टेन्सर कैलकुलस: Difference between revisions

From Vigyanwiki
Line 55: Line 55:
| परिवर्तनीय
| परिवर्तनीय
|}
|}


====विपरीत सदिश अपघटन====
====विपरीत सदिश अपघटन====
Line 78: Line 77:
| परिवर्तनीय
| परिवर्तनीय
|}
|}


===मीट्रिक टेंसर===
===मीट्रिक टेंसर===
Line 127: Line 125:


<math>\bar{J} = \nabla \bar{f}(\bar{x}(x))</math>
<math>\bar{J} = \nabla \bar{f}(\bar{x}(x))</math>
===ग्रेडिएंट वेक्टर===
===ग्रेडिएंट वेक्टर===


Line 152: Line 148:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}


== अग्रिम पठन ==
== अग्रिम पठन ==
*{{cite book | last = Dimitrienko | first = Yuriy | title = Tensor Analysis and Nonlinear Tensor Functions | year=  2002 | publisher = Springer | url = https://books.google.com/books?as_isbn=140201015X | isbn = 1-4020-1015-X
*{{cite book | last = दिमित्रिन्को | first = यूरी | title = टेन्सर विश्लेषण और गैर रेखीय टेन्सर फलन | year=  2002 | publisher = स्प्रिंगर | url = https://books.google.com/books?as_isbn=140201015X | isbn = 1-4020-1015-X
  }}
  }}
*{{cite book | last = Sokolnikoff | first = Ivan S | title = Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua| url = https://archive.org/details/tensoranalysisth0000soko | url-access = registration | year=  1951 | publisher = Wiley| isbn =  0471810525}}
*{{cite book | last = सोकोलनिकॉफ़ | first = इवान एस | title = टेन्सर विश्लेषण: कॉन्टिनुआ की ज्यामिति और यांत्रिकी के सिद्धांत और अनुप्रयोग| url = https://archive.org/details/tensoranalysisth0000soko | url-access = पंजीकरण | year=  1951 | publisher = विले| isbn =  0471810525}}
*{{cite book |first=A.I. |last=Borisenko |first2=I.E. |last2=Tarapov | title = Vector and Tensor Analysis with Applications| year= 1979| publisher = Dover |edition=2nd | isbn = 0486638332}}
*{{cite book |first=.आई. |last=बोरिसेंको |first2=आई.. |last2=तारापोव | title = अनुप्रयोगों के साथ वेक्टर और टेंसर विश्लेषण| year= 1979| publisher = डोवर |edition=2nd | isbn = 0486638332}}
*{{cite book | last = Itskov | first = Mikhail | title = Tensor Algebra and Tensor Analysis for Engineers: With Applications to Continuum Mechanics | year=  2015| publisher = Springer |edition=2nd | isbn = 9783319163420}}  
*{{cite book | last = इत्सकोव | first = मिखाइल | title = इंजीनियरों के लिए टेन्सर बीजगणित और टेन्सर विश्लेषण: कॉन्टिनम मैकेनिक्स के अनुप्रयोगों के साथ | year=  2015| publisher = स्प्रिंगर |edition=2nd | isbn = 9783319163420}}
*{{cite book|first=J. R. |last=Tyldesley| title=An introduction to Tensor Analysis: For Engineers and Applied Scientists| publisher=Longman| year=1973 | isbn=0-582-44355-5}}
*{{cite book|first=जे. आर. |last=टिल्डस्ले| title=टेन्सर विश्लेषण का परिचय: इंजीनियरों और अनुप्रयुक्त वैज्ञानिकों के लिए| publisher=लांगमैन| year=1973 | isbn=0-582-44355-5}}
*{{cite book|first=D. C. |last=Kay| title=Tensor Calculus| publisher=McGraw Hill |series=Schaum’s Outlines | year=1988 | isbn=0-07-033484-6}}
*{{cite book|first=डी. सी. |last=काय| title=टेंसर कैलकुलस| publisher=मैकग्रा हिल |series=शाउम की रूपरेखा | year=1988 | isbn=0-07-033484-6}}
*{{cite book|first=P. |last=Grinfeld| title=Introduction to Tensor Analysis and the Calculus of Moving Surfaces | publisher=Springer| year=2014 | isbn=978-1-4614-7866-9}}
*{{cite book|first=पी. |last=ग्रिनफील्ड| title=टेंसर विश्लेषण और चलती सतहों की गणना का परिचय | publisher=स्प्रिंगर| year=2014 | isbn=978-1-4614-7866-9}}
 
 
== बाहरी संबंध ==
== बाहरी संबंध ==
*{{cite web |last1=डुलमोंड|first1=कीज़|last2=पीटर्स|first2=कैस्पर|title="टेंसर कैलकुलस का परिचय" (पीडीएफ) ।|date=1991–2010|url=http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf|access-date=17 मई 2018}}
*{{cite web |last1=डुलमोंड|first1=कीज़|last2=पीटर्स|first2=कैस्पर|title="टेंसर कैलकुलस का परिचय" (पीडीएफ) ।|date=1991–2010|url=http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf|access-date=17 मई 2018}}

Revision as of 15:14, 10 July 2023

गणित में, टेन्सर कैलकुलस, टेन्सर विश्लेषण, या रिक्की कैलकुलस , टेंसर फ़ील्ड (टेंसर जो कई गुना भिन्न हो सकते हैं, उदाहरण के लिए अंतरिक्ष समय में) के लिए वेक्टर कैलकुलस का एक विस्तार है।

ग्रेगोरियो रिक्की-कर्बस्ट्रो और उनके छात्र टुल्लियो लेवी-सिविटा द्वारा विकसित,[1] इसका उपयोग अल्बर्ट आइंस्टीन ने सामान्य सापेक्षता के अपने सामान्य सिद्धांत को विकसित करने के लिए किया था। इनफिनिटसिमल कैलकुलस के विपरीत, टेंसर कैलकुलस भौतिकी समीकरणों को ऐसे रूप में प्रस्तुत करने की अनुमति देता है जो मैनिफोल्ड पर निर्देशांक की पसंद से स्वतंत्र होता है।

इनफिनिटसिमल कैलकुलस के विपरीत, टेंसर कैलकुलस मैनिफोल्ड पर समन्वय चार्ट के प्रकट सहप्रसरण में भौतिकी समीकरणों की प्रस्तुति की अनुमति देता है।

टेन्सर कैलकुलस के भौतिकी, अभियांत्रिकी और कंप्यूटर विज्ञान में कई अनुप्रयोग हैं जिनमें लोच (भौतिकी), सातत्य यांत्रिकी, विद्युत चुंबकत्व (विद्युत चुम्बकीय क्षेत्र का गणितीय विवरण देखें), सामान्य सापेक्षता (सामान्य सापेक्षता का गणित देखें), क्वांटम क्षेत्र सिद्धांत और यंत्र अधिगमग शामिल हैं।

बाहरी कैलकुलस के मुख्य प्रस्तावक एली कार्टन के साथ काम करते हुए, प्रभावशाली जियोमीटर शिइंग-शेन चेर्न ने टेंसर कैलकुलस की भूमिका का सारांश प्रस्तुत किया है:[2]

डिफरेंशियल ज्यामिति के हमारे विषय में, जहां आप मैनिफोल्ड्स के बारे में बात करते हैं, एक कठिनाई यह है कि ज्यामिति का वर्णन निर्देशांक द्वारा किया जाता है, लेकिन निर्देशांक का कोई अर्थ नहीं होता है। उन्हें परिवर्तन से गुजरने की अनुमति है। और इस तरह की स्थिति को संभालने के लिए, एक महत्वपूर्ण उपकरण तथाकथित टेंसर विश्लेषण, या रिक्की कैलकुलस है, जो गणितज्ञों के लिए नया था। गणित में आपके पास एक फ़ंक्शन होता है, आप फ़ंक्शन को लिखते हैं, आप गणना करते हैं, या आप जोड़ते हैं, या आप गुणा करते हैं, या आप अंतर कर सकते हैं। ज्यामिति में ज्यामितीय स्थिति का वर्णन संख्याओं द्वारा किया जाता है, लेकिन आप अपनी संख्याओं को मनमाने ढंग से बदल सकते हैं। तो इसे संभालने के लिए, आपको रिक्की कैलकुलस की आवश्यकता है।

वाक्यविन्यास

टेन्सर नोटेशन उन वस्तुओं पर ऊपरी और निचले सूचकांक का उपयोग करता है जिनका उपयोग एक चर वस्तु को सहसंयोजक (निचला सूचकांक), कॉन्ट्रावेरिएंट (ऊपरी सूचकांक), या मिश्रित सहसंयोजक और कॉन्ट्रावेरिएंट (ऊपरी और निचले दोनों सूचकांक वाले) के रूप में लेबल करने के लिए किया जाता है। वास्तव में पारंपरिक गणित वाक्यविन्यास में हम कार्टेशियन समन्वय प्रणालियों से निपटने के दौरान सहसंयोजक सूचकांक का उपयोग करते हैं अक्सर बिना यह समझे कि यह सहसंयोजक अनुक्रमित घटकों के रूप में टेंसर सिंटैक्स का सीमित उपयोग है।

टेन्सर नोटेशन किसी ऑब्जेक्ट पर ऊपरी सूचकांक की अनुमति देता है जो पारंपरिक गणित सिंटैक्स से सामान्य पावर संचालन के साथ भ्रमित हो सकता है।

मुख्य अवधारणाएँ

वेक्टर अपघटन

टेंसर नोटेशन एक वेक्टर की अनुमति देता है () को आधार वेक्टर के टेंसर संकुचन का प्रतिनिधित्व करने वाले आइंस्टीन योग में विघटित किया जाना है ( या ) एक घटक वेक्टर के साथ ( या ).

प्रत्येक वेक्टर के दो अलग-अलग प्रतिनिधित्व होते हैं, एक को कंट्रावेरिएंट घटक कहा जाता है () एक सहसंयोजक आधार के साथ (), और दूसरा एक सहसंयोजक घटक के रूप में () एक विरोधाभासी आधार के साथ (). सभी ऊपरी सूचकांकों वाली टेंसर वस्तुओं को कॉन्ट्रावेरिएंट कहा जाता है, और सभी निचले सूचकांकों वाली टेंसर वस्तुओं को सहसंयोजक कहा जाता है। कॉन्ट्रावेरिएंट और सहसंयोजक के बीच अंतर करने की आवश्यकता इस तथ्य से उत्पन्न होती है कि जब हम एक विशेष समन्वय प्रणाली से संबंधित आधार वेक्टर के साथ एक मनमाना वेक्टर को डॉट करते हैं, तो इस डॉट उत्पाद की व्याख्या करने के दो तरीके हैं, या तो हम इसे आधार के प्रक्षेपण के रूप में देखते हैं। मनमाना वेक्टर पर वेक्टर, या हम इसे आधार वेक्टर पर मनमाना वेक्टर के प्रक्षेपण के रूप में देखते हैं, डॉट उत्पाद के दोनों दृश्य पूरी तरह से बराबर हैं, लेकिन अलग-अलग घटक तत्व और अलग-अलग आधार वेक्टर हैं:

उदाहरण के लिए, भौतिकी में आप एक सदिश क्षेत्र से शुरू करते हैं, आप इसे सहसंयोजक आधार के संबंध में विघटित करते हैं, और इस तरह आपको विरोधाभासी निर्देशांक मिलते हैं। ऑर्थोनॉर्मल कार्टेशियन निर्देशांक के लिए, सहसंयोजक और विरोधाभासी आधार समान हैं, क्योंकि इस मामले में निर्धारित आधार केवल पहचान मैट्रिक्स है, हालांकि, ध्रुवीय या गोलाकार जैसे गैर-एफ़िन समन्वय प्रणाली के लिए अपघटन के बीच अंतर करने की आवश्यकता है समन्वय प्रणाली के घटकों को उत्पन्न करने के लिए कंट्रावेरिएंट या सहसंयोजक आधार निर्धारित किया गया है।

सहसंयोजक वेक्टर अपघटन

चर विवरण प्रकार
वेक्टर अपरिवर्तनीय
विरोधाभासी घटक (अदिशों का क्रमबद्ध सेट) परिवर्तनीय
सहसंयोजक आधार (वेक्टरों का क्रमबद्ध सेट) परिवर्तनीय

विपरीत सदिश अपघटन

चर विवरण प्रकार
वेक्टर अपरिवर्तनीय
सहसंयोजक घटक (अदिशों का क्रमबद्ध सेट) परिवर्तनीय
कॉन्ट्रावेरिएंट आधा (सह वैक्टर का ऑर्डर किया गया सेट) परिवर्तनीय

मीट्रिक टेंसर

मीट्रिक टेंसर अदिश तत्वों वाले एक मैट्रिक्स का प्रतिनिधित्व करता है ( या ) और एक टेंसर ऑब्जेक्ट है जिसका उपयोग संकुचन नामक एक ऑपरेशन द्वारा किसी अन्य टेंसर ऑब्जेक्ट पर इंडेक्स को बढ़ाने या कम करने के लिए किया जाता है, इस प्रकार एक सहसंयोजक टेंसर को एक कॉन्ट्रावेरिएंट टेंसर में परिवर्तित करने की अनुमति मिलती है, और इसके विपरीत।

मीट्रिक टेंसर का उपयोग करके सूचकांक कम करने का उदाहरण:

मीट्रिक टेंसर का उपयोग करके सूचकांक बढ़ाने का उदाहरण:

मीट्रिक टेंसर को इस प्रकार परिभाषित किया गया है:

इसका मतलब यह है कि यदि हम आधार वेक्टर सेट के प्रत्येक क्रमपरिवर्तन को लेते हैं और उन्हें एक-दूसरे के विरुद्ध बिंदीदार बनाते हैं, और फिर उन्हें एक वर्ग मैट्रिक्स में व्यवस्थित करते हैं, तो हमारे पास एक मीट्रिक टेंसर होगा। यहां चेतावनी यह है कि क्रमपरिवर्तन में दो वैक्टरों में से किसका उपयोग दूसरे वेक्टर के खिलाफ प्रक्षेपण के लिए किया जाता है, जो कि कॉन्ट्रावेरिएंट मीट्रिक टेंसर की तुलना में सहसंयोजक मीट्रिक टेंसर की विशिष्ट संपत्ति है।

मीट्रिक टेंसर के दो प्रकार मौजूद हैं: (1) कंट्रावेरिएंट मीट्रिक टेंसर (), और (2) सहसंयोजक मीट्रिक टेंसर (). मीट्रिक टेंसर के ये दो स्वाद पहचान से संबंधित हैं:

एक ऑर्थोनॉर्मल कार्टेशियन समन्वय प्रणाली के लिए, मीट्रिक टेंसर सिर्फ क्रोनकर डेल्टा है या , जो पहचान मैट्रिक्स के बराबर एक टेंसर है, और .

जैकोबियन

इसके अलावा एक टेंसर को आसानी से एक अनबैरर्ड से परिवर्तित किया जा सकता है() एक वर्जित समन्वय के लिए() आधार वैक्टर के विभिन्न सेट वाली प्रणाली:

वर्जित और अप्रतिबंधित समन्वय प्रणाली के बीच जैकोबियन मैट्रिक्स संबंधों के उपयोग से (). वर्जित और अप्रतिबंधित प्रणाली के बीच जैकोबियन सहसंयोजक और विरोधाभासी आधार वैक्टर को परिभाषित करने में सहायक है, इन वैक्टरों के अस्तित्व के लिए उन्हें वर्जित और अप्रतिबंधित प्रणाली के सापेक्ष निम्नलिखित संबंध को संतुष्ट करने की आवश्यकता है:

कॉन्ट्रावेरिएंट वैक्टर को कानूनों का पालन करना आवश्यक है:

सहसंयोजक सदिशों को नियमों का पालन करना आवश्यक है:

जैकोबियन मैट्रिक्स के दो स्वाद हैं:

1. जे मैट्रिक्स अप्रतिबंधित से वर्जित निर्देशांक में परिवर्तन का प्रतिनिधित्व करता है। J को खोजने के लिए, हम वर्जित ग्रेडिएंट लेते हैं, यानी इसके संबंध में आंशिक व्युत्पन्न :

2. h> मैट्रिक्स, वर्जित से अप्रतिबंधित निर्देशांक में परिवर्तन का प्रतिनिधित्व करता है। ढूँढ़ने के लिए , हम अप्रतिबंधित ग्रेडिएंट लेते हैं , i.n. के संबंध में आंशिक व्युत्पन्न :

ग्रेडिएंट वेक्टर

टेन्सर कैलकुलस मानक कैलकुलस से ग्रेडिएंट वेक्टर सूत्र को एक सामान्यीकरण प्रदान करता है जो सभी समन्वय प्रणालियों में काम करता है:

कहाँ:

इसके विपरीत, मानक कैलकुलस के लिए, ग्रेडिएंट वेक्टर फॉर्मूला उपयोग में समन्वय प्रणाली पर निर्भर है (उदाहरण: कार्टेशियन ग्रेडिएंट वेक्टर फॉर्मूला बनाम ध्रुवीय ग्रेडिएंट वेक्टर फॉर्मूला बनाम गोलाकार ग्रेडिएंट वेक्टर फॉर्मूला, आदि)। मानक कैलकुलस में, प्रत्येक समन्वय प्रणाली का अपना विशिष्ट सूत्र होता है, टेंसर कैलकुलस के विपरीत जिसमें केवल एक ग्रेडिएंट फॉर्मूला होता है जो सभी समन्वय प्रणालियों के लिए समतुल्य होता है। यह मीट्रिक टेंसर की समझ से संभव हुआ है जिसका उपयोग टेंसर कैलकुलस करता है।

यह भी देखें

संदर्भ

  1. Ricci, Gregorio; Levi-Civita, Tullio (March 1900). "Méthodes de calcul différentiel absolu et leurs applications" [Methods of the absolute differential calculus and their applications]. Mathematische Annalen (in français). Springer. 54 (1–2): 125–201. doi:10.1007/BF01454201. S2CID 120009332.
  2. "Interview with Shiing Shen Chern" (PDF). Notices of the AMS. 45 (7): 860–5. August 1998.

अग्रिम पठन

बाहरी संबंध