प्राथमिक आदर्श: Difference between revisions
(Created page with "गणित में, विशेष रूप से क्रमविनिमेय बीजगणित में, एक क्रमविनिमेय व...") |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से [[क्रमविनिमेय बीजगणित]] में, | गणित में, विशेष रूप से [[क्रमविनिमेय बीजगणित]] में, [[क्रमविनिमेय वलय]] A के उचित [[आदर्श (रिंग सिद्धांत)]] Q को 'प्राथमिक' कहा जाता है यदि जब भी xy, Q का तत्व है तो x या y<sup>कुछ n > 0 के लिए n</sup> भी Q का तत्व है। उदाहरण के लिए, पूर्णांक 'Z' की रिंग में, (p<sup>n</sup>) प्राथमिक आदर्श है यदि p अभाज्य संख्या है। | ||
क्रमविनिमेय वलय सिद्धांत में प्राथमिक आदर्शों की धारणा महत्वपूर्ण है क्योंकि नोथेरियन वलय के प्रत्येक आदर्श में | क्रमविनिमेय वलय सिद्धांत में प्राथमिक आदर्शों की धारणा महत्वपूर्ण है क्योंकि नोथेरियन वलय के प्रत्येक आदर्श में [[प्राथमिक अपघटन]] होता है, अर्थात, इसे सीमित रूप से कई प्राथमिक आदर्शों के प्रतिच्छेदन के रूप में लिखा जा सकता है। इस परिणाम को लास्कर-नोएथर प्रमेय के रूप में जाना जाता है। फलस्वरूप,<ref>To be precise, one usually uses this fact to prove the theorem.</ref> नोथेरियन रिंग का [[अपरिवर्तनीय आदर्श]] प्राथमिक है। | ||
प्राथमिक आदर्शों को गैर-विनिमेय वलयों में सामान्यीकृत करने की विभिन्न विधियाँ मौजूद हैं,<ref>See the references to Chatters–Hajarnavis, Goldman, Gorton–Heatherly, and Lesieur–Croisot.</ref> लेकिन इस विषय का अध्ययन अक्सर क्रमविनिमेय वलय के लिए किया जाता है। इसलिए, इस लेख में दिए गए छल्ले को पहचान के साथ क्रमविनिमेय छल्ले माना जाता है। | प्राथमिक आदर्शों को गैर-विनिमेय वलयों में सामान्यीकृत करने की विभिन्न विधियाँ मौजूद हैं,<ref>See the references to Chatters–Hajarnavis, Goldman, Gorton–Heatherly, and Lesieur–Croisot.</ref> लेकिन इस विषय का अध्ययन अक्सर क्रमविनिमेय वलय के लिए किया जाता है। इसलिए, इस लेख में दिए गए छल्ले को पहचान के साथ क्रमविनिमेय छल्ले माना जाता है। | ||
Line 7: | Line 7: | ||
==उदाहरण और गुण== | ==उदाहरण और गुण== | ||
* परिभाषा को अधिक सममित तरीके से दोहराया जा सकता है: | * परिभाषा को अधिक सममित तरीके से दोहराया जा सकता है: आदर्श <math>\mathfrak{q}</math> प्राथमिक है यदि, जब भी <math>x y \in \mathfrak{q}</math>, अपने पास <math>x \in \mathfrak{q}</math> या <math>y \in \mathfrak{q}</math> या <math>x, y \in \sqrt{\mathfrak{q}}</math>. (यहाँ <math>\sqrt{\mathfrak{q}}</math> के आदर्श के मूलांक को दर्शाता है <math>\mathfrak{q}</math>.) | ||
* R का | * R का आदर्श Q प्राथमिक है यदि और केवल यदि R/Q में प्रत्येक [[शून्य भाजक]] शून्य है। (इसकी तुलना अभाज्य आदर्शों के मामले से करें, जहां P अभाज्य है यदि और केवल यदि R/P में प्रत्येक शून्य भाजक वास्तव में शून्य है।) | ||
* कोई भी अभाज्य आदर्श प्राथमिक होता है, और इसके अलावा | * कोई भी अभाज्य आदर्श प्राथमिक होता है, और इसके अलावा आदर्श तभी अभाज्य होता है जब वह प्राथमिक और अर्धप्रधान आदर्श हो (क्रमविनिमेय मामले में आदर्श का मूलांक भी कहा जाता है)। | ||
*प्रत्येक प्राथमिक आदर्श [[मौलिक आदर्श]] है।<ref>For the proof of the second part see the article of Fuchs.</ref> | *प्रत्येक प्राथमिक आदर्श [[मौलिक आदर्श]] है।<ref>For the proof of the second part see the article of Fuchs.</ref> | ||
* यदि Q | * यदि Q प्राथमिक आदर्श है, तो Q के आदर्श का मूलांक आवश्यक रूप से प्रमुख आदर्श P है, और इस आदर्श को Q का संबद्ध प्रमुख आदर्श कहा जाता है। इस स्थिति में, Q को 'P-प्राथमिक' कहा जाता है। | ||
** दूसरी ओर, | ** दूसरी ओर, आदर्श जिसका मूलांक अभाज्य है, आवश्यक रूप से प्राथमिक नहीं है: उदाहरण के लिए, यदि <math>R = k[x,y,z]/(x y - z^2)</math>, <math>\mathfrak{p} = (\overline{x}, \overline{z})</math>, और <math>\mathfrak{q} = \mathfrak{p}^2</math>, तब <math>\mathfrak{p}</math> प्रधान है और <math>\sqrt{\mathfrak{q}} = \mathfrak{p}</math>, लेकिन हमारे पास है <math> \overline{x} \overline{y} = {\overline{z}}^2 \in \mathfrak{p}^2 = \mathfrak{q}</math>, <math>\overline{x} \not \in \mathfrak{q}</math>, और <math>{\overline{y}}^n \not \in \mathfrak{q}</math> सभी n > 0 के लिए, इसलिए <math>\mathfrak{q}</math> प्राथमिक नहीं है. का प्राथमिक अपघटन <math>\mathfrak{q}</math> है <math>(\overline{x}) \cap ({\overline{x}}^2, \overline{x} \overline{z}, \overline{y})</math>; यहाँ <math>(\overline{x})</math> है <math>\mathfrak{p}</math>-प्राथमिक और <math>({\overline{x}}^2, \overline{x} \overline{z}, \overline{y})</math> है <math>(\overline{x}, \overline{y}, \overline{z})</math>-प्राथमिक। | ||
*** हालाँकि, | *** हालाँकि, आदर्श जिसका मूलांक अधिकतम है, प्राथमिक है। | ||
*** हर आदर्श | *** हर आदर्श {{mvar|Q}} कट्टरपंथी के साथ {{mvar|P}} सबसे छोटे में समाहित है {{mvar|P}}-प्राथमिक आदर्श: सभी तत्व {{mvar|a}} ऐसा है कि {{math|''ax'' ∈ ''Q''}} कुछ के लिए {{math|''x'' ∉ ''P''}}. सबसे छोटा {{mvar|P}}-प्राथमिक आदर्श युक्त {{math|''P''<sup>''n''</sup>}} को कहा जाता है {{mvar|n}}वें [[एक प्रमुख आदर्श की प्रतीकात्मक शक्ति|प्रमुख आदर्श की प्रतीकात्मक शक्ति]] {{mvar|P}}. | ||
* यदि P | * यदि P अधिकतम अभाज्य आदर्श है, तो P की शक्ति वाला कोई भी आदर्श P-प्राथमिक है। सभी P-प्राथमिक आदर्शों में P की शक्तियाँ होना आवश्यक नहीं है, लेकिन कम से कम उनमें P की शक्ति होती है; उदाहरण के लिए आदर्श (x,y<sup>2</sup>) रिंग k[x,y] में आदर्श P = (x,y) के लिए P-प्राथमिक है, लेकिन यह P की शक्ति नहीं है, हालांकि इसमें P² शामिल है। | ||
* यदि A | * यदि A नोथेरियन रिंग है और P प्रमुख आदर्श है, तो कर्नेल <math>A \to A_P</math>, ए से पी पर ए की अंगूठी के स्थानीयकरण तक का नक्शा, सभी पी-प्राथमिक आदर्शों का प्रतिच्छेदन है।<ref>Atiyah–Macdonald, Corollary 10.21</ref> | ||
* का | * का परिमित गैर-रिक्त उत्पाद <math>\mathfrak{p}</math>-प्राथमिक आदर्श है <math>\mathfrak{p}</math>-प्राथमिक लेकिन इसका अनंत उत्पाद <math>\mathfrak{p}</math>-प्राथमिक आदर्श नहीं हो सकते <math>\mathfrak p</math>-प्राथमिक; उदाहरण के लिए, अधिकतम आदर्श के साथ नोथेरियन स्थानीय रिंग में <math>\mathfrak m</math>, <math>\cap_{n > 0} \mathfrak{m}^n = 0</math> ([[क्रुल प्रतिच्छेदन प्रमेय]]) जहां प्रत्येक <math>\mathfrak{m}^n</math> है <math>\mathfrak{m}</math>-प्राथमिक, उदाहरण के लिए अधिकतम (और इसलिए अभाज्य और इसलिए प्राथमिक) आदर्श का अनंत उत्पाद <math>m=\langle x,y \rangle</math> स्थानीय रिंग का <math>K[x,y]/\langle x^2, xy\rangle</math> शून्य आदर्श उत्पन्न होता है, जो इस मामले में प्राथमिक नहीं है (क्योंकि शून्य भाजक <math>y</math> शून्यशक्तिमान नहीं है)। वास्तव में, नोथेरियन रिंग में, गैर-रिक्त उत्पाद <math>\mathfrak{p}</math>-प्राथमिक आदर्श <math>Q_i</math> है <math>\mathfrak{p}</math>-प्राथमिक यदि और केवल यदि कोई पूर्णांक मौजूद है <math>n > 0</math> ऐसा है कि <math>\mathfrak{p}^n \subset \cap_i Q_i</math>.<ref>{{harvnb|Bourbaki|loc=Ch. IV, § 2, Exercise 3.}}</ref> | ||
==फ़ुटनोट== | ==फ़ुटनोट== | ||
<references/> | <references/> | ||
==संदर्भ== | ==संदर्भ== | ||
Line 31: | Line 28: | ||
*{{citation |author=Goldman, Oscar |title=Rings and modules of quotients |journal= Journal of Algebra|volume=13 |year=1969 |pages=10–47 |issn=0021-8693 |mr=0245608 |doi=10.1016/0021-8693(69)90004-0|doi-access=free }} | *{{citation |author=Goldman, Oscar |title=Rings and modules of quotients |journal= Journal of Algebra|volume=13 |year=1969 |pages=10–47 |issn=0021-8693 |mr=0245608 |doi=10.1016/0021-8693(69)90004-0|doi-access=free }} | ||
*{{citation |author1=Gorton, Christine |author2=Heatherly, Henry |title=Generalized primary rings and ideals |journal= Mathematica Pannonica|volume=17 |year=2006 |issue=1 |pages=17–28 |issn=0865-2090 |mr=2215638}} | *{{citation |author1=Gorton, Christine |author2=Heatherly, Henry |title=Generalized primary rings and ideals |journal= Mathematica Pannonica|volume=17 |year=2006 |issue=1 |pages=17–28 |issn=0865-2090 |mr=2215638}} | ||
*[https://www.ams.org/journals/proc/1950-001-01/S0002-9939-1950-0032584-8/S0002-9939-1950-0032584-8.pdf On primal ideals], Ladislas | *[https://www.ams.org/journals/proc/1950-001-01/S0002-9939-1950-0032584-8/S0002-9939-1950-0032584-8.pdf On primal ideals], Ladislas Fuchs | ||
*{{citation |author1=Lesieur, L. |author2=Croisot, R. |title=Algèbre noethérienne non commutative |language=French |publisher=Mémor. Sci. Math., Fasc. CLIV. Gauthier-Villars & Cie, Editeur -Imprimeur-Libraire, Paris |year=1963 |pages=119 |mr=0155861 }} | *{{citation |author1=Lesieur, L. |author2=Croisot, R. |title=Algèbre noethérienne non commutative |language=French |publisher=Mémor. Sci. Math., Fasc. CLIV. Gauthier-Villars & Cie, Editeur -Imprimeur-Libraire, Paris |year=1963 |pages=119 |mr=0155861 }} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[https://www.encyclopediaofmath.org/index.php/Primary_ideal ''Primary ideal'' at Encyclopaedia of Mathematics] | *[https://www.encyclopediaofmath.org/index.php/Primary_ideal ''Primary ideal'' at Encyclopaedia of Mathematics] |
Revision as of 09:24, 21 July 2023
गणित में, विशेष रूप से क्रमविनिमेय बीजगणित में, क्रमविनिमेय वलय A के उचित आदर्श (रिंग सिद्धांत) Q को 'प्राथमिक' कहा जाता है यदि जब भी xy, Q का तत्व है तो x या yकुछ n > 0 के लिए n भी Q का तत्व है। उदाहरण के लिए, पूर्णांक 'Z' की रिंग में, (pn) प्राथमिक आदर्श है यदि p अभाज्य संख्या है।
क्रमविनिमेय वलय सिद्धांत में प्राथमिक आदर्शों की धारणा महत्वपूर्ण है क्योंकि नोथेरियन वलय के प्रत्येक आदर्श में प्राथमिक अपघटन होता है, अर्थात, इसे सीमित रूप से कई प्राथमिक आदर्शों के प्रतिच्छेदन के रूप में लिखा जा सकता है। इस परिणाम को लास्कर-नोएथर प्रमेय के रूप में जाना जाता है। फलस्वरूप,[1] नोथेरियन रिंग का अपरिवर्तनीय आदर्श प्राथमिक है।
प्राथमिक आदर्शों को गैर-विनिमेय वलयों में सामान्यीकृत करने की विभिन्न विधियाँ मौजूद हैं,[2] लेकिन इस विषय का अध्ययन अक्सर क्रमविनिमेय वलय के लिए किया जाता है। इसलिए, इस लेख में दिए गए छल्ले को पहचान के साथ क्रमविनिमेय छल्ले माना जाता है।
उदाहरण और गुण
- परिभाषा को अधिक सममित तरीके से दोहराया जा सकता है: आदर्श प्राथमिक है यदि, जब भी , अपने पास या या . (यहाँ के आदर्श के मूलांक को दर्शाता है .)
- R का आदर्श Q प्राथमिक है यदि और केवल यदि R/Q में प्रत्येक शून्य भाजक शून्य है। (इसकी तुलना अभाज्य आदर्शों के मामले से करें, जहां P अभाज्य है यदि और केवल यदि R/P में प्रत्येक शून्य भाजक वास्तव में शून्य है।)
- कोई भी अभाज्य आदर्श प्राथमिक होता है, और इसके अलावा आदर्श तभी अभाज्य होता है जब वह प्राथमिक और अर्धप्रधान आदर्श हो (क्रमविनिमेय मामले में आदर्श का मूलांक भी कहा जाता है)।
- प्रत्येक प्राथमिक आदर्श मौलिक आदर्श है।[3]
- यदि Q प्राथमिक आदर्श है, तो Q के आदर्श का मूलांक आवश्यक रूप से प्रमुख आदर्श P है, और इस आदर्श को Q का संबद्ध प्रमुख आदर्श कहा जाता है। इस स्थिति में, Q को 'P-प्राथमिक' कहा जाता है।
- दूसरी ओर, आदर्श जिसका मूलांक अभाज्य है, आवश्यक रूप से प्राथमिक नहीं है: उदाहरण के लिए, यदि , , और , तब प्रधान है और , लेकिन हमारे पास है , , और सभी n > 0 के लिए, इसलिए प्राथमिक नहीं है. का प्राथमिक अपघटन है ; यहाँ है -प्राथमिक और है -प्राथमिक।
- हालाँकि, आदर्श जिसका मूलांक अधिकतम है, प्राथमिक है।
- हर आदर्श Q कट्टरपंथी के साथ P सबसे छोटे में समाहित है P-प्राथमिक आदर्श: सभी तत्व a ऐसा है कि ax ∈ Q कुछ के लिए x ∉ P. सबसे छोटा P-प्राथमिक आदर्श युक्त Pn को कहा जाता है nवें प्रमुख आदर्श की प्रतीकात्मक शक्ति P.
- दूसरी ओर, आदर्श जिसका मूलांक अभाज्य है, आवश्यक रूप से प्राथमिक नहीं है: उदाहरण के लिए, यदि , , और , तब प्रधान है और , लेकिन हमारे पास है , , और सभी n > 0 के लिए, इसलिए प्राथमिक नहीं है. का प्राथमिक अपघटन है ; यहाँ है -प्राथमिक और है -प्राथमिक।
- यदि P अधिकतम अभाज्य आदर्श है, तो P की शक्ति वाला कोई भी आदर्श P-प्राथमिक है। सभी P-प्राथमिक आदर्शों में P की शक्तियाँ होना आवश्यक नहीं है, लेकिन कम से कम उनमें P की शक्ति होती है; उदाहरण के लिए आदर्श (x,y2) रिंग k[x,y] में आदर्श P = (x,y) के लिए P-प्राथमिक है, लेकिन यह P की शक्ति नहीं है, हालांकि इसमें P² शामिल है।
- यदि A नोथेरियन रिंग है और P प्रमुख आदर्श है, तो कर्नेल , ए से पी पर ए की अंगूठी के स्थानीयकरण तक का नक्शा, सभी पी-प्राथमिक आदर्शों का प्रतिच्छेदन है।[4]
- का परिमित गैर-रिक्त उत्पाद -प्राथमिक आदर्श है -प्राथमिक लेकिन इसका अनंत उत्पाद -प्राथमिक आदर्श नहीं हो सकते -प्राथमिक; उदाहरण के लिए, अधिकतम आदर्श के साथ नोथेरियन स्थानीय रिंग में , (क्रुल प्रतिच्छेदन प्रमेय) जहां प्रत्येक है -प्राथमिक, उदाहरण के लिए अधिकतम (और इसलिए अभाज्य और इसलिए प्राथमिक) आदर्श का अनंत उत्पाद स्थानीय रिंग का शून्य आदर्श उत्पन्न होता है, जो इस मामले में प्राथमिक नहीं है (क्योंकि शून्य भाजक शून्यशक्तिमान नहीं है)। वास्तव में, नोथेरियन रिंग में, गैर-रिक्त उत्पाद -प्राथमिक आदर्श है -प्राथमिक यदि और केवल यदि कोई पूर्णांक मौजूद है ऐसा है कि .[5]
फ़ुटनोट
संदर्भ
- Atiyah, Michael Francis; Macdonald, I.G. (1969), Introduction to Commutative Algebra, Westview Press, p. 50, ISBN 978-0-201-40751-8
- Bourbaki, Algèbre commutative
- Chatters, A. W.; Hajarnavis, C. R. (1971), "Non-commutative rings with primary decomposition", The Quarterly Journal of Mathematics, Second Series, 22: 73–83, doi:10.1093/qmath/22.1.73, ISSN 0033-5606, MR 0286822
- Goldman, Oscar (1969), "Rings and modules of quotients", Journal of Algebra, 13: 10–47, doi:10.1016/0021-8693(69)90004-0, ISSN 0021-8693, MR 0245608
- Gorton, Christine; Heatherly, Henry (2006), "Generalized primary rings and ideals", Mathematica Pannonica, 17 (1): 17–28, ISSN 0865-2090, MR 2215638
- On primal ideals, Ladislas Fuchs
- Lesieur, L.; Croisot, R. (1963), Algèbre noethérienne non commutative (in French), Mémor. Sci. Math., Fasc. CLIV. Gauthier-Villars & Cie, Editeur -Imprimeur-Libraire, Paris, p. 119, MR 0155861
{{citation}}
: CS1 maint: unrecognized language (link)