृष्टिकोण" (PDF). IEEE Transactions on Signal Processing. 61 (4): 933–944. arXiv:1802.03070. Bibcode:2013ITSP...61..933A. doi:10.1109/tsp.2012.2231676. ISSN 1053-587X. S2CID 16276001.
- ↑ Lambaré, Gilles; Virieux, Jean; Madariaga, Raul; Jin, Side (1992). "ध्वनिक सन्निकटन में पुनरावृत्त स्पर्शोन्मुख उलटा". Geophysics. 57 (9): 1138–1154. Bibcode:1992Geop...57.1138L. doi:10.1190/1.1443328. S2CID 55836067.
- ↑ Beylkin, Gregory (1984). "उलटा समस्या और सामान्यीकृत रेडॉन परिवर्तन के अनुप्रयोग" (PDF). Communications on Pure and Applied Mathematics. XXXVII (5): 579–599. doi:10.1002/cpa.3160370503.
- ↑ Beylkin, Gregory (1985). "एक सामान्य सामान्यीकृत रेडॉन परिवर्तन के व्युत्क्रम द्वारा व्युत्क्रम बिखरने की समस्या में विच्छिन्नता का इमेजिंग". J. Math. Phys. 26 (1): 99–108. Bibcode:1985JMP....26...99B. doi:10.1063/1.526755.
- ↑ Bleistein, Norman (1987). "पृथ्वी में परावर्तकों की इमेजिंग पर". Geophysics. 52 (7): 931–942. Bibcode:1987Geop...52..931B. doi:10.1190/1.1442363. S2CID 5095133.
- ↑ Nemeth, Tamas; Wu, Chengjun; Schuster, Gerard (1999). "Least‐squares migration of incomplete reflection data" (PDF). Geophysics. 64 (1): 208–221. Bibcode:1999Geop...64..208N. doi:10.1190/1.1444517.
- ↑ Lailly, Patrick (1983). स्टैक माइग्रेशन से पहले के अनुक्रम के रूप में भूकंपीय उलटा समस्या. Philadelphia: SIAM. pp. 206–220. ISBN 0-89871-190-8.
- ↑ Tarantola, Albert (1984). "ध्वनिक सन्निकटन में भूकंपीय प्रतिबिंब डेटा का उलटा". Geophysics. 49 (8): 1259–1266. Bibcode:1984Geop...49.1259T. doi:10.1190/1.1441754. S2CID 7596552.
- ↑ Marsh, Tom (2005). "डॉपलर टोमोग्राफी". Astrophysics and Space Science. 296 (1–4): 403–415. arXiv:astro-ph/0011020. Bibcode:2005Ap&SS.296..403M. doi:10.1007/s10509-005-4859-3. S2CID 15334110.
- ↑ Shumakov, N. V. (1957). "ठोस शरीर को गर्म करने की प्रक्रिया के प्रायोगिक अध्ययन के लिए एक विधि". Soviet Physics –Technical Physics (Translated by American Institute of Physics). 2: 771.
- ↑ Stolz, G., Jr. (1960). "साधारण आकृतियों के लिए ऊष्मा चालन की व्युत्क्रम समस्या का संख्यात्मक समाधान". Journal of Heat Transfer. 82: 20–26. doi:10.1115/1.3679871.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Beck, J. V.; Blackwell, B.; St. Clair, C. R., Jr. (1985). Inverse Heat Conduction. Ill‐Posed Problems. New York: J. Wiley & Sons. ISBN 0471083194.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Beck, J. V.; Blackwell, B.; Haji-Sheikh, B. (1996). "प्रायोगिक डेटा का उपयोग करते हुए कुछ व्युत्क्रम ऊष्मा चालन विधियों की तुलना". International Journal of Heat and Mass Transfer. 39 (17): 3649–3657. doi:10.1016/0017-9310(96)00034-8.
- ↑ Ozisik, M. N.; Orlande, H. R. B. (2021). इनवर्स हीट ट्रांसफर, फंडामेंटल और एप्लीकेशन (2nd ed.). CRC Press. ISBN 9780367820671.
- ↑ उलटा इंजीनियरिंग हैंडबुक, केए वुडबरी द्वारा संपादित. CRC Press. 2002. ISBN 9780849308611.
- ↑ Chavent, Guy; Lemonnier, Patrick; Dupuy, Michel (1975). "इष्टतम नियंत्रण सिद्धांत के उपयोग द्वारा इतिहास मिलान". Society of Petroleum Engineers Journal. 15 (2): 74–86. doi:10.2118/4627-PA.
- ↑ Chavent, Guy; Cohen, Gary; Espy, M. (1980). "स्वचालित समायोजन विधि द्वारा सापेक्ष पारगम्यता और केशिका दबाव का निर्धारण". Society of Petroleum Engineers (January). doi:10.2118/9237-MS.
- ↑ 39.0 39.1 Bamberger, Alain; Chavent, Guy; Lailly, Patrick (1979). "1डी तरंग समीकरण में व्युत्क्रम समस्या की स्थिरता के बारे में, भूकंपीय प्रोफाइल की व्याख्या के लिए आवेदन". Journal of Applied Mathematics and Optimization. 5: 1–47. doi:10.1007/bf01442542. S2CID 122428594.
- ↑ Macé, Danièle; Lailly, Patrick (1986). "वीएसपी एक आयामी उलटा समस्या का समाधान". Geophysical Prospecting. 34 (7): 1002–1021. Bibcode:1986GeopP..34.1002M. doi:10.1111/j.1365-2478.1986.tb00510.x. OSTI 6901651.
- ↑ Virieux, Jean; Operto, Stéphane (2009). "अन्वेषण भूभौतिकी में पूर्ण-तरंग व्युत्क्रमण का अवलोकन". Geophysics. 74 (6): WCC1–WCC26. doi:10.1190/1.3238367.
- ↑ 42.0 42.1 Clément, François; Chavent, Guy; Gomez, Suzana (2001). "Migration-based traveltime waveform inversion of 2-D simple structures: A synthetic example". Geophysics. 66 (3): 845–860. Bibcode:2001Geop...66..845C. doi:10.1190/1.1444974.
- ↑ 43.0 43.1 Symes, William; Carrazone, Jim (1991). "विभेदक समानता अनुकूलन द्वारा वेग उलटा". Geophysics. 56 (5): 654–663. Bibcode:1991Geop...56..654S. doi:10.1190/1.1443082.
- ↑ 44.0 44.1 Chavent, Guy (2010). व्युत्क्रम समस्याओं के लिए अरैखिक न्यूनतम वर्ग. Springer. ISBN 978-90-481-2785-6.
- ↑ Koren, Zvi; Mosegaard, Klaus; Landa, Evgeny; Thore, Pierre; Tarantola, Albert (1991). "मोंटे कार्लो अनुमान और भूकंपीय पृष्ठभूमि वेग का संकल्प विश्लेषण". Journal of Geophysical Research. 96 (B12): 20289–20299. Bibcode:1991JGR....9620289K. doi:10.1029/91JB02278.
- ↑ Tahmasebi, Pejman; Javadpour, Farzam; Sahimi, Muhammad (August 2016). "Stochastic shale permeability matching: Three-dimensional characterization and modeling". International Journal of Coal Geology. 165: 231–242. doi:10.1016/j.coal.2016.08.024.
- ↑ Chavent, Guy (1971). Identification de coefficients répartis dans les équations aux dérivées partielles. Université Paris 6: Thèse d'Etat.
{{cite book}}
: CS1 maint: location (link) - ↑ Plessix, René (2006). "भूभौतिकीय अनुप्रयोगों के साथ कार्यात्मक के ढाल की गणना के लिए आसन्न-राज्य पद्धति की समीक्षा". Geophysical Journal International. 167 (2): 495–503. Bibcode:2006GeoJI.167..495P. doi:10.1111/j.1365-246X.2006.02978.x.
- ↑ Carl Wunsch (13 June 1996). महासागर परिसंचरण उलटा समस्या. Cambridge University Press. pp. 9–. ISBN 978-0-521-48090-1.
- ↑ Tahmasebi, Pejman; Javadpour, Farzam; Sahimi, Muhammad (August 2016). "Stochastic shale permeability matching: Three-dimensional characterization and modeling". International Journal of Coal Geology. 165: 231–242. doi:10.1016/j.coal.2016.08.024.
- ↑ Knighton, James; Singh, Kanishka; Evaristo, Jaivime (2020). "इनवर्स इकोहाइड्रोलॉजिकल मॉडलिंग के माध्यम से महाद्वीपीय संयुक्त राज्य भर में कैचमेंट-स्केल फ़ॉरेस्ट रूट वाटर अपटेक रणनीतियाँ समझना". Geophysical Research Letters (in English). 47 (1): e2019GL085937. Bibcode:2020GeoRL..4785937K. doi:10.1029/2019GL085937. ISSN 1944-8007. S2CID 213914582.
- ↑ Patric Figueiredo (December 2014). बहुआयामी उलटा ऊष्मा चालन समस्याओं को हल करने के लिए एक पुनरावृत्त विधि का विकास. Lehrstuhl für Wärme- und Stoffübertragung RWTH Aachen.
- ↑ Forney, David C.; Rothman, Daniel H. (2012-09-07). "पादप-पदार्थ क्षय की विषमता में सामान्य संरचना". Journal of the Royal Society Interface. 9 (74): 2255–2267. doi:10.1098/rsif.2012.0122. PMC 3405759. PMID 22535699.
- ↑ "Journal of Inverse and Ill-posed Problems". Archived from the original on February 1, 2013.
- ↑ "Inverse Problems in Science and Engineering: Vol 25, No 4".
- ↑ "आईपीआई". Archived from the original on 11 October 2006.
संदर्भ
- Chadan, Khosrow & Sabatier, Pierre Célestin (1977). Inverse Problems in Quantum Scattering Theory. Springer-Verlag. ISBN 0-387-08092-9
- Aster, Richard; Borchers, Brian, and Thurber, Clifford (2018). Parameter Estimation and Inverse Problems, Third Edition, Elsevier. ISBN 9780128134238, ISBN 9780128134238
- Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 19.4. Inverse Problems and the Use of A Priori Information". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
अग्रिम पठन
- Bunge, Mario. 2006. “From Z to A: Inverse Problems," in Mario Bunge, Chasing Reality: Strife over Realism (Toronto: University of Toronto Press).
- Bunge, Mario. 2019. “Inverse Problems.” Foundations of Science 24(3): 483-525.
- C. W. Groetsch (1999). Inverse Problems: Activities for Undergraduates. Cambridge University Press. ISBN 978-0-88385-716-8.
बाहरी संबंध
- Inverse Problems International Association
- Eurasian Association on Inverse Problems
- Finnish Inverse Problems Society
- Inverse Problems Network
- Albert Tarantola's website, includes a free PDF version of his Inverse Problem Theory book, and some online articles on Inverse Problems
- Inverse Problems page at the University of Alabama Archived 2014-04-05 at the Wayback Machine
- Inverse Problems and Geostatistics Project, Niels Bohr Institute, University of Copenhagen
- Andy Ganse's Geophysical Inverse Theory Resources Page
- Finnish Centre of Excellence in Inverse Problems Research