सतत फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 414: Line 414:
{{Analysis-footer}}
{{Analysis-footer}}
{{Authority control}}
{{Authority control}}
[[Category: सतत कार्यों का सिद्धांत| सतत कार्यों का सिद्धांत]] [[Category: गणना]] [[Category: कार्यों के प्रकार]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 errors]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Commons category link is locally defined]]
[[Category:Created On 30/06/2023]]
[[Category:Created On 30/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics navigational boxes]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:कार्यों के प्रकार]]
[[Category:गणना]]
[[Category:सतत कार्यों का सिद्धांत| सतत कार्यों का सिद्धांत]]

Latest revision as of 16:38, 29 July 2023

गणित में, सतत फलन ऐसा फलन (गणित) होता है, जिसमें किसी फलन के तर्क का निरंतर परिवर्तन (अर्थात् बिना छलांग के परिवर्तन) फलन के मान (गणित) में निरंतर परिवर्तन उत्पन्न करता है। इसका अर्थ यह है कि मान में कोई अचानक परिवर्तन नहीं होता है, जिसे विच्छेदों का वर्गीकरण कहा जाता है। अधिक त्रुटिहीन रूप से, एक फलन निरंतर होता है यदि इसके मान में स्वैच्छिक रूप से छोटे बदलावों को इसके तर्क के पर्याप्त छोटे परिवर्तनों तक सीमित करके सुनिश्चित किया जा सकता है। असंतत फलन एक ऐसा फलन है जो सतत नहीं है। 19वीं शताब्दी तक, गणितज्ञ बड़े पैमाने पर निरंतरता की सहज धारणाओं पर विश्वाश करते थे, और केवल निरंतर फलनों पर विचार करते थे। निरंतरता की परिभाषा को औपचारिक बनाने के लिए (ε, δ)-सीमा की एप्सिलॉन-डेल्टा परिभाषा प्रस्तुत की गई थी।

निरंतरता गणना और गणितीय विश्लेषण की मुख्य अवधारणाओं में से एक है, जहां फलनों के तर्क और मान वास्तविक संख्या और जटिल संख्या संख्याएं हैं। इस अवधारणा को मीट्रिक रिक्त स्थान और टोपोलॉजिकल रिक्त स्थान के बीच फलनों के लिए सामान्यीकृत किया गया है। उत्तरार्द्ध सबसे सामान्य निरंतर फलन हैं, और उनकी परिभाषा टोपोलॉजी का आधार है।

निरंतरता का सशक्त रूप एकसमान निरंतरता है। क्रम सिद्धांत में, विशेष रूप से डोमेन सिद्धांत में, निरंतरता की संबंधित अवधारणा स्कॉट निरंतरता है।

उदाहरण के लिये, समय t पर बढ़ते फूल की ऊंचाई को दर्शाने वाले फलन H(t) को निरंतर माना जाएगा। इसके विपरीत, समय t पर बैंक खाते में धन की राशि को दर्शाने वाला फलन M(t) संवृत माना जाएगा, क्योंकि जब पैसा जमा किया जाता है या निकाला जाता है तो यह प्रत्येक बिंदु पर "उछलता" है।

इतिहास

निरंतरता की एप्सिलॉन-डेल्टा परिभाषा का (ε, δ) रूप पहली बार 1817 में बर्नार्ड बोलजानो द्वारा दिया गया था। ऑगस्टिन-लुई कॉची ने की निरंतरता को इस प्रकार परिभाषित किया: स्वतंत्र वेरिएबल x का एक असीम रूप से छोटा वेतन वृद्धि हमेशा एक असीम रूप से छोटा उत्पन्न करता है आश्रित वेरिएबल y का बदलें (उदाहरण देखें, कोर्ट्स डी'एनालिसिस, पृष्ठ 34)। कॉची ने परिवर्तनीय मात्राओं के संदर्भ में असीम रूप से छोटी मात्राओं को परिभाषित किया, और निरंतरता की उनकी परिभाषा आज इस्तेमाल की जाने वाली अनंतिम परिभाषा के समानान्तर है (सूक्ष्म निरंतरता देखें)। बिंदुवार निरंतरता और एकसमान निरंतरता के बीच औपचारिक परिभाषा और अंतर पहली बार 1830 के दशक में बोलजानो द्वारा दिया गया था, किन्तु काम 1930 के दशक तक प्रकाशित नहीं हुआ था। बोल्ज़ानो की तरह,[1] कार्ल वीयरस्ट्रैस[2] ने किसी बिंदु c पर किसी फलन की निरंतरता से मना किया जब तक कि इसे c के दोनों किनारों पर परिभाषित नहीं किया जाता है, किन्तु एडौर्ड गौरसैट[3] ने फलन को केवल सी और केमिली जॉर्डन के तरफ परिभाषित करने की अनुमति दी।[4] इसकी अनुमति दी गई, तथापि फलन केवल c पर परिभाषित किया गया हो। बिंदुवार निरंतरता की वे तीनों गैर-समतुल्य परिभाषाएँ अभी भी उपयोग में हैं।[5] एडवर्ड हेन ने 1872 में समान निरंतरता की पहली प्रकाशित परिभाषा प्रदान की, किन्तु ये विचार 1854 में पीटर गुस्ताव लेज्यून डिरिचलेट द्वारा दिए गए व्याख्यानों पर आधारित थे।[6]


वास्तविक फलन

परिभाषा

फलनक्रम अपने डोमेन पर निरंतर है (), किन्तु असंतत (निरंतर नहीं या विलक्षणता (गणित)#वास्तविक विश्लेषण)। [7].फिर भी, कॉची प्रमुख मान को परिभाषित किया जा सकता है। दूसरी ओर, जटिल विश्लेषण में (, विशेष रूप से .), इस बिंदु (x=0) को अपरिभाषित नहीं माना जाता है (गणित)#वे मान जिनके लिए फलन अपरिभाषित हैं और इसे विलक्षणता कहा जाता है, क्योंकि जब सोचा जाता है जटिल वेरिएबल के रूप में, यह बिंदु ध्रुव (जटिल विश्लेषण) है, और फिर अधिकतम परिमित प्रमुख भाग वाली लॉरेंट श्रृंखला को एकवचन बिंदुओं के आसपास परिभाषित किया जा सकता है। इसके अतिरिक्त, उदाहरण जैसे फलनों का अध्ययन करने के लिए रीमैन क्षेत्र#तर्कसंगत फलनों का उपयोग किन्तु मॉडल के रूप में किया जाता है।

वास्तविक फलन, जो कि वास्तविक संख्याओं से वास्तविक संख्याओं तक का फलन (गणित) है, को कार्टेशियन समन्वय प्रणाली में फलन के ग्राफ़ द्वारा दर्शाया जा सकता है; ऐसा फलन निरंतर होता है यदि, सामान्यतः कहें तो, ग्राफ़ एकल अखंड वक्र है जिसका फलन का डोमेन संपूर्ण वास्तविक रेखा है। अधिक गणितीय रूप से कठोर परिभाषा नीचे दी गई है।[8]

वास्तविक फलनों की निरंतरता को आमतौर पर सीमाओं (गणित) के संदर्भ में परिभाषित किया जाता है। चर x के साथ एक फलन f वास्तविक संख्या c पर निरंतर है, यदि x के c की ओर बढ़ने पर की सीमा, के बराबर है।

किसी फलन की (वैश्विक) निरंतरता की कई अलग-अलग परिभाषाएँ हैं, जो किसी फलन के डोमेन की प्रकृति पर निर्भर करती हैं।

एक फलन एक खुले अंतराल पर निरंतर होता है यदि अंतराल फलन के डोमेन में समाहित होता है, और फलन अंतराल के प्रत्येक बिंदु पर निरंतर होता है। एक फलन जो अंतराल (संपूर्ण वास्तविक रेखा) पर निरंतर होता है, उसे किन्तु एक निरंतर फलन कहा जाता है; एक यह भी कहता है कि ऐसा फलन सर्वत्र निरन्तर होता रहता है। उदाहरण के लिए, सभी बहुपद फलन प्रत्येक स्थान सतत होते हैं।

फलन अर्ध-खुले अंतराल पर निरंतर होता है|अर्ध-विवृत या संवृत अंतराल अंतराल, यदि अंतराल फलन के डोमेन में समाहित है, तो फलन अंतराल के प्रत्येक आंतरिक बिंदु पर निरंतर होता है, और फलन का मान अंतराल से संबंधित प्रत्येक समापन बिंदु पर फलन के मानों की सीमा होती है जब वेरिएबल अंतराल के आंतरिक भाग से समापन बिंदु की ओर जाता है। उदाहरण के लिए, फलन अपने पूरे डोमेन पर निरंतर है, जो संवृत अंतराल हैं।

सामान्यतः सामने आने वाले कई फलन आंशिक फलन होते हैं जिनका डोमेन कुछ पृथक बिंदुओं को छोड़कर सभी वास्तविक संख्याओं से बनता है। उदाहरण फलन और हैं। जब वे अपने क्षेत्र में निरंतर होते हैं, तो कुछ संदर्भों में कहा जाता है कि वे निरंतर हैं, हालांकि वे हर जगह निरंतर नहीं होते हैं। अन्य संदर्भों में, मुख्य रूप से जब कोई असाधारण बिंदुओं के निकट अपने व्यवहार में रुचि रखता है, तो वह कहता है कि वे असंतत हैं।

आंशिक फलन बिंदु पर असंतत होता है, यदि बिंदु उसके डोमेन के टोपोलॉजिकल क्लोजर से संबंधित है, और या तो बिंदु फलन के डोमेन से संबंधित नहीं है, या फलन बिंदु पर निरंतर नहीं है। उदाहरण के लिए, फलन और पर असंतत 0 हैं, और उन्हें परिभाषित करने के लिए जो भी मान चुना जाता है वह असंतत 0 रहता हैं। वह बिंदु जहां कोई फलन असंतत होता है, असंततता कहलाता है।

गणितीय संकेतन का उपयोग करते हुए, ऊपर उल्लिखित तीन इंद्रियों में से प्रत्येक में निरंतर फलनों को परिभाषित करने के कई विधियाँ हैं।

मान लीजिये

वास्तविक संख्याओं के समुच्चय के उपसमुच्चय पर परिभाषित एक फलन बनें।

यह उपसमुच्चय , f का डोमेन है। कुछ संभावित विकल्पों में सम्मिलित हैं

  • : अर्थात, वास्तविक संख्याओं का संपूर्ण समुच्चय है। या a और b वास्तविक संख्याओं के लिए,
  • : संवृत अंतराल है, या
  • : विवृत अंतराल है.

डोमेन को एक खुले अंतराल के रूप में परिभाषित किए जाने के स्थिति में, और से संबंधित नहीं हैं, और पर निरंतरता के लिए और के मान अर्थ नहीं रखते हैं।

फलनों की सीमा के संदर्भ में परिभाषा

फलन f अपने डोमेन के किसी बिंदु c पर निरंतर है यदि की सीमा, जैसे-जैसे x, f के डोमेन के माध्यम से c की ओर बढ़ता है, उपस्थित है और के बराबर है।[9] गणितीय संकेतन में, यह के रूप में लिखा गया है

विस्तार से इसका अर्थ तीन स्थितियाँ हैं: पहला, f को c पर परिभाषित किया जाना है (इस आवश्यकता की गारंटी है कि c, f के डोमेन में है)।

दूसरा, समीकरण अस्तित्व में होना चाहिए। तीसरा, इस सीमा का मान के बराबर होना चाहिए।

(यहाँ, हमने मान लिया है कि f के डोमेन में कोई पृथक बिंदु नहीं है।)

निकटतम के संदर्भ में परिभाषा

बिंदु c का निकटतम (गणित) एक ऐसा समुच्चय है जिसमें, कम से कम, c की कुछ निश्चित दूरी के सभी बिंदु शामिल होते हैं। सहज रूप से, एक फलन एक बिंदु c पर निरंतर होता है यदि c के निकटतम पर f की सीमा एक बिंदु तक सिकुड़ जाती है क्योंकि c के आसपास के निकटतम की चौड़ाई शून्य तक सिकुड़ जाती है। अधिक सटीक रूप से, एक फलन f अपने डोमेन के एक बिंदु c पर निरंतर होता है यदि, किसी भी निकटतम के लिए उसके डोमेन में एक निकटतम होता है जैसे कि जब भी होता है।

जैसा कि निकटतम को किसी भी टोपोलॉजिकल स्पेस में परिभाषित किया जाता है, सतत फलन की यह परिभाषा न केवल वास्तविक फलनों के लिए लागू होती है, किन्तु तब भी लागू होती है जब डोमेन और कोडोमेन टोपोलॉजिकल स्पेस होते हैं, और इस प्रकार यह सबसे सामान्य परिभाषा है। इसका तात्पर्य यह है कि फलन अपने डोमेन के प्रत्येक पृथक बिंदु पर स्वचालित रूप से निरंतर होता है। विशिष्ट उदाहरण के रूप में, पूर्णांकों पर प्रत्येक वास्तविक मानवान फलन निरंतर है।

अनुक्रमों की सीमा के संदर्भ में परिभाषा

क्रम exp(1/n) में एकत्रित हो जाता है exp(0) = 1

इसके अतिरिक्त किसी भी अनुक्रम (गणित) के लिए इसकी आवश्यकता हो सकती है डोमेन में बिंदुओं का जो अनुक्रम को c में परिवर्तित करता है, संगत अनुक्रम में एकत्रित हो जाता है। गणितीय संकेतन में,


वीयरस्ट्रैस और जॉर्डन निरंतर फलनों की परिभाषा (एप्सिलॉन-डेल्टा)

का चित्रण ε-δ-परिभाषा: पर x = 2, कोई मान δ ≤ 0.5 के लिए परिभाषा की शर्त को संतुष्ट करता है ε = 0.5.

किसी फलन की सीमा की परिभाषा को स्पष्ट रूप से सम्मिलित करते हुए, हम स्व-निहित परिभाषा प्राप्त करते हैं: फलन दिया गया उपरोक्त और तत्व के रूप में डोमेन का , बिंदु पर निरंतर कहा जाता है जब निम्नलिखित मान्य हो: किसी भी सकारात्मक वास्तविक संख्या के लिए तथापि वह कितनी भी छोटी क्यों न हो, कुछ सकारात्मक वास्तविक संख्या उपस्थित होती है ऐसा कि सभी के लिए के क्षेत्र में साथ का मान है संतुष्ट

वैकल्पिक रूप से लिखा, की निरंतरता पर इसका अर्थ है कि हर किसी के लिए वहाँ उपस्थित है ऐसा कि सभी के लिए :
अधिक सहजता से हम कह सकते हैं कि यदि हम सब कुछ पाना चाहते हैं आसपास के कुछ छोटे टोपोलॉजिकल निकटतम में रहने का मान हमें बस इसके लिए छोटा सा निकटतम चुनने की जरूरत है चारों ओर मान यदि हम ऐसा कर सकते हैं तो कोई फर्क नहीं पड़ता कि यह कितना छोटा है तो निकटतम है पर निरंतर है।

आधुनिक शब्दों में, इसे आधार (टोपोलॉजी) के संबंध में किसी फलन की निरंतरता की परिभाषा द्वारा सामान्यीकृत किया जाता है, यहां मीट्रिक टोपोलॉजी है।

वीयरस्ट्रैस को अंतराल की आवश्यकता थी पूरी तरह से डोमेन के अन्दर हो, किन्तु जॉर्डन ने वह प्रतिबंध हटा दिया।

शेषफल के नियंत्रण के संदर्भ में परिभाषा

प्रमाणों और संख्यात्मक विश्लेषण में हमें किन्तु यह जानने की आवश्यकता होती है कि सीमाएँ कितनी तेजी से परिवर्तित हो रही हैं, या दूसरे शब्दों में, शेष पर नियंत्रण। हम इसे निरंतरता की परिभाषा के रूप में औपचारिक रूप दे सकते हैं।

फलन यदि नियंत्रण फलन कहा जाता है

  • C गैर-घटता हुआ नहीं है

फलन C-निरंतर है यदि ऐसा कोई निकटतम उपस्थित है वह

फलन निरंतर है यदि यह कुछ नियंत्रण फलन C के लिए C-निरंतर है।

यह दृष्टिकोण स्वाभाविक रूप से स्वीफलन नियंत्रण फलनों के फलन को सीमित करके निरंतरता की धारणा को परिष्कृत करने की ओर ले जाता है। नियंत्रण फलनों के दिए गए फलन के लिए फलन है -continuous यदि यह है -continuous कुछ के लिए उदाहरण के लिए, लिप्सचिट्ज़ निरंतरता और घातांक के होल्डर निरंतर फलन α नीचे नियंत्रण फलनों के फलन द्वारा परिभाषित किया गया है

क्रमश:

 


दोलन का उपयोग कर परिभाषा

किसी फलन के किसी बिंदु पर निरंतर होने में विफलता को उसके दोलन (गणित) द्वारा निर्धारित किया जाता है।

निरंतरता को दोलन (गणित) के संदर्भ में भी परिभाषित किया जा सकता है: फलन f बिंदु पर निरंतर है यदि और केवल यदि उस बिंदु पर इसका दोलन शून्य है;[10] प्रतीकों में, इस परिभाषा का एक लाभ यह है कि यह असंततता की मात्रा निर्धारित करती है: दोलन बताता है कि किसी बिंदु पर कार्य कितना असंतत है।

यह परिभाषा वर्णनात्मक फलन सिद्धांत में असंततता और निरंतर बिंदुओं के फलन का अध्ययन करने के लिए उपयोगी है - निरंतर बिंदु फलनों का प्रतिच्छेदन है जहां दोलन (इसलिए फलन) से कम है - और लेब्सगे इंटीग्रेबिलिटी स्थिति की दिशा का बहुत त्वरित प्रमाण देता है।[11]

दोलन एक सरल पुनर्व्यवस्था द्वारा परिभाषा के बराबर है, और दोलन को परिभाषित करने के लिए एक सीमा (लिम सूप, लिम इंफ) का उपयोग करके: यदि (किसी दिए गए बिंदु पर) किसी दिए गए के लिए कोई नहीं है परिभाषा को संतुष्ट करता है, तो दोलन कम से कम होता है, और इसके विपरीत यदि प्रत्येक के लिए एक वांछित होता है, तो दोलन 0 होता है। दोलन परिभाषा को टोपोलॉजिकल स्पेस से मीट्रिक स्थान तक के मानचित्रों के लिए स्वाभाविक रूप से सामान्यीकृत किया जा सकता है।

हाइपररियल्स का उपयोग कर परिभाषा

कॉची ने किसी फलन की निरंतरता को निम्नलिखित सहज शब्दों में परिभाषित किया है: स्वतंत्र वेरिएबल में अतिसूक्ष्म परिवर्तन, आश्रित वेरिएबल के अतिसूक्ष्म परिवर्तन (देखें कौर्स डी'एनालिसिस, पृष्ठ 34) से मेल खाता है। गैर-मानक विश्लेषण इसे गणितीय रूप से कठोर बनाने की विधि है। वास्तविक रेखा को अनंत और अतिसूक्ष्म संख्याओं को जोड़कर अतिवास्तविक संख्याएँ बनाने के लिए संवर्धित किया जाता है। गैरमानक विश्लेषण में, निरंतरता को निम्नानुसार परिभाषित किया जा सकता है।

एक वास्तविक-मूल्यवान कार्य f पर निरंतर है x यदि हाइपररियल्स के लिए इसके प्राकृतिक विस्तार में यह गुण है कि सभी के लिए यह अतिसूक्ष्म है dx, अतिसूक्ष्म है[12]

(सूक्ष्म निरंतरता देखें)। दूसरे शब्दों में, स्वतंत्र वेरिएबल की अतिसूक्ष्म वृद्धि हमेशा आश्रित वेरिएबल में अतिसूक्ष्म परिवर्तन उत्पन्न करती है, जो ऑगस्टिन-लुई कॉची की निरंतरता की परिभाषा को आधुनिक अभिव्यक्ति देती है।

निरंतर फलनों का निर्माण

घन फलन के ग्राफ़ में कोई छलांग या छेद नहीं है। फलन सतत है.

किसी दिए गए फलन की निरंतरता की जांच को दिए गए फलन के बिल्डिंग ब्लॉक के लिए उपरोक्त परिभाषित गुणों में से किसी की जांच करके सरल बनाया जा सकता है। यह दिखाना सीधा है कि किसी डोमेन पर निरंतर दो फलनों का योग, इस डोमेन पर भी निरंतर है। दिया गया

फिर निरंतर कार्यों का योग
(द्वारा परिभाषित सभी के लिए ) निरंतर है के लिए भी यही बात लागू होती है निरंतर कार्यों का उत्पाद,
(द्वारा परिभाषित सभी के लिए )

में निरंतर हैं निरंतरता के उपरोक्त संरक्षण और निरंतर फलनों और पहचान फलन की निरंतरता का संयोजन on , कोई सभी बहुपदों की निरंतरता पर पहुंचता है on , जैसे कि

(दाईं ओर चित्रित)।

सतत तर्कसंगत फलन का ग्राफ़। फलन को इसके लिए परिभाषित नहीं किया गया है ऊर्ध्वाधर और क्षैतिज रेखाएँ अनंतस्पर्शी हैं।

इसी प्रकार यह दर्शाया जा सकता है कि एक सतत कार्य का व्युत्क्रम

(द्वारा परिभाषित सभी के लिए ऐसा है कि ) में निरंतर है। इसका तात्पर्य यह है कि, की मूलों को छोड़कर, सतत कार्यों का भागफल
(द्वारा परिभाषित सभी के लिए , ऐसा है कि ) भी लगातार निरंतर है।

उदाहरण के लिए, फलन (चित्रित)

सभी वास्तविक संख्याओं के लिए परिभाषित किया गया है और ऐसे हर बिंदु पर निरंतर है। इस प्रकार यह सतत फलन है। पर निरंतरता का प्रश्न ही नहीं उठता, क्योंकि , के क्षेत्र में नहीं है कोई सतत फलन नहीं है। ऐसा कोई सतत फलन नहीं है जो सभी के लिए से सहमत हो।

सिन और कॉस फलन करते हैं

चूंकि फलन साइन सभी वास्तविकताओं पर निरंतर है, इसलिए साइन फलन सभी वास्तविक के लिए परिभाषित और निरंतर है। चूँकि, पिछले उदाहरण के विपरीत, के मान को 1 परिभाषित करके, G को सभी वास्तविक संख्याओं पर एक सतत फलन तक बढ़ाया जा सकता है, जो कि की सीमा है, जब x 0 के निकट पहुंचता है, अर्थात्,

इस प्रकार, फलनिंग द्वारा

सिन-फलन सभी वास्तविक संख्याओं पर सतत फलन बन जाता है। शब्द हटाने योग्य विलक्षणता का उपयोग ऐसे मामलों में किया जाता है, जब किसी फलन के मानों को उचित सीमाओं के साथ मेल खाने के लिए (पुनः) परिभाषित करना किसी फलन को विशिष्ट बिंदुओं पर निरंतर बनाता है।

निरंतर फलनों का अधिक सम्मिलित निर्माण फलन संरचना है। दो निरंतर फलन दिए गए हैं

उनकी रचना, के रूप में दर्शाया गया है और द्वारा परिभाषित सतत है.

यह निर्माण, उदाहरण के लिए, यह बताने की अनुमति देता है

सभी के लिए निरंतर हैं।


असंतत फलनों के उदाहरण

खंड 2.1.3)।

असंतत फलन का उदाहरण हेविसाइड स्टेप फलन है, द्वारा परिभाषित

उदाहरण के लिए चुनें। तो फिर के आसपास कोई -निकटतम नहीं है, अर्थात् के साथ कोई खुला अंतराल नहीं है, जो सभी मानों को -निकटतम अन्दर होने के लिए बाध्य करेगा, अर्थात् के अन्दर हैं। सहज रूप से हम इस प्रकार की असंततता को फलन मानों में अचानक उछाल असंततता के रूप में सोच सकते हैं।

इसी प्रकार, साइन फलन या साइन फलन

पर असंतत है किन्तु अन्य सभी जगह निरंतर है। एक और उदाहरण: फलन


के अतिरिक्त सर्वत्र निरन्तर है।

अंतराल (0,1) पर थॉमे के फलन का बिंदु प्लॉट। मध्य में सबसे ऊपरी बिंदु f(1/2) = 1/2 दर्शाता है।

उपरोक्त जैसी प्रशंसनीय निरंतरताओं और असंततताओं के अतिरिक्त, व्यवहार के साथ फलन भी होते हैं, जिन्हें किन्तु पैथोलॉजिकल (गणित) रखा जाता है, उदाहरण के लिए, थॉमे का फलन,

सभी अपरिमेय संख्याओं पर सतत और सभी परिमेय संख्याओं पर असंतत है। इसी तरह, डिरिचलेट फलन, परिमेय संख्याओं के फलन के लिए संकेतक फलन,
कहीं भी सतत नहीं है.

गुण

उपयोगी प्रमेय

होने देना ऐसा फलन हो जो बिंदु पर सतत हो और ऐसा मान हो तब के कुछ निकटतम में [13] प्रमाण: निरंतरता की परिभाषा से, लीजिए , तो वहाँ उपस्थित है ऐसा है कि

मान लीजिए कि निकटतम में बिंदु है जिसके लिए तब हमारे पास विरोधाभास है


मध्यवर्ती मान प्रमेय

मध्यवर्ती मान प्रमेय अस्तित्व प्रमेय है, जो वास्तविक संख्या#पूर्णता की वास्तविक संख्या गुण पर आधारित है, और बताता है:

यदि वास्तविक-मूल्यवान फलन f बंद अंतराल पर निरंतर है, और k, और के बीच कुछ संख्या है, तो में कुछ संख्या c है, जैसे वह

उदाहरण के लिए, यदि कोई बच्चा दो से छह साल की उम्र के बीच 1 मीटर से 1.5 मीटर तक बढ़ता है, तो, दो से छह साल की उम्र के बीच किसी समय, बच्चे की ऊंचाई 1.25 मीटर होनी चाहिए।

परिणामस्वरूप, यदि f निरंतर और और फिर चालू है, किसी बिंदु पर, साइन (गणित) में भिन्नता होती है 0 (संख्या) के बराबर होना चाहिए।

चरम मान प्रमेय

चरम मान प्रमेय बताता है कि यदि फलन f को संवृत अंतराल (या कोई संवृत और घिरा हुआ फलन) पर परिभाषित किया गया है और वहां निरंतर है, तो फलन अपनी अधिकतम प्राप्त करता है, अर्थात् वहां साथ उपस्थित है सभी के लिए f के न्यूनतम के बारे में भी यही सच है। यदि फलन को खुले अंतराल पर परिभाषित किया गया है तो ये कथन सामान्यतः सत्य (या कोई भी फलन जो संवृत और परिबद्ध दोनों नहीं है) नहीं हैं, उदाहरण के लिए, निरंतर फलन खुले अंतराल (0,1) पर परिभाषित, ऊपर असीमित होने के कारण अधिकतम प्राप्त नहीं होता है।

विभिन्नता और अभिन्नता से संबंध

प्रत्येक भिन्न फलन

सतत है, जैसा दिखाया जा सकता है। प्रमेय वार्तालाप मान्य नहीं है: उदाहरण के लिए, निरपेक्ष मान फलन

प्रत्येक स्थान निरंतर है। चूँकि, (किन्तु ऐसा हर जगह है) में भिन्नता नहीं है। वीयरस्ट्रैस फलन|वीयरस्ट्रैस का फलन भी हर जगह निरंतर है किन्तु कहीं भी भिन्न नहीं है।

अवकलनीय फलन f(x) का व्युत्पन्न f′(x) निरंतर होना आवश्यक नहीं है। यदि f′(x) सतत है, तो f(x) को सतत अवकलनीय कहा जाता है। ऐसे फलन का फलन द्वारा दर्शाया गया है अधिक सामान्यतः, फलन का फलन

(खुले अंतराल से (या खुले उपसमुच्चय से) ) वास्तविक के लिए) जैसे कि एफ है समय अलग-अलग है और ऐसा है कि -f का वां अवकलज सतत् है, इसे निरूपित किया जाता है भिन्नता वर्ग देखें. कंप्यूटर ग्राफ़िक्स के क्षेत्र में, गुण संबंधित (किन्तु समान नहीं)। कभी-कभी कहा जाता है (स्थिति की निरंतरता), (स्पर्शरेखा की निरंतरता), और (वक्रता की निरंतरता); चिकनापन#वक्रों और सतहों की चिकनाई देखें।

प्रत्येक सतत फलन

पूर्णांकीय फलन है (उदाहरण के लिए रीमैन अभिन्न के अर्थ में)। जैसा कि (अभिन्न, किन्तु असंतत) साइन फलन दिखाता है, इसका उलटा असर नहीं करता है।

बिंदुवार और समान सीमाएँ

अंगूठाक्रम दिया गया (गणित)

ऐसे फलनों की सीमा
सभी के लिए उपस्थित है , परिणामी फलन फलनों के अनुक्रम के बिंदुवार अभिसरण के रूप में जाना जाता है बिंदुवार सीमा फलन को निरंतर होने की आवश्यकता नहीं है, तथापि सभी फलन हों निरंतर हैं, जैसा कि दाईं ओर का एनीमेशन दिखाता है। चूँकि, यदि सभी फलन हों तो f सतत है एकसमान अभिसरण प्रमेय द्वारा निरंतर और अनुक्रम एकसमान अभिसरण हैं। इस प्रमेय का उपयोग यह दिखाने के लिए किया जा सकता है कि घातांकीय फलन, लघुगणक, वर्गमूल फलन और त्रिकोणमितीय फलन निरंतर हैं।

दिशात्मक और अर्ध-निरंतरता

दिशात्मक निरंतरता (या दाएं और बाएं निरंतर फलन) और अर्ध-निरंतरता की अवधारणा को जन्म देते हुए, असंतत फलन प्रतिबंधित विधियाँ से असंतत हो सकते हैं। सामान्यतः कहें तो, फलन है दाये-निरंतर यदि दाहिनी ओर से सीमा बिंदु पर पहुंचने पर कोई छलांग नहीं लगती है। औपचारिक रूप से, f को बिंदु c पर दाएँ-निरंतर कहा जाता है यदि निम्नलिखित मान्य हो: किसी भी संख्या के लिए तथापि वह कितनी भी छोटी क्यों न हो, कुछ न कुछ संख्या उपस्थित होती है ऐसा कि डोमेन में सभी x के लिए का मान है संतुष्ट करेंगे

यह निरंतर फलनों के लिए समान स्थिति है, सिवाय इसके कि x को केवल c से सख्ती से बड़ा रखना आवश्यक है। इसके अतिरिक्त सभी x के लिए इसकी आवश्यकता है की धारणा उत्पन्न करता है बाये-निरंतर फलन. कोई फलन सतत है यदि और केवल तभी जब वह दाएं-निरंतर और बाएं-निरंतर दोनों हो।

फलन f है निचला अर्ध-निरंतर यदि, सामान्यतः, कोई भी छलांग जो हो सकती है वह केवल नीचे जाती है, किन्तु ऊपर नहीं। अर्थात् किसी के लिए भी वहाँ कुछ संख्या उपस्थित है ऐसा कि डोमेन में सभी x के लिए का मान है संतुष्ट

उलटी स्थिति है upper semi-continuity.

मीट्रिक रिक्त स्थान के बीच सतत फलन

निरंतर वास्तविक-मानवान फलनों की अवधारणा को मीट्रिक स्थानों के बीच फलनों के लिए सामान्यीकृत किया जा सकता है। मेट्रिक स्पेस फलन है फलन से सुसज्जित (जिसे मैट्रिक (गणित) कहा जाता है) इसे एक्स में किन्हीं दो तत्वों की दूरी के माप के रूप में सोचा जा सकता है। औपचारिक रूप से, मीट्रिक फलन है

जो कई आवश्यकताओं को पूरा करता है, विशेषकर त्रिकोण असमानता को। दो मीट्रिक स्थान और दिए गए हैं और फलन
तब बिंदु पर निरंतर है (दिए गए मेट्रिक्स के संबंध में) यदि किसी सकारात्मक वास्तविक संख्या के लिए वहाँ सकारात्मक वास्तविक संख्या उपस्थित है ऐसे कि सब संतुष्टि देने वाला संतुष्ट भी करेगा जैसा कि उपरोक्त वास्तविक फलनों के स्थिति में है, यह प्रत्येक अनुक्रम के लिए इस शर्त के बराबर है में सीमा के साथ अपने पास बाद की स्थिति को इस प्रकार कमजोर किया जा सकता है: बिंदु पर निरंतर है यदि और केवल यदि प्रत्येक अभिसरण अनुक्रम के लिए में सीमा के साथ , क्रम कॉची अनुक्रम है, और के क्षेत्र में है .

उन बिंदुओं का समूह, जिन पर मीट्रिक रिक्त स्थान के बीच फलन निरंतर है, फलन- यह इस प्रकार है निरंतरता की परिभाषा.

निरंतरता की यह धारणा, उदाहरण के लिए, फलनात्मक विश्लेषण में लागू की जाती है। इस क्षेत्र में प्रमुख कथन कहता है कि रैखिक ऑपरेटर

मानकीकृत सदिश स्थानों के बीच और (जो संगत मानदंड (गणित) से सुसज्जित सदिश स्थान हैं, जिन्हें दर्शाया गया है) निरंतर है यदि और केवल यदि यह परिबद्ध रैखिक संचालिका है, अर्थात स्थिरांक है ऐसा है कि
सभी के लिए


यूनिफ़ॉर्म, होल्डर और लिप्सचिट्ज़ निरंतरता

लिप्सचिट्ज़ निरंतर फलन के लिए, दोहरा शंकु (सफेद रंग में दिखाया गया है) होता है जिसके शीर्ष को ग्राफ़ के साथ अनुवादित किया जा सकता है, ताकि ग्राफ़ हमेशा शंकु के बाहर पूरी तरह से रहे।

उपरोक्त परिभाषा में जिस तरह से और c पर निर्भर करता है उसे सीमित करके मीट्रिक स्थानों के बीच कार्यों के लिए निरंतरता की अवधारणा को विभिन्न विधियों से मजबूत किया जा सकता है। सहज रूप से, उपरोक्तानुसार एक फलन f समान रूप से निरंतर होता है यदि बिंदु c पर निर्भर नहीं होता है। अधिक त्रुटिहीन रूप से, यह प्रत्येक वास्तविक संख्या के लिए आवश्यक है वहां उपस्थित ऐसा कि हर किसी के लिए साथ हमारे पास वह है इस प्रकार, कोई भी समान रूप से सतत फलन सतत होता है। यह विपरीत सामान्य रूप से मान्य नहीं है, किन्तु तब लागू होता है जब डोमेन स्पेस X कॉम्पैक्ट टोपोलॉजिकल स्पेस होता है। समान स्थानों की अधिक सामान्य स्थिति में समान रूप से निरंतर मानचित्रों को परिभाषित किया जा सकता है।[14]

फलन होल्डर निरंतरता है|होल्डर घातांक α (वास्तविक संख्या) के साथ निरंतर है यदि कोई स्थिरांक K है जैसे कि सभी के लिए असमानता

धारण करता है. कोई भी होल्डर सतत फलन समान रूप से सतत होता है। विशेष मामला लिप्सचिट्ज़ निरंतरता के रूप में जाना जाता है। अर्थात्, फलन लिप्सचिट्ज़ निरंतर है यदि कोई स्थिरांक K है जैसे कि असमानता
किसी के लिए रखता है [15] उदाहरण के लिए, साधारण अंतर समीकरणों के समाधान से संबंधित पिकार्ड-लिंडेलोफ प्रमेय में लिप्सचिट्ज़ स्थिति होती है।

टोपोलॉजिकल रिक्त स्थान के बीच निरंतर फलन

निरंतरता की और, अधिक अमूर्त, धारणा टोपोलॉजिकल रिक्त स्थान के बीच फलनों की निरंतरता है जिसमें सामान्यतः दूरी की कोई औपचारिक धारणा नहीं होती है, जैसा कि मीट्रिक रिक्त स्थान के स्थिति में होता है। टोपोलॉजिकल स्पेस एक्स पर टोपोलॉजी के साथ फलन किसी दिए गए बिंदु का निकटतम (गणित)। टोपोलॉजी के तत्वों को एक्स (टोपोलॉजी के संबंध में) के खुले उपसमुच्चय कहा जाता है।

फलन

यदि प्रत्येक खुले फलन के लिए दो टोपोलॉजिकल स्पेस X और Y के बीच निरंतर है छवि (गणित) व्युत्क्रम छवि
एक्स का विवृत उपसमुच्चय है। अर्थात्, f फलन X और Y के बीच फलन है (टोपोलॉजी के तत्वों पर नहीं), किन्तु f की निरंतरता X और Y पर प्रयुक्त टोपोलॉजी पर निर्भर करती है।

यह इस शर्त के समतुल्य है कि Y में संवृत फलनो (जो खुले उपसमुच्चय के पूरक हैं) की छवि (गणित) व्युत्क्रम छवि X में संवृत है।

चरम उदाहरण: यदि फलन X को असतत टोपोलॉजी दी गई है (जिसमें प्रत्येक उपसमुच्चय विवृत है), सभी फलन

किसी भी टोपोलॉजिकल स्पेस के लिए T निरंतर हैं। दूसरी ओर, यदि X अविवेकी टोपोलॉजी से सुसज्जित है (जिसमें एकमात्र खुले उपसमुच्चय खाली समुच्चय और X हैं) और स्पेस T फलन कम से कम T0 है इसके विपरीत, कोई भी फलन जिसका कोडोमेन अविवेकी है, निरंतर है।

बिंदु पर निरंतरता

बिंदु पर निरंतरता: प्रत्येक निकटतम V के लिए , x का निकटतम U इस प्रकार है

(ε, δ)-सीमा की परिभाषा का निकटतम की भाषा में अनुवाद|-निरंतरता की परिभाषा बिंदु पर निरंतरता की निम्नलिखित परिभाषा की ओर ले जाती है:

एक फलन एक बिंदु पर निरंतर हैयदि और केवल यदि किसी पड़ोस के लिए V का में Y, वहाँ एक पड़ोस है U of x ऐसा है कि

यह परिभाषा उसी कथन के समतुल्य है जिसमें निकटतम खुले निकटतम तक सीमित हैं और छवियों के अतिरिक्त पूर्व-छवियों का उपयोग करके इसे कई तरीकों से दोहराया जा सकता है।

साथ ही, चूंकि प्रत्येक फलन जिसमें निकटतम सम्मिलित है, वह भी निकटतम है, और सबसे बड़ा उपसमुच्चय है U का X ऐसा है कि इस परिभाषा को सरल बनाया जा सकता है:

फलन एक बिंदु पर निरंतर है यदि और केवल यदि का पड़ोस है x हर पड़ोस के लिए V का में Y.

जैसे कि विवृत समुच्चय ऐसा समुच्चय है जो अपने सभी बिंदुओं का निकटतम है, फलन है के प्रत्येक बिंदु X पर निरंतर है यदि और केवल यदि यह सतत फलन है।

यदि X और Y मीट्रिक स्थान हैं, तो यह सभी पड़ोस के बजाय x और f(x) पर केंद्रित खुली गेंदों की पड़ोस निकटतम प्रणाली पर विचार करने के बराबर है। यह मीट्रिक रिक्त स्थान के संदर्भ में निरंतरता की उपरोक्त परिभाषा को वापस देता है। सामान्य टोपोलॉजिकल स्पेस में, निकटता या दूरी की कोई धारणा नहीं होती है। हालाँकि, यदि लक्ष्य स्थान एक हॉसडॉर्फ स्थान है, तो यह अभी भी सच है कि f एक पर निरंतर है और केवल तभी जब x के निकट पहुंचने पर f की सीमा f(a) होती है। एक पृथक बिंदु पर, प्रत्येक फलन निरंतर होता है।

दिया गया नक्षा पर निरंतर है यदि और केवल यदि कभी भी फ़िल्टर चालू है वह अभिसरण फ़िल्टर में जिसे लिखकर व्यक्त किया जाता है तो आवश्यक रूप से में यदि निकटतम फ़िल्टर को दर्शाता है तब पर निरंतर है यदि और केवल यदि में [16] इसके अतिरिक्त, ऐसा तभी होता है जब पूर्व फिल्टर हो के निकटतम फ़िल्टर के लिए फ़िल्टर आधार है में [16]

वैकल्पिक परिभाषाएँ

टोपोलॉजिकल स्पेस की श्रेणी के कई लक्षण उपस्थित हैं और इस प्रकार सतत फलन को परिभाषित करने के कई समकक्ष विधियाँ हैं।

अनुक्रम और जाल

कई संदर्भों में, किसी स्थान की टोपोलॉजी को सीमा बिंदुओं के संदर्भ में आसानी से निर्दिष्ट किया जाता है। कई उदाहरणों में, यह निर्दिष्ट करके पूरा किया जाता है जब बिंदु अनुक्रम की सीमा होती है, किन्तु कुछ स्थानों के लिए जो कुछ अर्थों में बहुत बड़े होते हैं, कोई तब भी निर्दिष्ट करता है जब बिंदु बिंदुओं के अधिक सामान्य फलनों की सीमा होती है द्वारा अनुक्रमित परिवार निर्देशित फलन, जिसे नेट (गणित) के नाम से जाना जाता है। कोई फलन (Heine-) तभी सतत होता है जब वह अनुक्रमों की सीमा को अनुक्रमों की सीमा तक ले जाता है। पहले स्थिति में, सीमाओं का संरक्षण भी पर्याप्त है; उत्तरार्द्ध में, फलन अनुक्रमों की सभी सीमाओं को संरक्षित कर सकता है फिर भी निरंतर होने में विफल रहता है, और नेट का संरक्षण आवश्यक और पर्याप्त शर्त है।

विस्तार से, फलन अनुक्रमिक निरंतरता है यदि जब भी कोई अनुक्रम हो में सीमा तक एकत्रित हो जाता है क्रम में एकत्रित हो जाता है इस प्रकार क्रमिक रूप से निरंतर फलन अनुक्रमिक सीमाओं को संरक्षित करते हैं। प्रत्येक सतत फलन क्रमिक रूप से निरंतर होता है। यदि प्रथम-गणनीय स्थान है और गणनीय विकल्प का अभिगृहीत धारण करता है, फिर इसका व्युत्क्रम भी धारण करता है: अनुक्रमिक सीमाओं को संरक्षित करने वाला कोई भी फलन निरंतर होता है। विशेषकर, यदि मीट्रिक स्थान है, अनुक्रमिक निरंतरता और निरंतरता समतुल्य हैं। गैर-प्रथम-गणनीय स्थानों के लिए, अनुक्रमिक निरंतरता निरंतरता की तुलना में सख्ती से कमजोर हो सकती है। (वे स्थान जिनके लिए दो गुण समतुल्य हैं, अनुक्रमिक स्थान कहलाते हैं।) यह सामान्य टोपोलॉजिकल रिक्त स्थान में अनुक्रमों के अतिरिक्त नेट पर विचार करने को प्रेरित करता है। निरंतर फलन नेट की सीमाओं को संरक्षित करते हैं, और वास्तव में यह गुण निरंतर फलनों की विशेषता बताता है।

उदाहरण के लिए, वास्तविक वेरिएबल के वास्तविक-मानवान फलनों के स्थिति पर विचार करें:[17]

Theorem — एक फ़ंक्शनn पर निरंतर है यदि और केवल यदि यह उस बिंदु क्रमिक रूप से निरंतर पर है।

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " |
Proof

सबूत। ये मान लीजिए पर निरंतर है ((ε, δ) के अर्थ में-सीमा की परिभाषा#निरंतरता| निरंतरता)। होने देना एक अनुक्रम पर अभिसरण हो (ऐसा क्रम हमेशा मौजूद रहता है, उदाहरण के लिए, ); तब से पर निरंतर है

ऐसे किसी के लिए हम एक प्राकृत संख्या ज्ञात कर सकते हैं ऐसा कि सभी के लिए
तब से पर एकत्रित होता है ; इसके साथ संयोजन करना हमने प्राप्त
इसके विपरीत मान लीजिये क्रमिक रूप से निरंतर है और विरोधाभास से आगे बढ़ता है: मान लीजिए पर सतत नहीं है
तो हम ले सकते हैं और संबंधित बिंदु पर कॉल करें : इस प्रकार हमने एक अनुक्रम परिभाषित किया है ऐसा है कि
निर्माण द्वारा लेकिन , जो क्रमिक निरंतरता की परिकल्पना का खंडन करता है।

क्लोजर ऑपरेटर और इंटीरियर ऑपरेटर परिभाषाएँ

आंतरिक (टोपोलॉजी) ऑपरेटर के संदर्भ में, फलन टोपोलॉजिकल रिक्त स्थान के बीच निरंतर है यदि और केवल यदि प्रत्येक उपसमूह के लिए

समापन (टोपोलॉजी) ऑपरेटर के संदर्भ में, निरंतर है यदि और केवल यदि प्रत्येक उपसमुच्चय के लिए
कहने का तात्पर्य यह है कि कोई भी तत्व दिया गया है यह उपसमुच्चय के संवृत होने से संबंधित है आवश्यक रूप से संवृत करने के अंतर्गत आता है में यदि हम इसे बिंदु घोषित करते हैं है close to उपसमुच्चय यदि तब यह शब्दावली निरंतरता के स्पष्ट अंग्रेजी विवरण की अनुमति देती है: निरंतर है यदि और केवल यदि प्रत्येक उपसमुच्चय के लिए उन बिंदुओं को मानचित्रित करें जो निकट हैं उन बिंदुओं के लिए जो करीब हैं इसी प्रकार, निश्चित दिए गए बिंदु पर निरंतर है यदि और केवल यदि कभी भी उपसमुच्चय के करीब है तब इसके करीब है टोपोलॉजिकल स्पेस को उनके विवृत फलन द्वारा निर्दिष्ट करने के अतिरिक्त, किसी भी टोपोलॉजी को चालू करें कुराटोस्की क्लोजर ऑपरेटर या आंतरिक संचालक द्वारा श्रेणियों की समतुल्यता की जा सकती है। विशेष रूप से, वह मानचित्र जो उपसमूह भेजता है टोपोलॉजिकल स्पेस का इसके समापन के लिए (टोपोलॉजी) कुराटोस्की समापन सिद्धांतों को संतुष्ट करता है। इसके विपरीत, किसी भी कुराटोस्की क्लोजर ऑपरेटर के लिए वहाँ अद्वितीय टोपोलॉजी उपस्थित है पर (विशेष रूप से, ) ऐसा कि प्रत्येक उपसमुच्चय के लिए टोपोलॉजिकल क्लोजर के बराबर है का में यदि फलन और प्रत्येक क्लोजर ऑपरेटरों से जुड़ा हुआ है (दोनों द्वारा चिह्नित)। ) फिर नक्शा निरंतर है यदि और केवल यदि प्रत्येक उपसमुच्चय के लिए इसी प्रकार, मानचित्र जो उपसमूह भेजता है का इसके आंतरिक भाग तक (टोपोलॉजी) इंटीरियर ऑपरेटर को परिभाषित करता है। इसके विपरीत, कोई भी इंटीरियर ऑपरेटर अद्वितीय टोपोलॉजी उत्पन्न करता है पर (विशेष रूप से, ) ऐसा कि हर किसी के लिए टोपोलॉजिकल इंटीरियर के बराबर है का में यदि फलन और प्रत्येक आंतरिक ऑपरेटरों से जुड़ा हुआ है (दोनों द्वारा चिह्नित)। ) फिर नक्शा निरंतर है यदि और केवल यदि प्रत्येक उपसमुच्चय के लिए [18]


फ़िल्टर और प्रीफ़िल्टर

निरंतरता को फ़िल्टर (फलन सिद्धांत) के संदर्भ में भी वर्णित किया जा सकता है। फलन निरंतर है यदि और केवल यदि जब भी कोई फ़िल्टर हो पर अभिसरण फ़िल्टर में स्तर तक फिर प्रीफिल्टर में एकत्रित हो जाता है को यदि शब्द फ़िल्टर को प्रीफ़िल्टर द्वारा प्रतिस्थापित किया जाता है तो यह लक्षण वर्णन सत्य रहता है।[16]

गुण

यदि और निरंतर हैं, तो रचना भी वैसी ही है यदि निरंतर है और

निश्चित फलन एक्स पर संभावित टोपोलॉजी आंशिक क्रम हैं: टोपोलॉजी इसे अन्य टोपोलॉजी की तुलना में टोपोलॉजी की तुलना कहा जाता है (संकेत: ) यदि प्रत्येक खुले उपसमुच्चय के संबंध में के संबंध में भी विवृत है फिर, पहचान फलन

निरंतर है यदि और केवल यदि (टोपोलॉजी की तुलना भी देखें)। अधिक सामान्यतः, सतत फलन
यदि टोपोलॉजी निरंतर बनी रहती है टोपोलॉजी और/या की तुलना द्वारा प्रतिस्थापित किया जाता है टोपोलॉजी की तुलना द्वारा प्रतिस्थापित किया जाता है।

होमियोमोर्फिज्म

सतत मानचित्र की अवधारणा के सममित विवृत मानचित्र है, जिसके लिए images खुले फलन खुले हैं। वास्तव में, यदि खुले मानचित्र f में व्युत्क्रम फलन है, तो वह व्युत्क्रम सतत है, और यदि सतत मानचित्र g में व्युत्क्रम है, तो वह व्युत्क्रम विवृत है। दो टोपोलॉजिकल स्पेस के बीच विशेषण फलन f को देखते हुए, व्युत्क्रम फलन निरंतर होने की आवश्यकता नहीं है. निरंतर व्युत्क्रम फलन वाले विशेषण सतत फलन को a कहा जाता है homeomorphism.

यदि सतत आक्षेप में किसी फलन के डोमेन के रूप में कॉम्पैक्ट स्पेस होता है और इसका कोडोमेन हॉसडॉर्फ स्पेस होता है, तो यह होमोमोर्फिज्म है।

निरंतर फलनों के माध्यम से टोपोलॉजी को परिभाषित करना

फलन दिया गया

जहां एक्स में विवृत है। यदि एस में उपस्थिता टोपोलॉजी है, तो एफ प्रारंभिक टोपोलॉजी के संबंध में निरंतर है यदि और केवल तभी उपस्थिता टोपोलॉजी एस पर अंतिम टोपोलॉजी की तुलना में टोपोलॉजी की तुलना करती है। इस प्रकार अंतिम टोपोलॉजी को बेहतरीन टोपोलॉजी के रूप में चित्रित किया जा सकता है S जो f को सतत बनाता है। यदि एफ विशेषण है, तो इस टोपोलॉजी को एफ द्वारा परिभाषित समतुल्य संबंध के तहत भागफल टोपोलॉजी के साथ कैनोनिक रूप से पहचाना जाता है।

दोहरी रूप से, फलन S से टोपोलॉजिकल स्पेस एक्स के कुछ खुले उपसमुच्चय यू के लिए। यदि एस में उपस्थिता टोपोलॉजी है, तो एफ इस टोपोलॉजी के संबंध में निरंतर है यदि और केवल तभी यदि उपस्थिता टोपोलॉजी एस पर प्रारंभिक टोपोलॉजी से बेहतर है। इस प्रकार प्रारंभिक टोपोलॉजी को सबसे मोटे टोपोलॉजी के रूप में वर्णित किया जा सकता है S पर जो f को सतत बनाता है। यदि एफ इंजेक्शन है, तो इस टोपोलॉजी को एस के सबस्पेस टोपोलॉजी के साथ कैनोनिक रूप से पहचाना जाता है, जिसे एक्स के सबफलन के रूप में देखा जाता है।

फलन एस पर टोपोलॉजी सभी निरंतर फलनों के वर्ग द्वारा विशिष्ट रूप से निर्धारित होती है सभी टोपोलॉजिकल स्पेस में X. द्वैत (गणित), समान विचार मानचित्रों पर लागू किया जा सकता है


संबंधित धारणाएँ

यदि कुछ उपसमुच्चय से सतत फलन है टोपोलॉजिकल स्पेस का फिर निरंतर विस्तार का को कोई सतत फलन है ऐसा है कि हरके लिए जो ऐसी स्थिति है जिसे किन्तु इस प्रकार लिखा जाता है शब्दों में कहें तो यह कोई सतत फलन है किसी फलन का वह प्रतिबंध पर इस धारणा का उपयोग, उदाहरण के लिए, टिट्ज़ विस्तार प्रमेय और हैन-बानाच प्रमेय में किया जाता है। थे यदि यह निरंतर नहीं है तो संभवतः इसका निरंतर विस्तार नहीं हो सकता। यदि हॉसडॉर्फ़ स्थान है और का सघन समुच्चय है फिर का निरंतर विस्तार को यदि कोई अस्तित्व में है, तो अद्वितीय होगा। ब्लमबर्ग प्रमेय बताता है कि यदि मनमाना फलन है तो सघन उपसमुच्चय उपस्थित है का ऐसे कि प्रतिबंध निरंतर है; दूसरे शब्दों में, प्रत्येक फलन इसे कुछ सघन उपसमुच्चय तक सीमित किया जा सकता है जिस पर यह निरंतर है।

विभिन्न अन्य गणितीय डोमेन विभिन्न, किन्तु संबंधित अर्थों में निरंतरता की अवधारणा का उपयोग करते हैं। उदाहरण के लिए, ऑर्डर सिद्धांत में, ऑर्डर-संरक्षण फलन विशेष प्रकार के आंशिक रूप से ऑर्डर किए गए फलनों के बीच और यदि प्रत्येक निर्देशित फलन के लिए निरंतर है का अपने पास यहाँ आदेशों के संबंध में सर्वोच्च है और क्रमश। निरंतरता की यह धारणा टोपोलॉजिकल निरंतरता के समान है जब आंशिक रूप से ऑर्डर किए गए फलन को स्कॉट टोपोलॉजी दी जाती है।[19][20]

श्रेणी सिद्धांत में, फंक्टर

दो श्रेणियों के बीच (गणित) कहा जाता है निरंतर यदि यह छोटी सीमा (श्रेणी सिद्धांत) के साथ आवागमन करता है। अर्थात्,
किसी भी छोटे के लिए (अर्थात, फलन द्वारा अनुक्रमित वर्ग (गणित) के विपरीत) वस्तु का आरेख (श्रेणी सिद्धांत) (श्रेणी सिद्धांत) में.

निरंतरता स्थान मीट्रिक रिक्त स्थान और पॉफलन का सामान्यीकरण है,[21][22] जो क्वान्टेल्स की अवधारणा का उपयोग करता है, और इसका उपयोग मीट्रिक स्पेस और डोमेन सिद्धांतों की धारणाओं को एकीकृत करने के लिए किया जा सकता है।[23]


यह भी देखें

  • दिशा-संरक्षण फलन - अलग-अलग स्थानों में निरंतर फलन का एनालॉग।

संदर्भ

  1. Bolzano, Bernard (1817). "Rein analytischer Beweis des Lehrsatzes daß zwischen je zwey Werthen, die ein entgegengesetzetes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege". Prague: Haase. {{cite journal}}: Cite journal requires |journal= (help)
  2. Dugac, Pierre (1973), "Eléments d'Analyse de Karl Weierstrass", Archive for History of Exact Sciences, 10 (1–2): 41–176, doi:10.1007/bf00343406, S2CID 122843140
  3. Goursat, E. (1904), A course in mathematical analysis, Boston: Ginn, p. 2
  4. Jordan, M.C. (1893), Cours d'analyse de l'École polytechnique, vol. 1 (2nd ed.), Paris: Gauthier-Villars, p. 46
  5. Harper, J.F. (2016), "Defining continuity of real functions of real variables", BSHM Bulletin: Journal of the British Society for the History of Mathematics, 31 (3): 1–16, doi:10.1080/17498430.2015.1116053, S2CID 123997123
  6. Rusnock, P.; Kerr-Lawson, A. (2005), "Bolzano and uniform continuity", Historia Mathematica, 32 (3): 303–311, doi:10.1016/j.hm.2004.11.003
  7. Strang, Gilbert (1991). गणना. SIAM. p. 702. ISBN 0961408820.
  8. Speck, Jared (2014). "निरंतरता और असंततता" (PDF). MIT Math. p. 3. Archived from the original (PDF) on 2016-10-06. Retrieved 2016-09-02. Example 5. The function is continuous on and on i.e., for and for in other words, at every point in its domain. However, it is not a continuous function since its domain is not an interval. It has a single point of discontinuity, namely and it has an infinite discontinuity there.
  9. Lang, Serge (1997), Undergraduate analysis, Undergraduate Texts in Mathematics (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-94841-6, section II.4
  10. Introduction to Real Analysis, updated April 2010, William F. Trench, Theorem 3.5.2, p. 172
  11. Introduction to Real Analysis, updated April 2010, William F. Trench, 3.5 "A More Advanced Look at the Existence of the Proper Riemann Integral", pp. 171–177
  12. "Elementary Calculus". wisc.edu.
  13. Brown, James Ward (2009), Complex Variables and Applications (8th ed.), McGraw Hill, p. 54, ISBN 978-0-07-305194-9
  14. Gaal, Steven A. (2009), Point set topology, New York: Dover Publications, ISBN 978-0-486-47222-5, section IV.10
  15. Searcóid, Mícheál Ó (2006), Metric spaces, Springer undergraduate mathematics series, Berlin, New York: Springer-Verlag, ISBN 978-1-84628-369-7, section 9.4
  16. 16.0 16.1 16.2 Dugundji 1966, pp. 211–221.
  17. Shurman, Jerry (2016). यूक्लिडियन अंतरिक्ष में कैलकुलस और विश्लेषण (illustrated ed.). Springer. pp. 271–272. ISBN 978-3-319-49314-5.
  18. "सामान्य टोपोलॉजी - निरंतरता और आंतरिक". Mathematics Stack Exchange.
  19. Goubault-Larrecq, Jean (2013). Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology. Cambridge University Press. ISBN 978-1107034136.
  20. Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M. W.; Scott, D. S. (2003). सतत् जालक और डोमेन. Encyclopedia of Mathematics and its Applications. Vol. 93. Cambridge University Press. ISBN 0521803381.
  21. Flagg, R. C. (1997). "क्वान्टेल्स और निरंतरता स्थान". Algebra Universalis. 37 (3): 257–276. CiteSeerX 10.1.1.48.851. doi:10.1007/s000120050018. S2CID 17603865.
  22. Kopperman, R. (1988). "सभी टोपोलॉजी सामान्यीकृत मेट्रिक्स से आती हैं". American Mathematical Monthly. 95 (2): 89–97. doi:10.2307/2323060. JSTOR 2323060.
  23. Flagg, B.; Kopperman, R. (1997). "Continuity spaces: Reconciling domains and metric spaces". Theoretical Computer Science. 177 (1): 111–138. doi:10.1016/S0304-3975(97)00236-3.


ग्रन्थसूची