एकीकृत परिपथ: Difference between revisions

From Vigyanwiki
No edit summary
 
(27 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{short description|Electronic circuit formed on a small, flat piece of semiconductor material}}
[[File:Microchips.jpg|thumb| इरेज़ेबल प्रोग्रामेबल रीड-ओनली मेमोरी (EPROM) ड्यूल इन-लाइन पैकेज में एकीकृत परिपथ। इन पैकेजों में एक पारदर्शी विंडो होती है जो अंदर की डाई को प्रदर्शित करती है। चिप को पराबैंगनी प्रकाश में प्रकाशित करके मेमोरी को मिटाने के लिए विंडो का उपयोग किया जाता है।]]
{{Redirect|Silicon chip|the electronics magazine|Silicon Chip}}
[[File:EPROM Microchip SuperMacro.jpg|right|thumb|EPROM मेमोरी माइक्रोचिप से एकीकृत परिपथ, मेमोरी ब्लॉक्स, सहायक सर्किट्री और फाइन सिल्वर तार जो एकीकृत परिपथ की डाई को पैकेजिंग के लेग्स से जोड़ते हैं, दिखाते हुए]]
{{Redirect|Microchip||Microchip (disambiguation)}}
[[File:Siliconchip by shapeshifter.png|right|thumb|पॉलीसिलिकॉन (गुलाबी), वेल्स (ग्रेश), और अधःस्तर (हरा) के नीचे प्लैनराइज्ड कॉपर इंटरकनेक्ट की चार परतों के माध्यम से एक एकीकृत सर्किट का आभासी विवरण।]]
{{Use dmy dates|date=October 2020}}
एक '''एकीकृत परिपथ''' या '''अखंड एकीकृत परिपथ''' अर्धचालक पदार्थ (सामान्यतः सिलिकॉन) के एक छोटे समतलीय टुकड़े (या "चिप") पर विद्युतीय परिपथों का एक सुपरिभाषित समूह होता है, जिसे आईसी (IC), चिप या माइक्रोचिप भी कहा जाता है। एक छोटी-सी  चिप में बड़ी संख्या में छोटे मॉस्फेट (धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर (MOSFET)) एकीकृत होते हैं। परिणामस्वरुप ऐसे परिपथ का निर्माण होता है जो असतत इलेक्ट्रॉनिक घटकों से निर्मित परिपथों की तुलना में छोटे, तेज और कम खर्चीले होते हैं। एकीकृत परिपथ की बनावट के लिए IC की बड़े पैमाने पर उत्पादन क्षमता, विश्वसनीयता और बिल्डिंग-ब्लॉक दृष्टिकोण ने असतत ट्रांजिस्टर का उपयोग वाले परिपथों के स्थान पर मानकीकृत IC को तीव्रता के साथ अपनाना सुनिश्चित किया है। अब लगभग सभी इलेक्ट्रॉनिक उपकरणों में IC उपयोग किया जाता है और इसने इलेक्ट्रॉनिक्स जगत में क्रांति ला दी है। कंप्यूटर, मोबाइल फोन और अन्य घरेलू उपकरण अब आधुनिक समाज की संरचना के अभिन्न अंग बन चुके हैं, जो आधुनिक कंप्यूटर प्रोसेसर और माइक्रोकंट्रोलर जैसे छोटे आकार और कम लागत के IC चिपों द्वारा संभव बनाया गया है।


[[File:Microchips.jpg|thumb| इरेज़ेबल प्रोग्रामेबल रीड-ओनली मेमोरी (EPROM) ड्यूल इन-लाइन पैकेज में इंटीग्रेटेड परिपथ। इन सेमीकंडक्टर पैकेज में एक पारदर्शी विंडो होती है जो अंदर डाई (एकीकृत परिपथ) दिखाती है। चिप को पराबैंगनी प्रकाश में उजागर करके मेमोरी को मिटाने के लिए विंडो का उपयोग किया जाता है।]]
धातु-ऑक्साइड-सिलिकॉन (मॉस) अर्धचालक उपकरणों के निर्माण में तकनीकी प्रगति द्वारा बहुत बड़े पैमाने पर एकीकरण को व्यावहारिक बनाया गया था। 1960 के दशक में इनकी उत्पत्ति के बाद से चिपों के आकार, गति और क्षमता में काफी प्रगति हुई है, जो एक ही आकार के चिपों पर अधिक से अधिक मॉस ट्रांजिस्टर फिट करने वाले तकनीकी विकास द्वारा संचालित है - एक आधुनिक चिप मानव नाखून के आकार जितने क्षेत्रफल में कई अरब मॉस ट्रांजिस्टर हो सकते हैं। साधारणतया मूर के नियम का पालन करते हुए इस प्रगति ने आजकल के कंप्यूटर की चिपों की क्षमता को 1970 के दशक के प्रारंभ के कंप्यूटर चिपों की क्षमता से लाखों गुना और उनकी गति से हजारों गुना अधिक कर दिया है।
[[File:EPROM Microchip SuperMacro.jpg|right|thumb|EPROM मेमोरी माइक्रोचिप से इंटीग्रेटेड परिपथ, मेमोरी ब्लॉक्स, सपोर्टिंग परिपथ्री और फाइन सिल्वर वायर्स जो इंटीग्रेटेड परिपथ को पैकेजिंग के लेग्स से जोड़ते हैं, दिखाते हैं]]
[[File:Siliconchip by shapeshifter.png|right|thumb|पॉलीसिलिकॉन (गुलाबी), कुओं (ग्रेश), और सब्सट्रेट (हरा) के नीचे प्लैनराइज्ड कॉपर इंटरकनेक्ट की चार परतों के माध्यम से एक एकीकृत परिपथ का आभासी विवरण]]
एक '''एकीकृत परिपथ''' या '''अखंड एकीकृत परिपथ''' (जिसे आईसी (IC), एक चिप या माइक्रोचिप (microchip) भी कहा जाता है) अर्धचालक पदार्थ (सामान्यतः सिलिकॉन) के एक छोटे समतलीय टुकड़े (या "चिप") पर विद्युतीय (electronic) परिपथों का एक सुपरिभाषित समूह होता है। एक छोटी-सी  चिप में बड़ी संख्या में छोटे मॉस्फेट (धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर (MOSFET)) एकीकृत होते हैं। परिणामस्वरुप ऐसे परिपथ का निर्माण होता है जो असतत इलेक्ट्रॉनिक घटकों से निर्मित परिपथों की तुलना में छोटे, तेज और कम खर्चीले होते हैं। एकीकृत परिपथ की बनावट के लिए आईसी (IC) की बड़े पैमाने पर उत्पादन क्षमता, विश्वसनीयता और बिल्डिंग-ब्लॉक दृष्टिकोण ने असतत ट्रांजिस्टर का उपयोग वाले परिपथों के स्थान पर मानकीकृत आईसी  (IC) को तीव्रता के साथ अपनाना सुनिश्चित किया है। अब लगभग सभी इलेक्ट्रॉनिक उपकरणों में आईसी (IC) उपयोग किया जाता है और इसने इलेक्ट्रॉनिक्स जगत में क्रांति ला दी है। कंप्यूटर, मोबाइल फोन और अन्य घरेलू उपकरण अब आधुनिक समाज की संरचना के अभिन्न अंग बन चुके हैं, जो आधुनिक कंप्यूटर प्रोसेसर (processor) और माइक्रोकंट्रोलर (microcontroller) जैसे छोटे आकार और कम लागत के आईसी (IC) चिपों द्वारा संभव बनाया गया है।


धातु-ऑक्साइड-सिलिकॉन (MOS) अर्धचालक उपकरणों के निर्माण में तकनीकी प्रगति द्वारा बहुत बड़े पैमाने पर एकीकरण को व्यावहारिक बनाया गया था। 1960 के दशक में इनकी उत्पत्ति के बाद से चिपों के आकार, गति और क्षमता में काफी प्रगति हुई है, जो एक ही आकार के चिपों पर अधिक से अधिक मॉस (MOS) ट्रांजिस्टर फिट करने वाले तकनीकी विकास द्वारा संचालित है - एक आधुनिक चिप मानव नाखून के आकार जितने क्षेत्रफल में कई अरब मॉस (MOS) ट्रांजिस्टर हो सकते हैं। साधारणतया मूर के नियम का पालन करते हुए इस प्रगति ने आजकल के कंप्यूटर की चिपों की क्षमता को 1970 के दशक के प्रारंभ के कंप्यूटर चिपों की क्षमता से लाखों गुना और उनकी गति से हजारों गुना अधिक कर दिया है।
लागत और प्रदर्शन, असतत परिपथ पर IC के दो मुख्य लाभ होते हैं। चिपों के उनके सभी घटकों के साथ एक समय में एक ट्रांजिस्टर के निर्माण के स्थान पर फोटोलिथोग्राफी द्वारा एक इकाई के रूप में मुद्रित होने के कारण इनकी लागत कम होती है। इसके साथ ही असतत सर्किट की तुलना में पैक किए गए IC बहुत कम सामग्री का उपयोग करते हैं। इनका प्रदर्शन उच्च होता है, क्योंकि IC के घटक शीघ्रता से स्विच करते हैं और ये छोटे आकार और सन्निनिकटता के कारण तुलनात्मक रूप से कम बिजली की खपत करते हैं। इनके चिपों के निर्माण और आवश्यक फोटोमास्क बनाने की उच्च लागत IC का मुख्य नुकसान है। इस उच्च प्रारंभिक लागत का अर्थ है कि केवल उच्च उत्पादन मात्रा की संभावना होने पर ही IC व्यावसायिक रूप से व्यवहार्य है।
 
लागत और प्रदर्शन, असतत परिपथ पर आईसी (IC) के दो मुख्य लाभ होते हैं। चिपों के उनके सभी घटकों के साथ एक समय में एक ट्रांजिस्टर के निर्माण के स्थान पर फोटोलिथोग्राफी (photolithography) द्वारा एक इकाई के रूप में मुद्रित होने के कारण इनकी लागत कम होती है। इसके साथ ही असतत सर्किट की तुलना में पैक किए गए आईसी (IC) बहुत कम सामग्री का उपयोग करते हैं। इनका प्रदर्शन उच्च होता है, क्योंकि आईसी (IC) के घटक शीघ्रता से स्विच करते हैं और ये छोटे आकार और सन्निनिकटता के कारण तुलनात्मक रूप से कम बिजली की खपत करते हैं। इनके चिपों के निर्माण और आवश्यक फोटोमास्क बनाने की उच्च लागत आईसी (IC) का मुख्य नुकसान है। इस उच्च प्रारंभिक लागत का अर्थ है कि केवल उच्च उत्पादन मात्रा की संभावना होने पर ही आईसी (IC) व्यावसायिक रूप से व्यवहार्य है।


== शब्दावली ==
== शब्दावली ==
एक एकीकृत परिपथ को इस प्रकार किया गया है:<ref>{{cite web |url=http://www.jedec.org/standards-documents/dictionary/terms/integrated-circuit-ic |title=Integrated circuit (IC) |publisher=[[JEDEC]]}}</ref> <blockquote>एक ऐसा परिपथ, जिसमें कुछ या सभी परिपथ तत्व अविभाजित रूप से जुड़े होते हैं और विद्युत रूप से परस्पर संयोजित होते हैं, जिससे इसे निर्माण और व्यावसायिक उद्देश्यों की दृष्टि से अविभाज्य माना जा सके।</blockquote> इस परिभाषा के साथ सम्बन्ध स्थापित करने वाले परिपथों का निर्माण पतली-फिल्म ट्रांजिस्टर, मोटी-फिल्म तकनीकों और हाइब्रिड एकीकृत परिपथ जैसी  विभिन्न तकनीकों का उपयोग करके किया जा सकता है। हालांकि, सामान्य उपयोग में, मूल रूप से अखंड एकीकृत परिपथ के नाम से जाने जाने वाले  एकल-खंड परिपथ निर्माण को एकीकृत परिपथ से संदर्भित किया जाता है, जिसका निर्माण प्रायः सिलिकॉन के एक टुकड़े पर किया जाता है।<ref>{{cite web |title=The first monolithic integrated circuits |url=http://homepages.nildram.co.uk/~wylie/ICs/monolith.htm |quote=Nowadays when people say 'integrated circuit' they usually mean a monolithic IC, where the entire circuit is constructed in a single piece of silicon. |author=Wylie, Andrew |year=2009 |access-date=14 March 2011}}</ref><ref>{{cite book| last1 = Horowitz| first1 = Paul| author-link1 = Paul Horowitz| last2 = Hill| first2 = Winfield| author-link2 = Winfield Hill| title = The Art of Electronics| edition = 2nd| year = 1989| publisher = Cambridge University Press| isbn = 978-0-521-37095-0| page = [https://archive.org/details/artofelectronics00horo/page/61 61]| quote = Integrated circuits, which have largely replaced circuits constructed from discrete transistors, are themselves merely arrays of transistors and other components built from a single chip of semiconductor material.| url = https://archive.org/details/artofelectronics00horo/page/61}}</ref>
एक एकीकृत परिपथ को इस प्रकार किया गया है:<ref>{{cite web |url=http://www.jedec.org/standards-documents/dictionary/terms/integrated-circuit-ic |title=Integrated circuit (IC) |publisher=[[JEDEC]]}}</ref> <blockquote>एक ऐसा परिपथ, जिसमें कुछ या सभी परिपथ तत्व अविभाजित रूप से जुड़े होते हैं और विद्युत रूप से परस्पर संयोजित होते हैं, जिससे इसे निर्माण और व्यावसायिक उद्देश्यों की दृष्टि से अविभाज्य माना जा सके।</blockquote> इस परिभाषा के साथ सम्बन्ध स्थापित करने वाले परिपथों का निर्माण पतली-फिल्म ट्रांजिस्टर, मोटी-फिल्म तकनीकों और हाइब्रिड एकीकृत परिपथ जैसी  विभिन्न तकनीकों का उपयोग करके किया जा सकता है। हालांकि, सामान्य उपयोग में, मूल रूप से अखंड एकीकृत परिपथ के नाम से जाने जाने वाले  एकल-खंड परिपथ निर्माण को एकीकृत परिपथ से संदर्भित किया जाता है, जिसका निर्माण प्रायः सिलिकॉन के एक टुकड़े पर किया जाता है।<ref>{{cite web |title=The first monolithic integrated circuits |url=http://homepages.nildram.co.uk/~wylie/ICs/monolith.htm |quote=Nowadays when people say 'integrated circuit' they usually mean a monolithic IC, where the entire circuit is constructed in a single piece of silicon. |author=Wylie, Andrew |year=2009 |access-date=14 March 2011}}</ref><ref>{{cite book| last1 = Horowitz| first1 = Paul| author-link1 = Paul Horowitz| last2 = Hill| first2 = Winfield| author-link2 = Winfield Hill| title = The Art of Electronics| edition = 2nd| year = 1989| publisher = Cambridge University Press| isbn = 978-0-521-37095-0| page = [https://archive.org/details/artofelectronics00horo/page/61 61]| quote = Integrated circuits, which have largely replaced circuits constructed from discrete transistors, are themselves merely arrays of transistors and other components built from a single chip of semiconductor material.| url = https://archive.org/details/artofelectronics00horo/page/61}}</ref>
== इतिहास ==
== इतिहास ==
[[File:Kilby solid circuit.jpg|thumb|right|1958 से जैक किल्बी का मूल हाइब्रिड इंटीग्रेटेड परिपथ। यह पहला इंटीग्रेटेड परिपथ था, और इसे जर्मेनियम से बनाया गया था।]]
लोवे 3एनएफ (Loewe 3NF) निर्वात नली, एक आधुनिक IC जैसे उपकरण में कई घटकों के संयोजन का एक प्रारंभिक प्रयास था। IC के विपरीत, इसे कर से बचने के उद्देश्य से भी बनाया गया था, क्योंकि जर्मनी में, रेडियो संग्राहकों के पास एक प्रकार का कर होता था, जो एक रेडियो संग्राहक के नली धारकों की संख्या के आधार पर लगाया जाता था। इसने रेडियो संग्राहकों को एकल नली धारक रखने की अनुमति दी।
1920 के दशक से लोवे 3NF वैक्यूम ट्यूब एक उपकरण (जैसे आधुनिक IC) में कई घटकों के संयोजन का एक प्रारंभिक प्रयास था। आईसी के विपरीत, इसे कर से बचने के उद्देश्य से डिजाइन किया गया था, जैसा कि जर्मनी में, रेडियो रिसीवर के पास एक कर था जो एक रेडियो रिसीवर के कितने ट्यूब धारकों के आधार पर लगाया जाता था। इसने रेडियो रिसीवर्स को सिंगल ट्यूब होल्डर रखने की अनुमति दी।


एक एकीकृत परिपथ की प्रारंभिक अवधारणा 1949 में वापस आती है, जब जर्मन इंजीनियर वर्नर जैकोबिक<ref name="computerhistory-ic">{{cite web|url=https://www.computerhistory.org/atchm/who-invented-the-ic/|title=Who Invented the IC? |department=@CHM Blog |publisher=Computer History Museum |date=20 August 2014}}</ref> (सीमेंस एजी | सीमेंस एजी)<ref>{{cite web|url=http://integratedcircuithelp.com/invention.html |title=Integrated circuits help Invention |publisher=Integratedcircuithelp.com |access-date=2012-08-13}}</ref> एक एकीकृत-परिपथ-जैसे अर्धचालक प्रवर्धक उपकरण के लिए पेटेंट दायर किया<ref name="jacobi1949">{{patent|DE|833366|W. Jacobi/SIEMENS AG: "Halbleiterverstärker" priority filing on 14 April 1949, published on 15 May 1952.}}</ref> तीन-चरण एम्पलीफायर व्यवस्था में एक सामान्य सब्सट्रेट पर पांच ट्रांजिस्टर दिखा रहा है। जैकोबी ने अपने पेटेंट के विशिष्ट औद्योगिक अनुप्रयोगों के रूप में छोटे और सस्ते श्रवण यंत्रों का खुलासा किया। उनके पेटेंट के तत्काल व्यावसायिक उपयोग की सूचना नहीं मिली है।
एक एकीकृत सर्किट की प्रारंभिक अवधारणा वर्ष 1949 में वापस आई, जब जर्मन अभियंता वर्नर जैकोबी<ref name="computerhistory-ic">{{cite web|url=https://www.computerhistory.org/atchm/who-invented-the-ic/|title=Who Invented the IC? |department=@CHM Blog |publisher=Computer History Museum |date=20 August 2014}}</ref> (सीमेंस एजी)<ref>{{cite web|url=http://integratedcircuithelp.com/invention.html |title=Integrated circuits help Invention |publisher=Integratedcircuithelp.com |access-date=2012-08-13}}</ref> ने एक एकीकृत-परिपथ-जैसे अर्धचालक प्रवर्धक उपकरण<ref name="jacobi1949">{{patent|DE|833366|W. Jacobi/SIEMENS AG: "Halbleiterverstärker" priority filing on 14 April 1949, published on 15 May 1952.}}</ref> के लिए तीन चरण वाली प्रवर्धक व्यवस्था के एक सामान्य अधःस्तर पर पांच ट्रांजिस्टरों का प्रदर्शन करते हुए एक एकाधिकार (पेटेंट) दायर किया था। जैकोबी ने अपने पेटेंट के विशिष्ट औद्योगिक अनुप्रयोगों के रूप में छोटे और सस्ते श्रवण यंत्रों का प्रदर्शन किया। उनके पेटेंट के तत्काल व्यावसायिक उपयोग की सूचना नहीं प्राप्त हुई है।


अवधारणा का एक अन्य प्रारंभिक प्रस्तावक जेफ्री डमर (1909-2002) था, जो ब्रिटिश रक्षा मंत्रालय (यूनाइटेड किंगडम) के रॉयल रडार प्रतिष्ठान के लिए काम कर रहे एक रडार वैज्ञानिक थे। डमर ने 7 मई 1952 को वाशिंगटन, डीसी | वाशिंगटन, डीसी में गुणवत्ता इलेक्ट्रॉनिक घटकों में प्रगति पर संगोष्ठी में जनता के लिए विचार प्रस्तुत किया।<ref>[http://www.epn-online.com/page/22909/the-hapless-tale-of-geoffrey-dummer-this-is-the-sad-.html "The Hapless Tale of Geoffrey Dummer"] {{webarchive|url=https://web.archive.org/web/20130511181443/http://www.epn-online.com/page/22909/the-hapless-tale-of-geoffrey-dummer-this-is-the-sad-.html |date=11 May 2013 }} (n.d.) (HTML), ''Electronic Product News'', accessed 8 July 2008.</ref> उन्होंने अपने विचारों को प्रचारित करने के लिए सार्वजनिक रूप से कई संगोष्ठियां दीं और 1956 में इस तरह के एक परिपथ के निर्माण का असफल प्रयास किया। 1953 और 1957 के बीच, सिडनी डार्लिंगटन और यासुओ तारुई (इलेक्ट्रोटेक्निकल लेबोरेटरी) ने समान चिप डिजाइनों का प्रस्ताव रखा, जहां कई ट्रांजिस्टर एक सामान्य सक्रिय क्षेत्र साझा कर सकते थे, लेकिन वहां उन्हें एक दूसरे से अलग करने के लिए कोई पी-एन जंक्शन अलगाव नहीं था।<ref name="computerhistory-ic"/>
जेफ्री डमर (1909-2002) इस अवधारणा के एक अन्य प्रारंभिक प्रस्तावक थे, जो ब्रिटिश रक्षा मंत्रालय के रॉयल रडार प्रतिष्ठान के लिए काम कर रहे एक रडार वैज्ञानिक थे। डमर ने 7 मई 1952 को वाशिंगटन, डी.सी. में एक संगोष्ठी में जनता के समक्ष गुणवत्तापूर्ण इलेक्ट्रॉनिक घटकों की प्रगति पर अपने विचार प्रस्तुत किये।<ref>[http://www.epn-online.com/page/22909/the-hapless-tale-of-geoffrey-dummer-this-is-the-sad-.html "The Hapless Tale of Geoffrey Dummer"] {{webarchive|url=https://web.archive.org/web/20130511181443/http://www.epn-online.com/page/22909/the-hapless-tale-of-geoffrey-dummer-this-is-the-sad-.html |date=11 May 2013 }} (n.d.) (HTML), ''Electronic Product News'', accessed 8 July 2008.</ref> उन्होंने अपने विचारों को प्रचारित करने के लिए सार्वजनिक रूप से कई संगोष्ठियां दीं और वर्ष 1956 में इस तरह के एक परिपथ के निर्माण का प्रयास किया, जो कि असफल रहा। वर्ष 1953 और 1957 के बीच, सिडनी डार्लिंगटन और यासुओ तारुई (विद्युत्-तकनीकी प्रयोगशाला) ने समान चिप रचनाओं का प्रस्ताव रखा, जहाँ कई ट्रांजिस्टर एक सामान्य सक्रिय क्षेत्र साझा कर सकते थे, लेकिन उन्हें एक दूसरे से अलग करने के लिए वहां कोई विद्युत अलगाव नहीं था।<ref name="computerhistory-ic"/>
 
मोनोलिथिक इंटीग्रेटेड परिपथ चिप को जीन होर्नी द्वारा प्लानर प्रक्रिया के आविष्कारों और कर्ट लेहोवेक द्वारा पी-एन जंक्शन अलगाव द्वारा सक्षम किया गया था। होर्नी का आविष्कार सतह पर निष्क्रियता पर मोहम्मद एम। अटाला के काम के साथ-साथ फुलर और डिट्ज़ेनबर्गर के काम पर बोरॉन और फास्फोरस अशुद्धियों के सिलिकॉन में प्रसार, कार्ल फ्रॉश और लिंकन डेरिक के सतह संरक्षण पर काम और चिह-तांग साह के प्रसार पर काम पर बनाया गया था। ऑक्साइड द्वारा मास्किंग।<ref>{{Cite book|last=Saxena|first=Arjum|title=Invention of Integrated Circuits: Untold Important Facts|publisher=World Scientific|year=2009|pages=95–103}}</ref>


अखण्ड एकीकृत परिपथ चिप को जीन होर्नी द्वारा प्लानर प्रक्रिया और कर्ट लेहोवेक द्वारा p-n संधि के आविष्कारों द्वारा सक्षम किया गया था। होर्नी का आविष्कार मोहम्मद एम. अटाला के सतह निष्क्रियता पर कार्य के साथ-साथ फुलर और डिट्ज़ेनबर्गर के बोरॉन और फास्फोरस की अशुद्धियों के सिलिकॉन में प्रसार के कार्य, कार्ल फ्रॉश और लिंकन डेरिक के सतह संरक्षण पर कार्य और चिह-तांग साह के ऑक्साइड द्वारा मास्किंग प्रसार पर कार्य के आधार पर हुआ था।<ref>{{Cite book|last=Saxena|first=Arjum|title=Invention of Integrated Circuits: Untold Important Facts|publisher=World Scientific|year=2009|pages=95–103}}</ref>
=== प्रथम एकीकृत परिपथ ===
[[File:Robert Noyce with Motherboard 1959.png|thumb|रॉबर्ट नॉयस ने वर्ष 1959 में पहले अखंड एकीकृत परिपथ का आविष्कार किया था। जिसमें चिप को सिलिकॉन से बनाया गया था।]]
IC के लिए एक पूर्ववर्ती विचार, छोटे मृत्तिका अधःस्तर (तथाकथित माइक्रोमॉड्यूल) बनाना था,<ref name=micromodules/> जिसमें प्रत्येक अधःस्तर में एक छोटा सा घटक होता है। तब घटकों को एकीकृत और एक द्वि-आयामी या त्रि-आयामी सघन जाल में तारित किया जा सकता था। वर्ष 1957 में अत्यधिक आशाजनक लगने वाला यह विचार जैक किल्बी<ref name="micromodules" /> द्वारा अमेरिकी सेना को प्रस्तावित किया गया था और इसने वर्ष 1951 की परियोजना टिंकरटॉय के समान अल्पकालिक माइक्रोमॉड्यूल कार्यक्रम का नेतृत्व किया।।<ref name= micromodules >{{Cite web|url=http://www.eetimes.com/special/special_issues/millennium/milestones/kilby.html|title=Micromodules: the ultimate package|last=Rostky|first=George|website=EE Times|archive-url=https://web.archive.org/web/20100107111717/http://www.eetimes.com/special/special_issues/millennium/milestones/kilby.html|archive-date=2010-01-07|access-date=2018-04-23}}</ref><ref>{{Cite web|url=http://www.chipsetc.com/the-rca-micromodule.html|title=The RCA Micromodule|website=Vintage Computer Chip Collectibles, Memorabilia & Jewelry|access-date=2018-04-23}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=tdCjBQAAQBAJ&q=micromodule&pg=PA392|title=American Microelectronics Data Annual 1964–65|last1=Dummer|first1=G.W.A.|last2=Robertson|first2=J. Mackenzie|date=2014-05-16|publisher=Elsevier|isbn=978-1-4831-8549-1|pages=392–397, 405–406}}</ref> हालांकि, जैसे-जैसे परियोजना गति प्राप्त कर रही थी, किल्बी एक नयी क्रांतिकारी रचना "एकीकृत परिपथ" के साथ प्रस्तुत हुए।


=== प्रथम एकीकृत परिपथ ===
टेक्सास इंस्ट्रूमेंट्स द्वारा नव नियुक्त किल्बी ने जुलाई 1958 में एकीकृत सर्किट से संबंधित अपने प्रारंभिक विचारों को दर्ज करते हुए, 12 सितंबर 1958 को एक एकीकृत परिपथ के पहले संचालित उदाहरण को सफलतापूर्वक प्रदर्शित किया।<ref name="TIJackBuilt">[http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml ''The Chip that Jack Built''], (c. 2008), (HTML), Texas Instruments, Retrieved 29 May 2008.</ref> 6 फरवरी 1959 के अपने पेटेंट आवेदन में,<ref>Kilby, Jack S. "Miniaturized Electronic Circuits", {{US Patent|3138743}}, filed 6 February 1959, issued 23 June 1964.</ref> किल्बी ने अपने नए उपकरण को "अर्धचालक सामग्री का एक निकाय ... जिसमें इलेक्ट्रॉनिक परिपथ के सभी घटक पूरी तरह से एकीकृत हैं" के रूप में वर्णित किया।<ref>{{cite book| last = Winston| first = Brian| title = Media Technology and Society: A History: From the Telegraph to the Internet| url = https://books.google.com/books?id=gfeCXlElJTwC&pg=PA221| year = 1998| publisher = Routledge| isbn = 978-0-415-14230-4| page = 221 }}</ref> अमेरिकी वायु सेना नए आविष्कार के लिए पहली उपभोक्ता थी।<ref>{{cite web|url=http://www.ti.com/corp/docs/company/history/timeline/defense/1960/docs/61-first_ic.htm |title=Texas Instruments – 1961 First IC-based computer |publisher=Ti.com |access-date=2012-08-13}}</ref> किल्बी ने एकीकृत परिपथ के आविष्कार में अपनी भूमिका के लिए भौतिकी में वर्ष 2000 का नोबेल पुरस्कार जीता।<ref>[http://nobelprize.org/nobel_prizes/physics/laureates/2000/press.html "The Nobel Prize in Physics 2000"], nobelprize.org (10 October 2000)</ref> हालांकि, किल्बी का आविष्कार एक अखंड एकीकृत परिपथ चिप के स्थान पर एक हाइब्रिड एकीकृत परिपथ था।<ref name="Saxena140">{{cite book |last1=Saxena |first1=Arjun N. |title=Invention of Integrated Circuits: Untold Important Facts |date=2009 |publisher=[[World Scientific]] |isbn=9789812814456 |page=140 |url=https://books.google.com/books?id=-3lpDQAAQBAJ&pg=PA140}}</ref> किल्बी के IC में बाहरी तार संयोजन थे, जिससे बड़े पैमाने पर उत्पादन करना मुश्किल हो गया।<ref name="nasa">{{cite web |title=Integrated circuits |url=https://www.hq.nasa.gov/alsj/ic-pg3.html |website=[[NASA]] |access-date=13 August 2019}}</ref>
{{Main|Invention of the integrated circuit}}
{{See also|Planar process|p–n junction isolation|Surface passivation}}
[[File:Robert Noyce with Motherboard 1959.png|thumb|रॉबर्ट नॉयस ने 1959 में पहले मोनोलिथिक इंटीग्रेटेड परिपथ का आविष्कार किया था। चिप को सिलिकॉन से बनाया गया था।]]
आईसी के लिए एक अग्रदूत विचार छोटे सिरेमिक सबस्ट्रेट्स (तथाकथित माइक्रोमोड्यूल) बनाना था,<ref name=micromodules/>प्रत्येक में एक छोटा सा घटक होता है। घटकों को तब एकीकृत किया जा सकता है और एक द्विआयामी या त्रिआयामी कॉम्पैक्ट ग्रिड में तारित किया जा सकता है। यह विचार, जो 1957 में बहुत आशाजनक लग रहा था, अमेरिकी सेना को जैक किल्बी द्वारा प्रस्तावित किया गया था<ref name="micromodules" />और अल्पकालिक माइक्रोमॉड्यूल प्रोग्राम (1951 के प्रोजेक्ट टिंकर्टॉय के समान) का नेतृत्व किया।<ref name= micromodules >{{Cite web|url=http://www.eetimes.com/special/special_issues/millennium/milestones/kilby.html|title=Micromodules: the ultimate package|last=Rostky|first=George|website=EE Times|archive-url=https://web.archive.org/web/20100107111717/http://www.eetimes.com/special/special_issues/millennium/milestones/kilby.html|archive-date=2010-01-07|access-date=2018-04-23}}</ref><ref>{{Cite web|url=http://www.chipsetc.com/the-rca-micromodule.html|title=The RCA Micromodule|website=Vintage Computer Chip Collectibles, Memorabilia & Jewelry|access-date=2018-04-23}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=tdCjBQAAQBAJ&q=micromodule&pg=PA392|title=American Microelectronics Data Annual 1964–65|last1=Dummer|first1=G.W.A.|last2=Robertson|first2=J. Mackenzie|date=2014-05-16|publisher=Elsevier|isbn=978-1-4831-8549-1|pages=392–397, 405–406}}</ref> हालांकि, जैसे-जैसे परियोजना गति प्राप्त कर रही थी, किल्बी एक नए, क्रांतिकारी डिजाइन के साथ आया: आईसी।


टेक्सास इंस्ट्रूमेंट्स द्वारा नव नियोजित, किल्बी ने जुलाई 1958 में एकीकृत परिपथ से संबंधित अपने प्रारंभिक विचारों को दर्ज किया, 12 सितंबर 1958 को एक एकीकृत परिपथ के पहले कामकाजी उदाहरण को सफलतापूर्वक प्रदर्शित किया।<ref name="TIJackBuilt">[http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml ''The Chip that Jack Built''], (c. 2008), (HTML), Texas Instruments, Retrieved 29 May 2008.</ref> 6 फरवरी 1959 के अपने पेटेंट आवेदन में,<ref>Kilby, Jack S. "Miniaturized Electronic Circuits", {{US Patent|3138743}}, filed 6 February 1959, issued 23 June 1964.</ref> किल्बी ने अपने नए उपकरण को सेमीकंडक्टर सामग्री का एक निकाय बताया... जिसमें इलेक्ट्रॉनिक परिपथ के सभी घटक पूरी तरह से एकीकृत हैं।<ref>{{cite book| last = Winston| first = Brian| title = Media Technology and Society: A History: From the Telegraph to the Internet| url = https://books.google.com/books?id=gfeCXlElJTwC&pg=PA221| year = 1998| publisher = Routledge| isbn = 978-0-415-14230-4| page = 221 }}</ref> नए आविष्कार के लिए पहला ग्राहक अमेरिकी वायु सेना था।<ref>{{cite web|url=http://www.ti.com/corp/docs/company/history/timeline/defense/1960/docs/61-first_ic.htm |title=Texas Instruments – 1961 First IC-based computer |publisher=Ti.com |access-date=2012-08-13}}</ref> किल्बी ने एकीकृत परिपथ के आविष्कार में अपने हिस्से के लिए भौतिकी में 2000 का नोबेल पुरस्कार जीता।<ref>[http://nobelprize.org/nobel_prizes/physics/laureates/2000/press.html "The Nobel Prize in Physics 2000"], nobelprize.org (10 October 2000)</ref> हालांकि, किल्बी का आविष्कार एक मोनोलिथिक इंटीग्रेटेड परिपथ (मोनोलिथिक आईसी) चिप के बजाय एक हाइब्रिड इंटीग्रेटेड परिपथ (हाइब्रिड आईसी) था।<ref name="Saxena140">{{cite book |last1=Saxena |first1=Arjun N. |title=Invention of Integrated Circuits: Untold Important Facts |date=2009 |publisher=[[World Scientific]] |isbn=9789812814456 |page=140 |url=https://books.google.com/books?id=-3lpDQAAQBAJ&pg=PA140}}</ref> किल्बी के आईसी में बाहरी तार कनेक्शन थे, जिससे बड़े पैमाने पर उत्पादन करना मुश्किल हो गया।<ref name="nasa">{{cite web |title=Integrated circuits |url=https://www.hq.nasa.gov/alsj/ic-pg3.html |website=[[NASA]] |access-date=13 August 2019}}</ref>
फेयरचाइल्ड अर्धचालक में किल्बी और रॉबर्ट नॉयस ने 6 महीने बाद पहले सत्य अखंड एकीकृत परिपथ का आविष्कार किया।<ref name="computerhistory1959">{{cite web |title=1959: Practical Monolithic Integrated Circuit Concept Patented |url=https://www.computerhistory.org/siliconengine/practical-monolithic-integrated-circuit-concept-patented/ |website=[[Computer History Museum]] |access-date=13 August 2019}}</ref><ref name="nasa" /> यह एकीकृत परिपथ की एक नई किस्म थी, जो किल्बी के कार्यान्वयन से अधिक व्यावहारिक थी। नॉयस का रचना सिलिकॉन से, जबकि किल्बी की चिप जर्मेनियम से बनी थी। नॉयस के अखंड एकीकृत परिपथ ने सभी घटकों को सिलिकॉन की एक चिप पर रखा और उन्हें तांबे की रेखाओं से जोड़ा।<ref name="nasa" /> नॉयस का अखंड एकीकृत परिपथ प्लानर प्रक्रिया का उपयोग करके अर्धचालक उपकरण का एक निर्माण था, जिसे वर्ष 1959 के प्रारंभ में उनके सहयोगी जीन होर्नी ने विकसित किया था। आधुनिक IC चिपें किल्बी के हाइब्रिड IC के स्थान पर<ref name="Saxena140" /> नॉयस के अखंड एकीकृत परिपथ पर आधारित हैं।<ref name="computerhistory1959" /><ref name="nasa" />
किल्बी के आधे साल बाद, फेयरचाइल्ड सेमीकंडक्टर में रॉबर्ट नॉयस ने पहली सच्ची मोनोलिथिक आईसी चिप का आविष्कार किया।<ref name="computerhistory1959">{{cite web |title=1959: Practical Monolithic Integrated Circuit Concept Patented |url=https://www.computerhistory.org/siliconengine/practical-monolithic-integrated-circuit-concept-patented/ |website=[[Computer History Museum]] |access-date=13 August 2019}}</ref><ref name="nasa"/>यह एकीकृत परिपथ की एक नई किस्म थी, जो किल्बी के कार्यान्वयन से अधिक व्यावहारिक थी। नॉयस का डिजाइन सिलिकॉन से बना था, जबकि किल्बी की चिप जर्मेनियम से बनी थी। नॉयस के मोनोलिथिक आईसी ने सभी घटकों को सिलिकॉन की एक चिप पर रखा और उन्हें तांबे की लाइनों से जोड़ा।<ref name="nasa"/>नॉयस का मोनोलिथिक आईसी प्लानर प्रक्रिया का उपयोग करके सेमीकंडक्टर डिवाइस फैब्रिकेशन था, जिसे 1959 की शुरुआत में उनके सहयोगी जीन होर्नी ने विकसित किया था। आधुनिक आईसी चिप्स नॉयस के मोनोलिथिक आईसी पर आधारित हैं,<ref name="computerhistory1959"/><ref name="nasa"/>किल्बी के हाइब्रिड आईसी के बजाय।<ref name="Saxena140"/>


नासा का अपोलो कार्यक्रम 1961 और 1965 के बीच एकीकृत परिपथों का सबसे बड़ा एकल उपभोक्ता था।<ref name="eldon">Hall,  
नासा का अपोलो कार्यक्रम वर्ष 1961 और 1965 के बीच एकीकृत परिपथों का सबसे बड़ा एकल उपभोक्ता था।<ref name="eldon">Hall,  
Eldon C. (1996).
Eldon C. (1996).
[https://books.google.com/books?id=G8Dml1x55r0C "Journey to the Moon: The History of the Apollo Guidance Computer"]. American Institute of Aeronautics and Astronautics. pp. 18–19. {{ISBN|9781563471858}}
[https://books.google.com/books?id=G8Dml1x55r0C "Journey to the Moon: The History of the Apollo Guidance Computer"]. American Institute of Aeronautics and Astronautics. pp. 18–19. {{ISBN|9781563471858}}
</ref>
</ref>
=== टीटीएल एकीकृत परिपथ ===
ट्रांजिस्टर-ट्रांजिस्टर लॉजिक (टीटीएल/TTL) को जेम्स एल. बुई द्वारा 1960 के दशक के प्रारंभ में टीआरडब्ल्यू आईएनसी. में विकसित किया गया था। वर्ष 1970 से 1980 के दशक के दौरान ट्रांजिस्टर-ट्रांजिस्टर लॉजिक प्रमुख एकीकृत परिपथ तकनीक बन गया।<ref>{{cite web |title=Computer Pioneers – James L. Buie |url=https://history.computer.org/pioneers/buie.html |website=[[IEEE Computer Society]] |access-date=25 May 2020}}</ref>
दर्जनों टीटीएल एकीकृत परिपथ मिनीकंप्यूटर और मेनफ्रेम कंप्यूटर के प्रोसेसर के लिए निर्माण की एक मानक विधि थे। आईबीएम 360 मेनफ्रेम, पीडीपी-11 (PDP-11) मिनीकंप्यूटर और डेस्कटॉप डेटापॉइंट 2200 जैसे कंप्यूटर या तो टीटीएल या उससे भी तेज उत्सर्जक-युग्मित तर्क जैसे द्विध्रुवी एकीकृत परिपथों से बनाए गए थे।<ref name="tmx_shirriff" />
=== मॉस एकीकृत परिपथ ===
लगभग सभी आधुनिक IC चिप, मॉस्फेट (धातु-ऑक्साइड-सिलिकॉन फील्ड-इफेक्ट ट्रांजिस्टर) से निर्मित धातु-ऑक्साइड-अर्धचालक (मॉस) एकीकृत परिपथ होते हैं।<ref name="Kuo">{{cite journal |last1=Kuo |first1=Yue |title=Thin Film Transistor Technology—Past, Present, and Future |journal=The Electrochemical Society Interface |date=1 January 2013 |volume=22 |issue=1 |pages=55–61 |doi=10.1149/2.F06131if |bibcode=2013ECSIn..22a..55K |url=https://www.electrochem.org/dl/interface/spr/spr13/spr13_p055_061.pdf }}</ref> मोहम्मद एम. अटाला और डॉन कहंग द्वारा वर्ष 1959 में बेल प्रयोगशाला में अविष्कृत मॉस ट्रांजिस्टर के रूप में जाने जाने वाले मॉस्फेट<ref>{{cite web |title=1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated |url=https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/ |website=[[Computer History Museum]]}}</ref> ने उच्च-घनत्व एकीकृत परिपथों के निर्माण को संभव बना दिया।<ref name="computerhistory-transistor">{{cite web |title=Who Invented the Transistor? |author=Laws, David |url=https://www.computerhistory.org/atchm/who-invented-the-transistor/ |website=[[Computer History Museum]] |date=4 December 2013 }}</ref> एक चिप पर ट्रांजिस्टर के पी-एन संधि अलगाव के लिए कई चरणों की आवश्यकता वाले द्विध्रुवी ट्रांजिस्टर के विपरीत, मॉस्फेट को ऐसे चरणों की आवश्यकता नहीं होती है, लेकिन इन्हें आसानी से एक दूसरे से अलग किया जा सकता है।<ref name="Bassett53">{{cite book |last1=Bassett |first1=Ross Knox |title=To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology |date=2002 |publisher=[[Johns Hopkins University Press]] |isbn=978-0-8018-6809-2 |pages=53–4 |url=https://books.google.com/books?id=Qge1DUt7qDUC&pg=PA53}}</ref> डॉन कहंग ने वर्ष 1961 में एकीकृत परिपथों के लिए इसके लाभ पर प्रकश डाला था।<ref name="Bassett22">{{cite book |last1=Bassett |first1=Ross Knox |title=To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology |date=2007 |publisher=[[Johns Hopkins University Press]] |isbn=9780801886393 |pages=22–25 |url=https://books.google.com/books?id=UUbB3d2UnaAC&pg=PA22}}</ref> आईईईई (IEEE) के मील के पत्थर की सूची में वर्ष 1958 में किल्बी द्वारा पहला एकीकृत परिपथ,<ref>{{cite web |url=http://www.ieeeghn.org/wiki/index.php/Milestones:First_Semiconductor_Integrated_Circuit_%28IC%29,_1958 |title=Milestones:First Semiconductor Integrated Circuit (IC), 1958 |work=IEEE Global History Network |publisher=IEEE |access-date=3 August 2011}}</ref> वर्ष 1959 में होर्नी की प्लानर प्रक्रिया और नॉयस का प्लानर IC, और 1959 में अटाला और कहंग द्वारा मॉस्फेट सम्मिलित हैं।<ref>{{Cite web|url=https://ethw.org/Milestones:List_of_IEEE_Milestones|title=Milestones:List of IEEE Milestones – Engineering and Technology History Wiki|website=ethw.org|date=9 December 2020 }}</ref>
फ्रेड हेमैन और स्टीवन हॉफस्टीन द्वारा वर्ष 1962 में आरसीए (RCA) में निर्मित 16-ट्रांजिस्टर चिप सबसे पहला प्रायोगिक मॉस एकीकृत परिपथ था।<ref name="computerhistory-digital">{{cite web |title=Tortoise of Transistors Wins the Race – CHM Revolution |url=https://www.computerhistory.org/revolution/digital-logic/12/279 |website=[[Computer History Museum]] |access-date=22 July 2019}}</ref> जनरल माइक्रोइलेक्ट्रॉनिक ने बाद में वर्ष 1964 में रॉबर्ट नॉर्मन द्वारा विकसित पहला व्यावसायिक मॉस एकीकृत परिपथ,<ref name="computerhistory1964">{{cite web|url=http://www.computerhistory.org/semiconductor/timeline/1964-Commecial.html|title=1964 – First Commercial MOS IC Introduced|website=[[Computer History Museum]]}}</ref> 120-ट्रांजिस्टर शिफ्ट रजिस्टर<ref name="computerhistory-digital" /> प्रस्तुत किया। मॉस चिप वर्ष 1964 तक द्विध्रुवीय चिपों की तुलना में उच्च ट्रांजिस्टर घनत्व और कम विनिर्माण लागत तक पहुंच गए थे। मॉस चिप मूर के नियम द्वारा अनुमानित दर से और अधिक जटिल हो गए, जिससे 1960 के दशक के अंत तक एक एकल मॉस चिप पर सैकड़ों ट्रांजिस्टर के साथ बड़े पैमाने पर एकीकरण (LSI) हो गया।<ref name="ieee">{{cite journal |last1=Shirriff |first1=Ken |title=The Surprising Story of the First Microprocessors |journal=[[IEEE Spectrum]] |volume=53 |issue=9 |pages=48–54 |date=30 August 2016 |publisher=[[Institute of Electrical and Electronics Engineers]] |url=https://spectrum.ieee.org/tech-history/silicon-revolution/the-surprising-story-of-the-first-microprocessors|doi=10.1109/MSPEC.2016.7551353 |s2cid=32003640 }}</ref>
बेल प्रयोगशाला में रॉबर्ट केर्विन, डोनाल्ड क्लेन और जॉन सरेस द्वारा वर्ष 1967 में स्व-संरेखित गेट (सिलिकॉन-गेट) मॉस्फेट के विकास के बाद,<ref>{{cite web |title=1968: Silicon Gate Technology Developed for ICs |url=https://www.computerhistory.org/siliconengine/silicon-gate-technology-developed-for-ics/ |website=[[Computer History Museum]] |access-date=22 July 2019}}</ref> सभी आधुनिक सीमॉस (CMOS) एकीकृत परिपथों का आधार पहला स्व-संरेखित गेटों के साथ सिलिकॉन-गेट मॉस एकीकृत परिपथ, वर्ष 1968 में फेडेरिको फागिन द्वारा फेयरचाइल्ड अर्धचालक में विकसित किया गया था।<ref>{{cite web |title=1968: Silicon Gate Technology Developed for ICs |url=https://www.computerhistory.org/siliconengine/silicon-gate-technology-developed-for-ics/ |website=The Silicon Engine |publisher=[[Computer History Museum]] |access-date=13 October 2019}}</ref> गणना के लिए मॉस एलएसआई चिपों का अनुप्रयोग पहले माइक्रोप्रोसेसरों का आधार था, क्योंकि अभियंताओं ने यह पहचानना शुरू कर दिया था कि एक एकल मॉस एलएसआई चिप पर एक पूर्ण कंप्यूटर प्रोसेसर सम्मिलित हो सकता है। इसके कारण 1970 के दशक के प्रारंभ में माइक्रोप्रोसेसर और माइक्रोकंट्रोलर का आविष्कार हुआ।<ref name="ieee" /> मॉस एकीकृत परिपथ तकनीक ने 1970 के दशक के प्रारंभ में एक चिप पर 10,000 से अधिक ट्रांजिस्टर के बहुत बड़े पैमाने पर एकीकरण (VLSI) को सक्षम किया।<ref>{{cite journal |last1=Hittinger |first1=William C. |title=Metal–Oxide–Semiconductor Technology |journal=Scientific American |date=1973 |volume=229 |issue=2 |pages=48–59 |jstor=24923169 |doi=10.1038/scientificamerican0873-48 |bibcode=1973SciAm.229b..48H }}</ref>


सर्वप्रथम अन्तरिक्षीय और पॉकेट कैलकुलेटर जैसे मॉस-आधारित कंप्यूटर केवल उच्च घनत्व की आवश्यकता पर ही उचित होते थे। 1980 के दशक के प्रारंभ तक, 1970 डेटाप्वाइंट 2200 जैसे पूर्णतः टीटीएल (TTL) से निर्मित कंप्यूटर, वर्ष 1972 के इंटेल 8008 जैसे एकल-चिप मॉस माइक्रोप्रोसेसरों की तुलना में अधिक तेज और शक्तिशाली थे।<ref name="tmx_shirriff">केन शिरिफ। [https://www.righto.com/2015/05/the-texas-instruments-tmx-1795-first.html टेक्सास इंस्ट्रूमेंट्स टीएमएक्स 1795: (लगभग) पहले, भूल गए माइक्रोप्रोसेसर]। 2015.</ref>


=== टीटीएल एकीकृत परिपथ ===
IC प्रौद्योगिकी में मुख्य रूप से छोटी विशेषताओं और बड़े चिपों की प्रगति ने एक एकीकृत परिपथ में मॉस ट्रांजिस्टर की संख्या को हर दो साल में दोगुना करने की अनुमति दी है, जिसे मूर के नियम नामक एक प्रवृत्ति के नाम से जाना जाता है। मूर ने मूल रूप से कहा था कि यह दोगुना हो जाएगा, लेकिन उन्होंने हर साल के दावे को वर्ष 1975 में हर दो साल के दावे में बदल दिया।[[:en:Integrated_circuit#cite_note-36|<sup>[36]</sup>]] इस बढ़ी हुई क्षमता का उपयोग लागत कम करने और कार्यक्षमता बढ़ाने के लिए किया गया है। सामान्य तौर पर, जैसे-जैसे सुविधा का आकार सिकुड़ता जाता है, IC के संचालन के लगभग हर पहलू में सुधार होता है। प्रति ट्रांजिस्टर लागत और प्रति ट्रांजिस्टर स्विचिंग बिजली की खपत कम हो जाती है, जबकि मेमोरी क्षमता और गति बढ़ जाती है, डेनार्ड स्केलिंग (एमओएसएफईटी स्केलिंग) द्वारा परिभाषित संबंधों के माध्यम से।[[:en:Integrated_circuit#cite_note-37|<sup>[37]</sup>]] गति, क्षमता और बिजली की खपत का लाभ अंतिम उपयोगकर्ता तक के लिए स्पष्ट होने के कारण निर्माताओं में बारीक ज्यामिति का उपयोग करने के लिए उग्र प्रतिस्पर्धा होती है। इन वर्षों में ट्रांजिस्टर का आकार 1970 के दशक के प्रारंभ में कई दस माइक्रोन से घटकर प्रति यूनिट क्षेत्र में ट्रांजिस्टर में कई मिलियन गुना वृद्धि के साथ वर्ष 2017 में 10 नैनोमीटर हो गया है।[[:en:Integrated_circuit#cite_note-38|<sup>[38]</sup>]] वर्ष 2016 तक विशिष्ट चिप का क्षेत्रफल कुछ वर्ग मिलीमीटर से लेकर 25 मिलियन ट्रांजिस्टर प्रति वर्ग मिमी के साथ लगभग 600 वर्ग मिमी तक होते हैं<big>।<sup><ref name="Pascal">{{cite web |url=https://devblogs.nvidia.com/parallelforall/inside-pascal/ |title=Inside Pascal: NVIDIA's Newest Computing Platform|date=2016-04-05}}.  15,300,000,000 transistors in 610 mm<sup>2</sup>.</ref></big>
{{Main|Transistor–transistor logic}}
ट्रांजिस्टर-ट्रांजिस्टर लॉजिक (TTL) को जेम्स एल. बुई द्वारा 1960 के दशक की शुरुआत में TRW Inc. में विकसित किया गया था। TTL 1970 से 1980 के दशक के दौरान प्रमुख एकीकृत परिपथ तकनीक बन गया।<ref>{{cite web |title=Computer Pioneers – James L. Buie |url=https://history.computer.org/pioneers/buie.html |website=[[IEEE Computer Society]] |access-date=25 May 2020}}</ref>
दर्जनों टीटीएल एकीकृत परिपथ मिनीकंप्यूटर और मेनफ्रेम कंप्यूटर की केंद्रीय प्रसंस्करण इकाई के निर्माण का एक मानक तरीका था। आईबीएम 360 मेनफ्रेम, पीडीपी-11 मिनीकंप्यूटर और डेस्कटॉप डेटापॉइंट 2200 जैसे कंप्यूटर बाइपोलर जंक्शन ट्रांजिस्टर इंटीग्रेटेड परिपथ से बनाए गए थे।<ref name="tmx_shirriff" />या तो टीटीएल या इससे भी तेज एमिटर-कपल्ड लॉजिक (ईसीएल)।


=== एमओएस इंटीग्रेटेड परिपथ ===
<sup><big>इंटरनेशनल टेक्नोलॉजी रोडमैप फॉर सेमीकंडक्टर्स (ITRS) द्वारा विशेषता के आकार में अपेक्षित सिकुड़न और संबंधित क्षेत्रों में आवश्यक प्रगति का अनुमान कई वर्षों में लगाया गया था। अंतिम आईटीआरएस वर्ष  2016 में जारी किया गया था, और इसे उपकरणों और प्रणालियों के लिए अंतर्राष्ट्रीय रोडमैप द्वारा प्रतिस्थापित किया जा रहा है।<ref>{{cite web |title=International Roadmap for Devices and Systems |publisher=IEEE |year=2016 |url=http://rebootingcomputing.ieee.org/images/files/pdf/rc_irds.pdf}}</ref></big>
{{See|MOSFET applications#MOS integrated circuit}}
{{See also|List of semiconductor scale examples|Mixed-signal integrated circuit|Moore's law|Three-dimensional integrated circuit|Transistor count|Very Large Scale Integration}}
लगभग सभी आधुनिक IC चिप्स मेटल-ऑक्साइड-सेमीकंडक्टर (MOS) इंटीग्रेटेड परिपथ हैं, जो MOSFETs (मेटल-ऑक्साइड-सिलिकॉन फील्ड-इफेक्ट ट्रांजिस्टर) से निर्मित होते हैं।<ref name="Kuo">{{cite journal |last1=Kuo |first1=Yue |title=Thin Film Transistor Technology—Past, Present, and Future |journal=The Electrochemical Society Interface |date=1 January 2013 |volume=22 |issue=1 |pages=55–61 |doi=10.1149/2.F06131if |bibcode=2013ECSIn..22a..55K |url=https://www.electrochem.org/dl/interface/spr/spr13/spr13_p055_061.pdf }}</ref> MOSFET (जिसे MOS ट्रांजिस्टर के रूप में भी जाना जाता है), जिसका आविष्कार मोहम्मद एम। अटाला और डॉन कहंग ने 1959 में बेल लैब्स में किया था।<ref>{{cite web |title=1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated |url=https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/ |website=[[Computer History Museum]]}}</ref> बहुत बड़े पैमाने पर एकीकरण | उच्च-घनत्व एकीकृत परिपथों का निर्माण करना संभव बना दिया।<ref name="computerhistory-transistor">{{cite web |title=Who Invented the Transistor? |author=Laws, David |url=https://www.computerhistory.org/atchm/who-invented-the-transistor/ |website=[[Computer History Museum]] |date=4 December 2013 }}</ref> द्विध्रुवी ट्रांजिस्टर के विपरीत, जिसमें एक चिप पर ट्रांजिस्टर के पी-एन जंक्शन अलगाव के लिए कई चरणों की आवश्यकता होती है, एमओएसएफईटी को ऐसे चरणों की आवश्यकता नहीं होती है, लेकिन आसानी से एक दूसरे से अलग किया जा सकता है।<ref name="Bassett53">{{cite book |last1=Bassett |first1=Ross Knox |title=To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology |date=2002 |publisher=[[Johns Hopkins University Press]] |isbn=978-0-8018-6809-2 |pages=53–4 |url=https://books.google.com/books?id=Qge1DUt7qDUC&pg=PA53}}</ref> 1961 में डॉन कहंग ने एकीकृत परिपथ के लिए इसके लाभ की ओर इशारा किया था।<ref name="Bassett22">{{cite book |last1=Bassett |first1=Ross Knox |title=To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology |date=2007 |publisher=[[Johns Hopkins University Press]] |isbn=9780801886393 |pages=22–25 |url=https://books.google.com/books?id=UUbB3d2UnaAC&pg=PA22}}</ref> IEEE मील के पत्थर की सूची में 1958 में Kilby द्वारा पहला एकीकृत परिपथ शामिल है,<ref>{{cite web |url=http://www.ieeeghn.org/wiki/index.php/Milestones:First_Semiconductor_Integrated_Circuit_%28IC%29,_1958 |title=Milestones:First Semiconductor Integrated Circuit (IC), 1958 |work=IEEE Global History Network |publisher=IEEE |access-date=3 August 2011}}</ref> 1959 में होर्नी की प्लानर प्रक्रिया और नॉयस का प्लानर आईसी, और 1959 में अटाला और कहंग द्वारा एमओएसएफईटी।<ref>{{Cite web|url=https://ethw.org/Milestones:List_of_IEEE_Milestones|title=Milestones:List of IEEE Milestones – Engineering and Technology History Wiki|website=ethw.org|date=9 December 2020 }}</ref>
सबसे पहले प्रायोगिक MOS IC का निर्माण किया जाने वाला 16-ट्रांजिस्टर चिप था जिसे 1962 में RCA में फ्रेड हेमैन और स्टीवन हॉफस्टीन द्वारा बनाया गया था।<ref name="computerhistory-digital">{{cite web |title=Tortoise of Transistors Wins the Race – CHM Revolution |url=https://www.computerhistory.org/revolution/digital-logic/12/279 |website=[[Computer History Museum]] |access-date=22 July 2019}}</ref> जनरल माइक्रोइलेक्ट्रॉनिक ने बाद में 1964 में पहला वाणिज्यिक MOS एकीकृत परिपथ पेश किया,<ref name="computerhistory1964">{{cite web|url=http://www.computerhistory.org/semiconductor/timeline/1964-Commecial.html|title=1964 – First Commercial MOS IC Introduced|website=[[Computer History Museum]]}}</ref> रॉबर्ट नॉर्मन द्वारा विकसित एक 120-ट्रांजिस्टर शिफ्ट रजिस्टर।<ref name="computerhistory-digital"/>1964 तक, एमओएस चिप्स द्विध्रुवी जंक्शन ट्रांजिस्टर चिप्स की तुलना में उच्च ट्रांजिस्टर घनत्व और कम विनिर्माण लागत तक पहुंच गए थे। मूर के नियम द्वारा अनुमानित दर से एमओएस चिप्स जटिलता में और बढ़ गए, जिससे 1960 के दशक के अंत तक एक एकल एमओएस चिप पर सैकड़ों ट्रांजिस्टर के साथ बड़े पैमाने पर एकीकरण (एलएसआई) हो गया।<ref name="ieee">{{cite journal |last1=Shirriff |first1=Ken |title=The Surprising Story of the First Microprocessors |journal=[[IEEE Spectrum]] |volume=53 |issue=9 |pages=48–54 |date=30 August 2016 |publisher=[[Institute of Electrical and Electronics Engineers]] |url=https://spectrum.ieee.org/tech-history/silicon-revolution/the-surprising-story-of-the-first-microprocessors|doi=10.1109/MSPEC.2016.7551353 |s2cid=32003640 }}</ref>
1967 में बेल लैब्स में रॉबर्ट केर्विन, डोनाल्ड एल. क्लेन और जॉन सरेस द्वारा स्व-संरेखित गेट (सिलिकॉन-गेट) MOSFET के विकास के बाद,<ref>{{cite web |title=1968: Silicon Gate Technology Developed for ICs |url=https://www.computerhistory.org/siliconengine/silicon-gate-technology-developed-for-ics/ |website=[[Computer History Museum]] |access-date=22 July 2019}}</ref> स्व-संरेखित गेटों के साथ पहली सिलिकॉन-गेट एमओएस आईसी तकनीक, सभी आधुनिक सीएमओएस एकीकृत परिपथों का आधार, 1968 में फेडेरिको फागिन द्वारा फेयरचाइल्ड सेमीकंडक्टर में विकसित किया गया था।<ref>{{cite web |title=1968: Silicon Gate Technology Developed for ICs |url=https://www.computerhistory.org/siliconengine/silicon-gate-technology-developed-for-ics/ |website=The Silicon Engine |publisher=[[Computer History Museum]] |access-date=13 October 2019}}</ref> कंप्यूटिंग के लिए एमओएस एलएसआई चिप्स का आवेदन पहले माइक्रोप्रोसेसरों का आधार था, क्योंकि इंजीनियरों ने यह पहचानना शुरू कर दिया था कि एक एकल एमओएस एलएसआई चिप पर एक पूर्ण कंप्यूटर प्रोसेसर शामिल हो सकता है। इसके कारण 1970 के दशक की शुरुआत में माइक्रोप्रोसेसर और माइक्रोकंट्रोलर का आविष्कार हुआ।<ref name="ieee"/>1970 के दशक की शुरुआत में, MOS इंटीग्रेटेड परिपथ टेक्नोलॉजी ने एक चिप पर 10,000 से अधिक ट्रांजिस्टर के बहुत बड़े पैमाने पर एकीकरण (VLSI) को सक्षम किया।<ref>{{cite journal |last1=Hittinger |first1=William C. |title=Metal–Oxide–Semiconductor Technology |journal=Scientific American |date=1973 |volume=229 |issue=2 |pages=48–59 |jstor=24923169 |doi=10.1038/scientificamerican0873-48 |bibcode=1973SciAm.229b..48H }}</ref>
सबसे पहले, एमओएस-आधारित कंप्यूटर केवल तभी समझ में आते थे जब उच्च घनत्व की आवश्यकता होती थी, जैसे एयरोस्पेस और पॉकेट कैलकुलेटर। पूरी तरह से टीटीएल से निर्मित कंप्यूटर, जैसे कि 1970 डेटापॉइंट 2200, 1972 के इंटेल 8008 जैसे सिंगल-चिप एमओएस माइक्रोप्रोसेसरों की तुलना में 1980 के दशक की शुरुआत तक बहुत तेज और अधिक शक्तिशाली थे।<ref name="tmx_shirriff">केन शिरिफ। [https://www.righto.com/2015/05/the-texas-instruments-tmx-1795-first.html टेक्सास इंस्ट्रूमेंट्स टीएमएक्स 1795: (लगभग) पहले, भूल गए माइक्रोप्रोसेसर]। 2015.</ref>


आईसी प्रौद्योगिकी में प्रगति, मुख्य रूप से सेमीकंडक्टर डिवाइस फैब्रिकेशन और बड़े चिप्स, ने एक एकीकृत परिपथ में एमओएस ट्रांजिस्टर की ट्रांजिस्टर गिनती को हर दो साल में दोगुना करने की अनुमति दी है, एक प्रवृत्ति जिसे मूर के नियम के रूप में जाना जाता है। मूर ने मूल रूप से कहा था कि यह हर साल दोगुना हो जाएगा, लेकिन उन्होंने 1975 में हर दो साल में दावे को बदल दिया।
<sup><big>प्रारंभ में, IC मुख्य रूप से इलेक्ट्रॉनिक उपकरण थे। छोटे आकार और कम लागत के समान लाभ प्राप्त करने के प्रयास में IC की सफलता ने अन्य प्रौद्योगिकियों के एकीकरण को प्रेरित किया है। इन तकनीकों में यांत्रिक उपकरण, प्रकाशिकी और संवेदक सम्मिलित हैं।</big>
रेफरी>{{Cite web|url=https://www.cnet.com/news/moores-law-to-roll-on-for-another-decade/|title=Moore's Law to roll on for another decade|last=Kanellos|first=Michael|website=CNET|date=February 11, 2003}}</ref> इस बढ़ी हुई क्षमता का उपयोग लागत घटाने और कार्यक्षमता बढ़ाने के लिए किया गया है। सामान्य तौर पर, जैसे-जैसे सुविधा का आकार सिकुड़ता जाता है, IC के संचालन के लगभग हर पहलू में सुधार होता है। डेनार्ड स्केलिंग (MOSFET स्केलिंग) द्वारा परिभाषित संबंधों के माध्यम से, प्रति ट्रांजिस्टर की लागत और प्रति ट्रांजिस्टर कम-शक्ति वाले इलेक्ट्रॉनिक्स कम हो जाते हैं, जबकि कंप्यूटर मेमोरी और क्लॉक रेट बढ़ जाते हैं। रेफरी>{{cite news |author=Davari, Bijan, Robert H. Dennard, and Ghavam G. Shahidi |title=CMOS scaling for high performance and low power-the next ten years |journal=Proceedings of the IEEE |volume=83 |issue=4 |year=1995 |pages=595–606 |url=http://www.cisl.columbia.edu/courses/spring-2002/ee6930/papers/high_perform_scaling.pdf}}</ref> क्योंकि गति, क्षमता और बिजली की खपत का लाभ अंतिम उपयोगकर्ता के लिए स्पष्ट है, निर्माताओं के बीच महीन ज्यामिति का उपयोग करने के लिए भयंकर प्रतिस्पर्धा है। इन वर्षों में, ट्रांजिस्टर का आकार 1970 के दशक की शुरुआत में दसियों माइक्रोन से घटकर 2017 में 10 नैनोमीटर हो गया है रेफरी>{{Cite web|url=https://news.samsung.com/global/qualcomm-and-samsung-collaborate-on-10nm-process-technology-for-the-latest-snapdragon-835-mobile-processor|title=Qualcomm and Samsung Collaborate on 10nm Process Technology for the Latest Snapdragon 835 Mobile Processor|website=news.samsung.com|access-date=2017-02-11}}</ref> प्रति यूनिट क्षेत्र में ट्रांजिस्टरों में एक लाख गुना वृद्धि के साथ। 2016 तक, विशिष्ट चिप क्षेत्र कुछ वर्ग मिलीमीटर से लेकर लगभग 600 मिमी . तक होते हैं<sup>2</sup>, प्रति मिमी . 25 मिलियन तक ट्रांजिस्टर के साथ<sup>2</सुप>.<ref name=Pascal>{{cite web |url=https://devblogs.nvidia.com/parallelforall/inside-pascal/ |title=Inside Pascal: NVIDIA's Newest Computing Platform|date=2016-04-05}}.  15,300,000,000 transistors in 610 mm<sup>2</sup>.</ref>
* आवेश-युग्मित उपकरण, और निकटता से संबंधित सक्रिय-पिक्सेल संवेदक, ऐसे चिप हैं जो प्रकाश के प्रति संवेदनशील होते हैं। उन्होंने बड़े पैमाने पर वैज्ञानिक, चिकित्सा और उपभोक्ता अनुप्रयोगों में फोटोग्राफिक झिल्ली (फिल्म) को प्रतिस्थापित कर दिया है। ये उपकरण अब हर साल सेलफोन, टैबलेट और डिजिटल कैमरों जैसे अनुप्रयोगों के लिए अरबों की संख्या में उत्पादित किए जाते हैं। IC के इस उप-क्षेत्र ने वर्ष 2009 में नोबेल पुरस्कार जीता।<ref name="CcdNobel">{{citation | title = The Nobel Prize in Physics 2009 | url = http://nobelprize.org/nobel_prizes/physics/laureates/2009/index.html | publisher = Nobel Foundation | date = 2009-10-06 | access-date = 2009-10-06}}.</ref>
फीचर साइज में अपेक्षित सिकुड़न और संबंधित क्षेत्रों में आवश्यक प्रगति का अनुमान इंटरनेशनल टेक्नोलॉजी रोडमैप फॉर सेमीकंडक्टर्स (ITRS) द्वारा कई वर्षों से लगाया गया था। अंतिम आईटीआरएस 2016 में जारी किया गया था, और इसे उपकरणों और प्रणालियों के लिए अंतर्राष्ट्रीय रोडमैप द्वारा प्रतिस्थापित किया जा रहा है।<ref>{{cite web |title=International Roadmap for Devices and Systems |publisher=IEEE |year=2016 |url=http://rebootingcomputing.ieee.org/images/files/pdf/rc_irds.pdf}}</ref>
* बिजली द्वारा संचालित बहुत छोटे यांत्रिक उपकरणों को चिपों पर एकीकृत किया जा सकता है, इस तकनीक को सूक्ष्म विद्युत् यांत्रिकी तंत्र के रूप में जाना जाता है। इन उपकरणों को 1980 के दशक के अंत में विकसित किया गया था<ref>{{cite conference |title=A decade of MEMS and its future |author=Fujita, H. |conference= Tenth Annual International Workshop on Micro Electro Mechanical Systems |year=1997 |doi=10.1109/MEMSYS.1997.581729 }}</ref> और इनका उपयोग विभिन्न प्रकार के वाणिज्यिक और सैन्य अनुप्रयोगों में किया जाता है। उदाहरणों में डीएलपी प्रोजेक्टर, इंकजेट प्रिंटर, और एक्सेलेरोमीटर और एमईएमएस गायरोस्कोप सम्मिलित हैं जिनका उपयोग ऑटोमोबाइल एयरबैग को तैनात करने के लिए किया जाता है।
प्रारंभ में, IC सख्ती से इलेक्ट्रॉनिक उपकरण थे। छोटे आकार और कम लागत के समान लाभ प्राप्त करने के प्रयास में आईसी की सफलता ने अन्य प्रौद्योगिकियों के एकीकरण को प्रेरित किया है। इन तकनीकों में यांत्रिक उपकरण, प्रकाशिकी और सेंसर शामिल हैं।
* 2000 के दशक की शुरुआत से, सिलिकॉन चिपों में प्रकाशिक कार्यक्षमता (optical computing) के एकीकरण को शैक्षणिक अनुसंधान और उद्योग दोनों में सक्रिय रूप से आगे बढ़ाया गया है, जिसके परिणामस्वरूप अधिमिश्रक, संसूचक और अनुमार्गण जैसे प्रकाशिक उपकरणों के संयोजन वाले सिलिकॉन आधारित एकीकृत प्रकाशिक संप्रेसी-अभिग्राही का सीमॉस आधारित इलेक्ट्रॉनिक्स के साथ सफल व्यावसायीकरण हुआ है।<ref>{{cite journal|author = Narasimha, A. |title = A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 µm CMOS silicon-on-insulator technology|year = 2008|journal = Proceedings of the Optical Fiber Communication Conference (OFC)|page = OMK7|url=http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OMK7|display-authors=etal}}</ref> प्रकाश का उपयोग करने वाले फोटोनिक एकीकृत परिपथों को भी भौतिकी के उभरते हुए क्षेत्र का उपयोग करके विकसित किया जा रहा है, जो फोटोनिक्स के रूप में जाने जाते हैं।
* चार्ज-युग्मित डिवाइस, और निकट से संबंधित सक्रिय-पिक्सेल सेंसर, ऐसे चिप्स हैं जो प्रकाश के प्रति संवेदनशील होते हैं। उन्होंने बड़े पैमाने पर वैज्ञानिक, चिकित्सा और उपभोक्ता अनुप्रयोगों में फोटोग्राफिक फिल्म को बदल दिया है। इन उपकरणों के अरबों अब हर साल सेलफोन, टैबलेट और डिजिटल कैमरों जैसे अनुप्रयोगों के लिए उत्पादित किए जाते हैं। आईसी के इस उप-क्षेत्र ने 2009 में नोबेल पुरस्कार जीता।<ref name= CcdNobel >{{citation | title = The Nobel Prize in Physics 2009 | url = http://nobelprize.org/nobel_prizes/physics/laureates/2009/index.html | publisher = Nobel Foundation | date = 2009-10-06 | access-date = 2009-10-06}}.</ref>
* चिकित्सा प्रत्यारोपण या अन्य बायोइलेक्ट्रॉनिक उपकरणों में संवेदकों के अनुप्रयोग के लिए एकीकृत परिपथ भी विकसित किए जा रहे हैं।<ref name="Birkholz2015">{{cite journal | url = https://www.researchgate.net/publication/282052331 | title = Technology modules from micro- and nano-electronics for the life sciences | journal = WIREs Nanomed. Nanobiotech. | volume = 8 |issue=3 | pages = 355–377 | year = 2016 | doi = 10.1002/wnan.1367 |pmid=26391194 | last1 = Birkholz | first1 = M. | last2 = Mai | first2 = A. | last3 = Wenger | first3 = C. | last4 = Meliani | first4 = C. | last5 = Scholz | first5 = R. }}</ref> ऐसे जीवजनित वातावरण में विशेष सीलिंग तकनीकों को प्रयुक्त किया जाना चाहिए जिससे प्रकाशित अर्धचालक पदार्थों के क्षरण या जैव-अवक्रमण से बचा जा सके।<ref name="Graham2011">{{cite journal | title = Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors | journal = Sensors | volume = 11 |issue=5 | pages = 4943–4971 | year = 2011 | doi = 10.3390/s110504943 |pmid=22163884 |pmc=3231360 | last1 = Graham | first1 = Anthony H. D. | last2 = Robbins | first2 = Jon | last3 = Bowen | first3 = Chris R. | last4 = Taylor | first4 = John | bibcode = 2011Senso..11.4943G | doi-access = free }}</ref>
* बिजली द्वारा संचालित बहुत छोटे यांत्रिक उपकरणों को चिप्स पर एकीकृत किया जा सकता है, एक तकनीक जिसे माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम के रूप में जाना जाता है। इन उपकरणों को 1980 के दशक के अंत में विकसित किया गया था<ref>{{cite conference |title=A decade of MEMS and its future |author=Fujita, H. |conference= Tenth Annual International Workshop on Micro Electro Mechanical Systems |year=1997 |doi=10.1109/MEMSYS.1997.581729 }}</ref> और विभिन्न प्रकार के वाणिज्यिक और सैन्य अनुप्रयोगों में उपयोग किया जाता है। उदाहरणों में डीएलपी प्रोजेक्टर, इंकजेट प्रिंटर, और एक्सेलेरोमीटर और एमईएमएस गायरोस्कोप शामिल हैं जिनका उपयोग ऑटोमोबाइल एयरबैग को तैनात करने के लिए किया जाता है।
वर्ष 2018 तक, मॉस्फेट सभी ट्रांजिस्टरों में बहुसंख्यक हैं जो एक समतल द्वि-आयामी प्लानर प्रक्रिया में सिलिकॉन की एक चिप के एक तरफ एक परत में निर्मित होते हैं। शोधकर्ताओं ने कई आशाजनक विकल्पों के प्रोटोटाइप तैयार किए हैं, जैसे कि:
* 2000 के दशक की शुरुआत से, सिलिकॉन चिप्स में ऑप्टिकल कार्यक्षमता (ऑप्टिकल कंप्यूटिंग) के एकीकरण को अकादमिक अनुसंधान और उद्योग दोनों में सक्रिय रूप से आगे बढ़ाया गया है, जिसके परिणामस्वरूप ऑप्टिकल उपकरणों (मॉड्यूलेटर, डिटेक्टर, रूटिंग) के संयोजन वाले सिलिकॉन आधारित एकीकृत ऑप्टिकल ट्रांसीवर का सफल व्यावसायीकरण हुआ है। CMOS आधारित इलेक्ट्रॉनिक्स के साथ।<ref>{{cite journal|author = Narasimha, A. |title = A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 µm CMOS silicon-on-insulator technology|year = 2008|journal = Proceedings of the Optical Fiber Communication Conference (OFC)|page = OMK7|url=http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OMK7|display-authors=etal}}</ref> प्रकाश का उपयोग करने वाले फोटोनिक एकीकृत परिपथों को भी विकसित किया जा रहा है, जो भौतिकी के उभरते हुए क्षेत्र का उपयोग करके फोटोनिक्स के रूप में जाना जाता है।
* त्रि-आयामी एकीकृत परिपथ (3DIC) बनाने के लिए ट्रांजिस्टर की कई परतों को एकत्रित करने के लिए विभिन्न दृष्टिकोण, जैसे कि थ्रू-सिलिकॉन वाया, "अखंड 3डी",<ref>Or-Bach, Zvi (December 23, 2013). [http://semimd.com/blog/2013/12/23/why-soi-is-the-future-technology-of-semiconductors/ "Why SOI is the Future Technology of Semiconductors"]. semimd.com {{Webarchive|url=https://web.archive.org/web/20141129104851/http://semimd.com/blog/2013/12/23/why-soi-is-the-future-technology-of-semiconductors/ |date=29 November 2014 }}.
* इम्प्लांट (दवा) या अन्य बायोइलेक्ट्रॉनिक उपकरणों में सेंसर अनुप्रयोगों के लिए एकीकृत परिपथ भी विकसित किए जा रहे हैं।<ref name= Birkholz2015>{{cite journal | url = https://www.researchgate.net/publication/282052331 | title = Technology modules from micro- and nano-electronics for the life sciences | journal = WIREs Nanomed. Nanobiotech. | volume = 8 |issue=3 | pages = 355–377 | year = 2016 | doi = 10.1002/wnan.1367 |pmid=26391194 | last1 = Birkholz | first1 = M. | last2 = Mai | first2 = A. | last3 = Wenger | first3 = C. | last4 = Meliani | first4 = C. | last5 = Scholz | first5 = R. }}</ref> ऐसे बायोजेनिक वातावरण में विशेष सीलिंग तकनीकों को लागू किया जाना चाहिए ताकि उजागर अर्धचालक पदार्थों के क्षरण या बायोडिग्रेडेशन से बचा जा सके।<ref name="Graham2011">{{cite journal | title = Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors | journal = Sensors | volume = 11 |issue=5 | pages = 4943–4971 | year = 2011 | doi = 10.3390/s110504943 |pmid=22163884 |pmc=3231360 | last1 = Graham | first1 = Anthony H. D. | last2 = Robbins | first2 = Jon | last3 = Bowen | first3 = Chris R. | last4 = Taylor | first4 = John | bibcode = 2011Senso..11.4943G | doi-access = free }}</ref>
2013.</ref> एकत्रित तार बंधन,<ref>
{{As of|2018}}, सभी ट्रांजिस्टर के विशाल बहुमत MOSFETs हैं जो एक फ्लैट दो-आयामी प्लानर प्रक्रिया में सिलिकॉन की एक चिप के एक तरफ एक परत में निर्मित होते हैं। शोधकर्ताओं ने कई आशाजनक विकल्पों के प्रोटोटाइप तैयार किए हैं, जैसे:
* त्रि-आयामी एकीकृत परिपथ (3DIC) बनाने के लिए ट्रांजिस्टर की कई परतों को ढेर करने के लिए विभिन्न दृष्टिकोण, जैसे कि थ्रू-सिलिकॉन थ्रू, मोनोलिथिक 3D,<ref>Or-Bach, Zvi (December 23, 2013). [http://semimd.com/blog/2013/12/23/why-soi-is-the-future-technology-of-semiconductors/ "Why SOI is the Future Technology of Semiconductors"]. semimd.com {{Webarchive|url=https://web.archive.org/web/20141129104851/http://semimd.com/blog/2013/12/23/why-soi-is-the-future-technology-of-semiconductors/ |date=29 November 2014 }}.
2013.</ref> स्टैक्ड वायर बॉन्डिंग,<ref>
[https://sst.semiconductor-digest.com/chipworks_real_chips_blog/2010/09/13/samsungs-eight-stack-flash-shows-up-in-apples-iphone-4/ "Samsung’s Eight-Stack Flash Shows up in Apple’s iPhone 4"]. sst.semiconductor-digest.com.  
[https://sst.semiconductor-digest.com/chipworks_real_chips_blog/2010/09/13/samsungs-eight-stack-flash-shows-up-in-apples-iphone-4/ "Samsung’s Eight-Stack Flash Shows up in Apple’s iPhone 4"]. sst.semiconductor-digest.com.  
September 13, 2010.</ref> और अन्य तरीके।
September 13, 2010.</ref> और अन्य तरीके।
* अन्य सामग्रियों से निर्मित ट्रांजिस्टर: ग्रेफीन ट्रांजिस्टर, मोलिब्डेनाइट#सेमीकंडक्टर, कार्बन नैनोट्यूब फील्ड-इफेक्ट ट्रांजिस्टर, गैलियम नाइट्राइड ट्रांजिस्टर, ट्रांजिस्टर जैसे नैनोवायर#इलेक्ट्रॉनिक उपकरण, ऑर्गेनिक फील्ड-इफेक्ट ट्रांजिस्टर, आदि।
* अन्य सामग्रियों से निर्मित ट्रांजिस्टर: ग्रेफीन ट्रांजिस्टर, मोलिब्डेनाइट ट्रांजिस्टर, कार्बन नैनोट्यूब फील्ड-इफेक्ट ट्रांजिस्टर, गैलियम नाइट्राइड ट्रांजिस्टर, ट्रांजिस्टर जैसे नैनोवायर इलेक्ट्रॉनिक उपकरण, ऑर्गेनिक फील्ड-इफेक्ट ट्रांजिस्टर आदि।
* सिलिकॉन के एक छोटे से गोले की पूरी सतह पर ट्रांजिस्टर बनाना।<ref>{{cite journal|url=http://www.natureinterface.com/e/ni07/P058-059/|title=Spherical semiconductor radio temperature sensor|journal=Nature Interface|year=2002|pages=58–59|volume=7|author=Yamatake Corporation|archive-url=https://web.archive.org/web/20090107144008/http://www.natureinterface.com/e/ni07/P058-059/|archive-date=7 January 2009}}</ref><ref>
* सिलिकॉन के एक छोटे से गोले की पूरी सतह पर ट्रांजिस्टर बनाना।<ref>{{cite journal|url=http://www.natureinterface.com/e/ni07/P058-059/|title=Spherical semiconductor radio temperature sensor|journal=Nature Interface|year=2002|pages=58–59|volume=7|author=Yamatake Corporation|archive-url=https://web.archive.org/web/20090107144008/http://www.natureinterface.com/e/ni07/P058-059/|archive-date=7 January 2009}}</ref><ref>
{{Citation
{{Citation
Line 78: Line 69:
}}
}}
</ref>
</ref>
* सब्सट्रेट में संशोधन, आमतौर पर ट्रांजिस्टर बनाने के लिए#लचीले प्रदर्शन या अन्य लचीले इलेक्ट्रॉनिक्स के लिए लचीले ट्रांजिस्टर, संभवतः एक रोल-अवे कंप्यूटर की ओर ले जाते हैं।
* अधःस्तर में संशोधन, सामान्यतः एक लचीले डिस्प्ले या अन्य लचीले इलेक्ट्रॉनिक्स के लिए "लचीला ट्रांजिस्टर" बनाने के लिए, संभवतः एक कंप्यूटर की ओर गमन को प्रेरित करता है।


जैसा कि कभी छोटे ट्रांजिस्टर का निर्माण करना अधिक कठिन हो जाता है, कंपनियां मल्टी-चिप मॉड्यूल, त्रि-आयामी एकीकृत परिपथ, पैकेज पर पैकेज, उच्च बैंडविड्थ मेमोरी और थ्रू-सिलिकॉन विअस का उपयोग प्रदर्शन को बढ़ाने और आकार को कम करने के लिए कर रही हैं। ट्रांजिस्टर के आकार को कम करें। ऐसी तकनीकों को सामूहिक रूप से उन्नत पैकेजिंग के रूप में जाना जाता है।<ref>{{Cite web|url=https://semiengineering.com/knowledge_centers/packaging/advanced-packaging/|title=Advanced Packaging}}</ref> उन्नत पैकेजिंग को मुख्य रूप से 2.5D और 3D पैकेजिंग में विभाजित किया गया है। 2.5D मल्टी-चिप मॉड्यूल जैसे दृष्टिकोणों का वर्णन करता है जबकि 3D उन दृष्टिकोणों का वर्णन करता है जहां एक तरह से या किसी अन्य तरीके से ढेर हो जाते हैं, जैसे पैकेज पर पैकेज और उच्च बैंडविड्थ मेमोरी। सभी दृष्टिकोणों में एक पैकेज में 2 या अधिक मर जाते हैं।<ref>{{Cite web|url=https://semiengineering.com/knowledge_centers/packaging/advanced-packaging/2-5d-ic/|title=2.5D|work=Semiconductor Engineering}}</ref><ref>{{Cite web|url=https://semiengineering.com/knowledge_centers/packaging/advanced-packaging/3d-ics/|title=3D ICs|work=Semiconductor Engineering}}</ref><ref>[https://en.wikichip.org/wiki/chiplet Wikichip (2018) Chiplet]. wikichip.org cites IEDM 2017, Dr. Lisa Su accessdate=2019-05-26</ref><ref>{{Cite magazine|url=https://www.wired.com/story/keep-pace-moores-law-chipmakers-turn-chiplets/|title=To Keep Pace With Moore's Law, Chipmakers Turn to 'Chiplets'|magazine=Wired|date=11 June 2018}}</ref><ref>Schodt, Christopher (April 16, 2019)  [https://www.engadget.com/2019/04/16/upscaled-cpu-chiplet/ Upscaled: This is the year of the CPU ‘chiplet’]. ''End Gadget''</ref> वैकल्पिक रूप से, 3D NAND जैसे दृष्टिकोण एक ही डाई पर कई परतों को ढेर कर देते हैं।
जैसे कि कभी छोटे ट्रांजिस्टर का निर्माण करना अधिक कठिन हो जाता है, तो कंपनियां बहु-चिप मॉड्यूल, त्रि-आयामी एकीकृत परिपथ, पैकेज पर पैकेज, उच्च बैंडविड्थ (bandwidth) मेमोरी और थ्रू-सिलिकॉन वाया का उपयोग ट्रांजिस्टर के आकार को बिना कम किये प्रदर्शन को बढ़ाने और आकार को कम करने के लिए करती हैं। ऐसी तकनीकों को सामूहिक रूप से उन्नत पैकेजिंग के रूप में जाना जाता है।<ref>{{Cite web|url=https://semiengineering.com/knowledge_centers/packaging/advanced-packaging/|title=Advanced Packaging}}</ref> उन्नत पैकेजिंग को मुख्य रूप से 2.5D और 3D पैकेजिंग में विभाजित किया गया है। 2.5D बहु-चिप मॉड्यूल जैसे दृष्टिकोणों का वर्णन करता है जबकि 3D उन दृष्टिकोणों का वर्णन करता है जहां एक तरह या किसी अन्य तरीके से डाई एकत्र हो जाते हैं, जैसे पैकेज पर पैकेज और उच्च बैंडविड्थ मेमोरी। सभी दृष्टिकोणों में एक पैकेज में 2 या अधिक डाई सम्मिलित किये जाते हैं।<ref>{{Cite web|url=https://semiengineering.com/knowledge_centers/packaging/advanced-packaging/2-5d-ic/|title=2.5D|work=Semiconductor Engineering}}</ref><ref>{{Cite web|url=https://semiengineering.com/knowledge_centers/packaging/advanced-packaging/3d-ics/|title=3D ICs|work=Semiconductor Engineering}}</ref><ref>[https://en.wikichip.org/wiki/chiplet Wikichip (2018) Chiplet]. wikichip.org cites IEDM 2017, Dr. Lisa Su accessdate=2019-05-26</ref><ref>{{Cite magazine|url=https://www.wired.com/story/keep-pace-moores-law-chipmakers-turn-chiplets/|title=To Keep Pace With Moore's Law, Chipmakers Turn to 'Chiplets'|magazine=Wired|date=11 June 2018}}</ref><ref>Schodt, Christopher (April 16, 2019)  [https://www.engadget.com/2019/04/16/upscaled-cpu-chiplet/ Upscaled: This is the year of the CPU ‘chiplet’]. ''End Gadget''</ref> वैकल्पिक रूप से, 3डी नैंड जैसे दृष्टिकोण एक ही डाई पर कई परतों को एकत्र कर देते हैं।


== बनावट ==
== बनावट ==
{{main|Electronic design automation|Hardware description language|Integrated circuit design}}
{{main|Electronic design automation|Hardware description language|Integrated circuit design}}
एक जटिल एकीकृत परिपथ को बनाने और विकसित करने की लागत काफी अधिक होती है, जो कई दस मिलियन डॉलर में होती है।<ref>{{cite web |title=FinFET Rollout Slower Than Expected |url=http://semiengineering.com/finfet-rollout-slower-than-expected/ |publisher=Semiconductor Engineering |date=16 April 2015 |author=LaPedus, Mark }}</ref><ref>{{Cite journal|last=Basu|first=Joydeep|date=2019-10-09|title=From Design to Tape-out in SCL 180 nm CMOS Integrated Circuit Fabrication Technology|journal=IETE Journal of Education|volume=60|issue=2|pages=51–64|doi=10.1080/09747338.2019.1657787|arxiv=1908.10674|s2cid=201657819}}</ref> अतः, एकीकृत परिपथ उत्पादों का केवल उच्च उत्पादन मात्रा के साथ  उत्पादन ही आर्थिक दृष्टि से लाभकारी होता है, इसलिए उत्पादित इकाइयों की गैर-आवर्ती अभियांत्रिकी (NRE) लागत सामान्यतः लाखों में फैली हुई है।


आधुनिक अर्धचालक चिपों में अरबों की संख्या में घटक होते हैं, और हाथ से बनाये जाने के लिए बहुत जटिल होते हैं। सॉफ़्टवेयर उपकरण डिज़ाइनर की सहायता के लिए आवश्यक होते हैं। इलेक्ट्रॉनिक कंप्यूटर एडेड डिज़ाइन (ECAD) के नाम से प्रचलित इलेक्ट्रॉनिक डिज़ाइन ऑटोमेशन (EDA)<ref>{{cite web|title=About the EDA Industry|url=http://www.edac.org/industry|publisher=[[Electronic Design Automation Consortium]]|access-date=29 July 2015|url-status=dead|archive-url=https://web.archive.org/web/20150802073506/http://www.edac.org/industry|archive-date=2 August 2015}}</ref> एकीकृत परिपथ सहित इलेक्ट्रॉनिक तंत्र को बनाने के लिए सॉफ़्टवेयर टूल की एक श्रेणी है। ये उपकरण अभियंताओं द्वारा संपूर्ण अर्धचालक चिपों को डिजाइन और विश्लेषण करने के लिए उपयोग की जाने वाली एक निर्माण प्रक्रिया में एक साथ काम करते हैं।
एक जटिल एकीकृत परिपथ को बनाने और विकसित करने की लागत काफी अधिक होती है, जो कई दस मिलियन डॉलर में होती है।<ref>{{cite web |title=FinFET Rollout Slower Than Expected |url=http://semiengineering.com/finfet-rollout-slower-than-expected/ |publisher=Semiconductor Engineering |date=16 April 2015 |author=LaPedus, Mark }}</ref><ref>{{Cite journal|last=Basu|first=Joydeep|date=2019-10-09|title=From Design to Tape-out in SCL 180 nm CMOS Integrated Circuit Fabrication Technology|journal=IETE Journal of Education|volume=60|issue=2|pages=51–64|doi=10.1080/09747338.2019.1657787|arxiv=1908.10674|s2cid=201657819}}</ref> अतः, एकीकृत परिपथ उत्पादों का केवल उच्च उत्पादन मात्रा के साथ  उत्पादन ही आर्थिक दृष्टि से लाभकारी होता है, इसलिए उत्पादित इकाइयों की गैर-आवर्ती अभियांत्रिकी (एनआरई) लागत सामान्यतः लाखों में फैली हुई है।
 
आधुनिक अर्धचालक चिपों में अरबों की संख्या में घटक होते हैं, और हाथ से बनाये जाने के लिए बहुत जटिल होते हैं। सॉफ़्टवेयर उपकरण डिज़ाइनर की सहायता के लिए आवश्यक होते हैं। इलेक्ट्रॉनिक कंप्यूटर एडेड डिज़ाइन (ईकैड) के नाम से प्रचलित इलेक्ट्रॉनिक डिज़ाइन ऑटोमेशन (ईडीए)<ref>{{cite web|title=About the EDA Industry|url=http://www.edac.org/industry|publisher=[[Electronic Design Automation Consortium]]|access-date=29 July 2015|url-status=dead|archive-url=https://web.archive.org/web/20150802073506/http://www.edac.org/industry|archive-date=2 August 2015}}</ref> एकीकृत परिपथ सहित इलेक्ट्रॉनिक तंत्र को बनाने के लिए सॉफ़्टवेयर टूल की एक श्रेणी है। ये उपकरण अभियंताओं द्वारा संपूर्ण अर्धचालक चिपों को डिजाइन और विश्लेषण करने के लिए उपयोग की जाने वाली एक निर्माण प्रक्रिया में एक साथ काम करते हैं।


== प्रकार ==
== प्रकार ==
[[File:AD570JD.jpg|thumb|दोहरी इन-लाइन पैकेज में -टू-डी कनवर्टर आईसी]]
[[File:AD570JD.jpg|thumb|दोहरी इन-लाइन पैकेज में A-टू-D परिवर्तक IC]]
इंटीग्रेटेड परिपथ को मोटे तौर पर एनालॉग परिपथ में वर्गीकृत किया जा सकता है,<ref>{{cite book |title=Analysis and Design of Analog Integrated Circuits |author1=Gray, Paul R. |author2=Hurst, Paul J. |author3=Lewis, Stephen H. |author4=Meyer, Robert G. |isbn=978-0-470-24599-6 |publisher=Wiley |year=2009 }}</ref> डिजिटल परिपथ<ref>{{cite book |title=Digital Integrated Circuits |author1=Rabaey, Jan M. |author2=Chandrakasan, Anantha |author3=Nikolic, Borivoje |isbn=978-0-13-090996-1 |publisher=Pearson |year=2003 |url=https://archive.org/details/agilesoftwaredev00robe |edition=2nd }}</ref> और मिश्रित-संकेत एकीकृत परिपथ,<ref>{{cite book |title=CMOS: Mixed-Signal Circuit Design |author=Baker, Jacob |publisher=Wiley |isbn=978-0-470-29026-2 |year=2008}}</ref> एक ही आईसी पर एनालॉग और डिजिटल सिग्नलिंग से मिलकर।
एकीकृत परिपथ को सामान्यतः अनुरूप (एनालॉग) परिपथ<ref>{{cite book |title=Analysis and Design of Analog Integrated Circuits |author1=Gray, Paul R. |author2=Hurst, Paul J. |author3=Lewis, Stephen H. |author4=Meyer, Robert G. |isbn=978-0-470-24599-6 |publisher=Wiley |year=2009 }}</ref>, अंकीय (डिजिटल) परिपथ<ref>{{cite book |title=Digital Integrated Circuits |author1=Rabaey, Jan M. |author2=Chandrakasan, Anantha |author3=Nikolic, Borivoje |isbn=978-0-13-090996-1 |publisher=Pearson |year=2003 |url=https://archive.org/details/agilesoftwaredev00robe |edition=2nd }}</ref> और एक ही IC पर अनुरूप और अंकीय संकेतों से मिलकर बने मिश्रित-संकेत एकीकृत परिपथों<ref>{{cite book |title=CMOS: Mixed-Signal Circuit Design |author=Baker, Jacob |publisher=Wiley |isbn=978-0-470-29026-2 |year=2008}}</ref> में वर्गीकृत किया जा सकता है,  ।


डिजिटल एकीकृत परिपथ में अरबों हो सकते हैं<ref name=Pascal/>लॉजिक गेट्स, फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स) | फ्लिप-फ्लॉप, मल्टीप्लेक्सर्स, और अन्य परिपथ कुछ वर्ग मिलीमीटर में। इन परिपथों का छोटा आकार बोर्ड-स्तरीय एकीकरण की तुलना में उच्च गति, कम बिजली अपव्यय और कम विनिर्माण लागत की अनुमति देता है। ये डिजिटल आईसी, आमतौर पर माइक्रोप्रोसेसर, डिजिटल सिग्नल प्रोसेसर और माइक्रोकंट्रोलर, बाइनरी नंबर को संसाधित करने के लिए बूलियन बीजगणित का उपयोग करते हैं। एक और शून्य संकेत।
अंकीय एकीकृत परिपथ में कुछ वर्ग मिलीमीटर में अरबों<ref name=Pascal/> तर्कद्वार, फ्लिप-फ्लॉप, बहुसंकेतक और अन्य परिपथ हो सकते हैं। इन परिपथों का छोटा आकार बोर्ड-स्तरीय एकीकरण की तुलना में उच्च गति, कम बिजली अपव्यय और कम विनिर्माण लागत की सुविधा प्रदान करता है। ये अंकीय IC (digital IC), सामान्यतः माइक्रोप्रोसेसर, डीएसपी (DSP) और माइक्रोकंट्रोलर, "एक" और "शून्य" संकेतों को संसाधित करने के लिए बूलियन बीजगणित का उपयोग करते हैं।


[[File:Intel 8742 153056995.jpg|right|thumb|एक Intel Intel MCS-48 से डाई (एकीकृत सर्किट), एक 8-बिट NMOS लॉजिक माइक्रोकंट्रोलर जिसमें 12 मेगाहर्ट्ज पर चलने वाला CPU, 128 बाइट्स RAM, EPROM के 2048 बाइट्स और इनपुट/आउटपुट|I/O शामिल हैं। एक ही चिप]]
[[File:Intel 8742 153056995.jpg|right|thumb|Intel 8742 द्वारा एक डाई, एक 8-बिट NMOS माइक्रोकंट्रोलर जिसमें 12 MHz पर चलने वाला CPU, 128 बाइट्स RAM, EPROM के 2048 बाइट्स और एक ही चिप में I/O सम्मिलित है।]]
सबसे उन्नत एकीकृत परिपथों में माइक्रोप्रोसेसर या प्रोसेसर कोर हैं, जिनका उपयोग पर्सनल कंप्यूटर, सेल-फोन, माइक्रोवेव ओवन आदि में किया जाता है। कई कोर को एक आईसी या चिप में एक साथ एकीकृत किया जा सकता है। डिजिटल कंप्यूटर मेमोरी और एप्लिकेशन-विशिष्ट एकीकृत परिपथ (एएसआईसी) एकीकृत परिपथ के अन्य परिवारों के उदाहरण हैं।
माइक्रोप्रोसेसर या "कोर" सबसे उन्नत एकीकृत परिपथ हैं, जिनका उपयोग निजी कंप्यूटर, सेल-फोन, माइक्रोवेव ओवन आदि में किया जाता है। एक IC या चिप में कई कोर को एक साथ एकीकृत किया जा सकता है। अंकीय मेमोरी चिपों औरअनुप्रयोग-विशिष्ट एकीकृत सर्किट एकीकृत परिपथ के अन्य वर्गों के उदाहरण हैं।


1980 के दशक में, प्रोग्राम करने योग्य लॉजिक डिवाइस विकसित किए गए थे। इन उपकरणों में परिपथ होते हैं जिनके तार्किक कार्य और कनेक्टिविटी को एकीकृत परिपथ निर्माता द्वारा तय किए जाने के बजाय उपयोगकर्ता द्वारा प्रोग्राम किया जा सकता है। यह एक चिप को विभिन्न एलएसआई-प्रकार के कार्यों जैसे लॉजिक गेट्स, योजक (इलेक्ट्रॉनिक्स) और प्रोसेसर रजिस्टर करने के लिए प्रोग्राम करने की अनुमति देता है। प्रोग्राममेबिलिटी विभिन्न रूपों में आती है - डिवाइस जो प्रोग्रामेबल रीड-ओनली मेमोरी हो सकते हैं, वे डिवाइस जिन्हें मिटाया जा सकता है और फिर ईपीरोम को फिर से प्रोग्राम किया जा सकता है, वे डिवाइस जिन्हें फ्लैश मेमोरी का उपयोग करके (पुनः) प्रोग्राम किया जा सकता है, और फील्ड-प्रोग्रामेबल गेट एरेज़ (एफपीजीए) जो ऑपरेशन के दौरान सहित किसी भी समय प्रोग्राम किया जा सकता है। वर्तमान FPGAs (2016 तक) लाखों गेटों के बराबर लागू कर सकते हैं और 1 हर्ट्ज़ तक की घड़ी की दर से काम कर सकते हैं।<ref name="Altera">{{cite news
प्रोग्राम करने योग्य तार्किक उपकरणों को 1980 के दशक में विकसित किया गया था। इन उपकरणों में ऐसे परिपथ होते हैं जिनके तार्किक कार्य और संयोजन को एकीकृत परिपथ निर्माता द्वारा तय किए जाने के स्थान पर उपयोगकर्ता द्वारा प्रोग्राम किया जा सकता है। यह एक चिप को तर्क द्वारों, योजकों और रजिस्टर जैसे विभिन्न एलएसआई-प्रकार के कार्यों को करने के लिए प्रोग्राम करने की सुविधा प्रदान करता है। प्रोग्राम-योग्यता विभिन्न प्रकार की होती है - ऐसे उपकरण जिन्हें केवल एक बार प्रोग्राम किया जा सकता है, ऐसे उपकरण जिन्हें मिटाकर पुनः UV प्रकाश का उपयोग करके से प्रोग्राम किया जा सकता है, ऐसे उपकरण जिन्हें फ्लैश मेमोरी का उपयोग करके (पुनः) प्रोग्राम किया जा सकता है, और फील्ड-प्रोग्रामेबल गेट एरेज़ जो संचालन के दौरान सहित किसी भी समय पर प्रोग्राम किया जा सकता है। 2016 तक के एफजीपीए (FPGA) कई दस लाख के समकक्ष गेट प्रयुक्त कर सकते हैं और 1 गीगाहर्ट्ज़ (GHz) तक की आवृत्ति पर काम कर सकते हैं।<ref name="Altera">{{cite news
|url = https://www.altera.com/en_US/pdfs/literature/hb/stratix-10/s10-overview.pdf
|url = https://www.altera.com/en_US/pdfs/literature/hb/stratix-10/s10-overview.pdf
|title = Stratix 10 Device Overview
|title = Stratix 10 Device Overview
Line 103: Line 95:
|date = 12 December 2015
|date = 12 December 2015
}}</ref>
}}</ref>
एनालॉग आईसी, जैसे सेंसर, पावर नेटवर्क डिज़ाइन (आईसी), और ऑपरेशनल एम्पलीफायर्स (ऑप-एम्प्स), निरंतर संकेतों को संसाधित करते हैं, और एम्पलीफायर, सक्रिय फ़िल्टरिंग, डिमॉड्यूलेशन और फ़्रिक्वेंसी मिक्सर जैसे एनालॉग फ़ंक्शन करते हैं।


IC एनालॉग-टू-डिजिटल कन्वर्टर्स और डिजिटल-टू-एनालॉग कन्वर्टर्स जैसे फ़ंक्शन बनाने के लिए एक चिप पर एनालॉग और डिजिटल परिपथ को जोड़ सकते हैं। ऐसे मिश्रित सिग्नल परिपथ छोटे आकार और कम लागत की पेशकश करते हैं, लेकिन सिग्नल हस्तक्षेप के लिए जिम्मेदार होना चाहिए। 1990 के दशक के उत्तरार्ध से पहले, माइक्रोप्रोसेसरों के समान कम लागत वाली CMOS प्रक्रियाओं में रेडियो का निर्माण नहीं किया जा सकता था। लेकिन 1998 से, RF CMOS प्रक्रियाओं का उपयोग करके रेडियो चिप्स विकसित किए गए हैं। उदाहरणों में इंटेल का डिजिटल एन्हांस्ड कॉर्डलेस टेलीकम्युनिकेशंस कॉर्डलेस फोन, या एथेरोस और अन्य कंपनियों द्वारा बनाए गए 802.11 (वाई-फाई) चिप्स शामिल हैं।<ref name="IEEE-CMOS-dualband-n">{{cite web|last1=Nathawad|first1=L.|last2=Zargari|first2=M.|last3=Samavati|first3=H.|last4=Mehta|first4=S.|last5=Kheirkhaki|first5=A.|last6=Chen|first6=P.|last7=Gong|first7=K.|last8=Vakili-Amini|first8=B.|last9=Hwang|first9=J.|last10=Chen|first10=M.|last11=Terrovitis|first11=M.|last12=Kaczynski|first12=B.|last13=Limotyrakis|first13=S.|last14=Mack|first14=M.|last15=Gan|first15=H.|last16=Lee|first16=M.|last17=Abdollahi-Alibeik|first17=B.|last18=Baytekin|first18=B.|last19=Onodera|first19=K.|last20=Mendis|first20=S.|last21=Chang|first21=A.|last22=Jen|first22=S.|last23=Su|first23=D.|last24=Wooley|first24=B.|title=20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN|url=http://www.ewh.ieee.org/r6/scv/ssc/May2008_WLAN.pdf|website=IEEE Entity Web Hosting|publisher=IEEE|access-date=22 October 2016}}</ref>
अनुरूप IC, संवेदक, सामर्थ्य प्रबंधक परिपथ, और परिचालन प्रवर्धक, जैसे निरंतर संकेतों को संसाधित करते हैं, और प्रवर्धन, सक्रिय निस्पंदन, विमॉडुलन और मिश्रण जैसे प्रक्रमों का संचालन करते हैं।
आधुनिक: श्रेणी: इलेक्ट्रॉनिक घटक वितरक अक्सर एकीकृत परिपथों को उप-वर्गीकृत करते हैं:
 
* डिजिटल इंटीग्रेटेड परिपथ को लॉजिक IC (जैसे माइक्रोप्रोसेसर और माइक्रोकंट्रोलर), मेमोरी चिप्स (जैसे MOS मेमोरी और फ्लोटिंग-गेट मेमोरी), इंटरफ़ेस IC (लॉजिक लेवल, सीरियलाइज़र / डिसेरिएलाइज़र, आदि), पावर मैनेजमेंट IC, और के रूप में वर्गीकृत किया जाता है। प्रोग्रामेबल लॉजिक डिवाइस।
IC, अनुरूप-से-अंकीय परिवर्तक  और अंकीय-से-अनुरूप परिवर्तक जैसे संचालनों को बनाने के लिए एक चिप पर साद्रश्य और अंकीय परिपथों को जोड़ सकते हैं। ऐसे मिश्रित संकेत परिपथ छोटे आकार और कम लागत की पेशकश करते हैं, लेकिन इन्हें संकेत हस्तक्षेप के लिए आवश्यक रूप से उत्तरदायी होना चाहिए। 1990 के दशक के उत्तरार्ध से पहले तक, माइक्रोप्रोसेसरों के समान ही कम लागत वाली सीमॉस प्रक्रियाओं में रेडियो का निर्माण नहीं किया जा सकता था। लेकिन वर्ष 1998 से आरएफ सीमॉस प्रक्रियाओं का उपयोग करके रेडियो चिपों को विकसित किया गया है। एथेरोस और अन्य कंपनियों द्वारा निर्मित 802.11 (वाई-फाई) चिप और इंटेल का डीईसीटी कॉर्डलेस फोन इसके उदाहरणों में सम्मिलित हैं ।<ref name="IEEE-CMOS-dualband-n">{{cite web|last1=Nathawad|first1=L.|last2=Zargari|first2=M.|last3=Samavati|first3=H.|last4=Mehta|first4=S.|last5=Kheirkhaki|first5=A.|last6=Chen|first6=P.|last7=Gong|first7=K.|last8=Vakili-Amini|first8=B.|last9=Hwang|first9=J.|last10=Chen|first10=M.|last11=Terrovitis|first11=M.|last12=Kaczynski|first12=B.|last13=Limotyrakis|first13=S.|last14=Mack|first14=M.|last15=Gan|first15=H.|last16=Lee|first16=M.|last17=Abdollahi-Alibeik|first17=B.|last18=Baytekin|first18=B.|last19=Onodera|first19=K.|last20=Mendis|first20=S.|last21=Chang|first21=A.|last22=Jen|first22=S.|last23=Su|first23=D.|last24=Wooley|first24=B.|title=20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN|url=http://www.ewh.ieee.org/r6/scv/ssc/May2008_WLAN.pdf|website=IEEE Entity Web Hosting|publisher=IEEE|access-date=22 October 2016}}</ref>
* एनालॉग एकीकृत परिपथ को रैखिक एकीकृत परिपथ और आरएफ परिपथ (रेडियो आवृत्ति परिपथ) के रूप में वर्गीकृत किया जाता है।
 
* मिक्स्ड-सिग्नल इंटीग्रेटेड परिपथ को डेटा अधिग्रहण आईसी (ए/डी कन्वर्टर्स, डी/ए कन्वर्टर्स, डिजिटल पोटेंशियोमीटर सहित), क्लॉक जेनरेटर | क्लॉक/टाइमिंग आईसी, स्विच्ड कैपेसिटर (एससी) परिपथ और आरएफ सीएमओएस परिपथ के रूप में वर्गीकृत किया गया है।
आधुनिक इलेक्ट्रॉनिक घटक वितरक प्रायः एकीकृत परिपथों को उप-वर्गीकृत करते हैं:
* त्रि-आयामी एकीकृत परिपथ (3D IC) को थ्रू-सिलिकॉन (TSV) IC और Cu-Cu कनेक्शन IC के माध्यम से वर्गीकृत किया गया है।
* अंकीय एकीकृत परिपथ को तार्किक एकीकृत परिपथ (जैसे माइक्रोप्रोसेसर और माइक्रोकंट्रोलर), मेमोरी चिप (जैसे मॉस मेमोरी और फ्लोटिंग-गेट मेमोरी), अंतर्प्रष्ठ एकीकृत परिपथ (स्तर परिवर्तक, अनुक्रमक / अनअनुक्रमक, आदि), सामर्थ्य प्रबंधक एकीकृत परिपथ और पप्रोग्रामयोग्य तार्किक उपकरणों के रूप में वर्गीकृत किया जाता है।
* साद्रश्य एकीकृत परिपथ को रैखिक एकीकृत परिपथ और रेडियो आवृत्ति परिपथ (आरएफ परिपथ) के रूप में वर्गीकृत किया जाता है।
* मिश्रित-संकेत एकीकृत परिपथ को डेटा अधिग्रहण एकीकृत परिपथ  (ए/डी परिवर्तक, डी/ए परिवर्तक, अंकीय विभवमापी सहित), घडी या समय एकीकृत परिपथ, पारस्परिक परिवर्तित संधारित्र परिपथ और आरएफ सीमॉस परिपथ के रूप में वर्गीकृत किया जाता है।
* त्रि-आयामी एकीकृत परिपथ को थ्रू-सिलिकॉन वाया (टीएसवी) एकीकृत परिपथ और Cu-Cu संयोजन एकीकृत परिपथ के माध्यम से वर्गीकृत किया गया है।


== निर्माण ==
== निर्माण ==
{{refimprove|section|date=May 2022}}
=== निर्माण ===
[[File:Silicon chip 3d.png|right|thumb|तीन धातु परतों के साथ एक छोटे मानक सेल का प्रतिपादन (ढांकता हुआ हटा दिया गया है)। रेत के रंग की संरचनाएं मेटल इंटरकनेक्ट होती हैं, जिसमें लंबवत खंभे सम्पर्कित होते हैं, सामान्यतः टंगस्टन के प्लग होते हैं। लाल रंग की संरचनाएं पॉलीसिलिकॉन गेट हैं, और तल पर ठोस क्रिस्टलीय सिलिकॉन बल्क है।]]
[[File:Cmos-chip structure in 2000s (en).svg|right|thumb|सीमॉस चिप (CMOS chip) की योजनाबद्ध संरचना, जैसा कि 2000 के दशक की शुरुआत में बनाया गया था। ग्राफिक LDD-MISFET को SOI अधःस्तर पर पांच धातुकरण परतों और फ्लिप-चिप बॉन्डिंग के लिए सोल्डर बंप के साथ दिखाता है। यह FEOL (फ्रंट-एंड ऑफ लाइन), BEOL (बैक-एंड ऑफ लाइन) और बैक-एंड प्रक्रिया के पहले भाग के लिए अनुभाग भी दिखाता है।]]
रासायनिक तत्वों की आवर्त सारणी के अर्धचालकों को एक ठोस-अवस्था वाली निर्वात नली के लिए सबसे संभावित सामग्री के रूप में पहचाना गया। 1940 और 1950 के दशक में कॉपर ऑक्साइड से शुरू होकर जर्मेनियम, फिर सिलिकॉन तक, सामग्री का व्यवस्थित रूप से अध्ययन किया गया था। आज, मोनोक्रिस्टलाइन सिलिकॉन एकीकृत परिपथ के लिए उपयोग किया जाने वाला मुख्य अधः स्तर है, हालांकि आवर्त सारणी के कुछ III-V यौगिकों जैसे गैलियम आर्सेनाइड का उपयोग एलईडी (LED), लेजर, सौर कोशिकाओं और उच्चतम गति वाले एकीकृत परिपथ जैसे विशेष अनुप्रयोगों के लिए किया जाता है। अर्धचालक सामग्री की क्रिस्टल संरचना में न्यूनतम दोषों के साथ क्रिस्टल बनाने के सही तरीकों में दशकों का समय लग गया।
 
अर्धचालक एकीकृत परिपथ एक समतलीय प्रक्रिया में गढ़े जाते हैं जिसमें तीन प्रमुख प्रक्रिया चरण सम्मिलित होते हैं - फोटोलिथोग्राफी, निक्षेप (जैसे रासायनिक वाष्प जमाव), और निक्षारण। प्रक्रिया के मुख्य चरण डोपिंग और सफाई द्वारा पूरक हैं। हाल ही के या उच्च-प्रदर्शन वाले एकीकृत परिपथ समतलीय वाले के स्थान पर बहु-द्वार फिनफेट या जीएएएफईटी (GAAFET) ट्रांजिस्टर का उपयोग कर सकते हैं, जो 22 एनएम नोड (इंटेल) या 16/14 एनएम नोड से शुरू होते हैं।<ref>Hsu, Chi-Ping (January 17, 2013). [https://www.electronicdesign.com/technologies/digital-ics/article/21795644/16nm14nm-finfets-enabling-the-new-electronics-frontier 16nm/14nm FinFETs: Enabling The New Electronics Frontier]. ''Electronic Design''</ref>
 
अधिकांश अनुप्रयोगों में मोनो-क्रिस्टल सिलिकॉन वेफरों का या विशेष अनुप्रयोगों के लिए, गैलियम आर्सेनाइड जैसे अन्य अर्धचालकों का उपयोग किया जाता है। वेफर पूरी तरह से सिलिकॉन नहीं होना चाहिए। फोटोलिथोग्राफी का उपयोग अधःस्तर के विभिन्न क्षेत्रों को डोप किए जाने के लिए या उन पर जमा पॉलीसिलिकॉन, विसंवाहक या धातु (सामान्यतः एल्यूमीनियम या तांबा) ट्रैक प्राप्त करने के लिए किया जाता है। डोपेंट एक अर्धचालक को जानबूझकर उसके इलेक्ट्रॉनिक गुणों को संशोधित करने के लिए प्रस्तुत की गई अशुद्धियाँ हैं। डोपिंग एक अर्धचालक पदार्थ में डोपेंट जोड़ने की प्रक्रिया है।


* एकीकृत परिपथ कई अतिव्यापी परतों से बने होते हैं, जिनमें से प्रत्येक को फोटोलिथोग्राफी द्वारा परिभाषित किया जाता है, और सामान्य रूप से विभिन्न रंगों में दिखाया जाता है। विसरण परतें उस स्थान को चिह्नित करती हैं जहां विभिन्न डोपेंट अधःस्तर में विसरित होते हैं;प्रत्यारोपण परतें यह परिभाषित करती हैं कि अतिरिक्त आयन कहाँ लगाए गए हैं; डोप्ड पॉलीसिलिकॉन या धात्विक परतें चालक को परिभाषित करती हैं, और वाया या संपर्क परतें संवाहक परतों के बीच संयोजन को परिभाषित करती हैं। इन परतों के एक विशिष्ट संयोजन से सभी घटकों का निर्माण  किया जाता है।


=== निर्माण ===
* एक स्व-संरेखित सीमॉस प्रक्रिया में एक ट्रांजिस्टर का निर्माण होता है जहां द्वार परत (पॉलीसिलिकॉन या धातु) एक विसरण परत को पार करती है।<ref name="selfAlignedCmos">[[Carver Mead|Mead, Carver A.]]; [[Lynn Conway|Conway, Lynn]] (1980) ''[[Introduction to VLSI Systems]]'' Reading, Mass.: Addison-Wesley: [[index.php?title=Special:BookSources/2201043580|ISBN 2-201-04358-0]]</ref>{{rp|p.1 (see Fig. 1.1)}}
{{Main|Semiconductor device fabrication|l1=Semiconductor fabrication}}
* संधारित संरचनाएँ, एक पारंपरिक विद्युत संधारित्र के समानांतर संवाहक प्लेटों की तरह, प्लेटों के बीच इन्सुलेट सामग्री के साथ, "प्लेटों" के क्षेत्र के अनुसार बनाई जाती हैं। एकीकृत परिपथ पर आकार की एक विस्तृत श्रृंखला वाले संधारित्र सामान्य होते हैं।
[[File:Silicon chip 3d.png|right|thumb|तीन धातु परतों के साथ एक छोटे मानक सेल का प्रतिपादन (ढांकता हुआ हटा दिया गया है)। रेत के रंग की संरचनाएं धातु इंटरकनेक्ट (एकीकृत परिपथ) हैं, जिसमें ऊर्ध्वाधर खंभे संपर्क होते हैं, आमतौर पर टंगस्टन के प्लग होते हैं। लाल रंग की संरचनाएं पॉलीसिलिकॉन गेट हैं, और तल पर ठोस मोनोक्रिस्टलाइन सिलिकॉन बल्क है।]]
* अलग-अलग लंबाई की घुमावदार वाली धारियों का उपयोग कभी-कभी ऑन-चिप प्रतिरोधक बनाने के लिए किया जाता है, हालांकि अधिकांश तार्किक परिपथ को किसी भी प्रतिरोधक की आवश्यकता नहीं होती है। प्रतिरोधक संरचना की लंबाई और चौड़ाई का अनुपात, इसकी तल प्रतिरोधकता के साथ मिलकर प्रतिरोध को निर्धारित करता है।
[[File:Cmos-chip structure in 2000s (en).svg|right|thumb|सीएमओएस चिप की योजनाबद्ध संरचना, जैसा कि 2000 के दशक की शुरुआत में बनाया गया था। ग्राफिक एलडीडी-एमआईएसएफईटी को एसओआई सब्सट्रेट पर पांच धातुकरण परतों और फ्लिप-चिप बॉन्डिंग के लिए सोल्डर बंप के साथ दिखाता है। यह FEOL (लाइन का फ्रंट-एंड), BEOL (लाइन का बैक-एंड) और बैक-एंड प्रक्रिया के पहले भाग के लिए अनुभाग भी दिखाता है।]]
* शायद ही कभी, आगमनात्मक संरचनाओं को छोटे ऑन-चिप कुंडल के रूप में बनाया जा सकता है, या परिभ्रमित्र द्वारा साइम्युलेट किया जा सकता है।
रासायनिक तत्वों की आवर्त सारणी के अर्धचालकों को सॉलिड-स्टेट इलेक्ट्रॉनिक्स | सॉलिड-स्टेट वैक्यूम ट्यूब के लिए सबसे संभावित सामग्री के रूप में पहचाना गया। कॉपर (I) ऑक्साइड से शुरू होकर, जर्मेनियम, फिर सिलिकॉन तक, सामग्री का व्यवस्थित रूप से 1940 और 1950 के दशक में अध्ययन किया गया था। आज, मोनोक्रिस्टलाइन सिलिकॉन आईसी के लिए उपयोग किया जाने वाला मुख्य सब्सट्रेट (प्रिंटिंग) है, हालांकि कुछ III-V यौगिक अर्धचालक जैसे गैलियम आर्सेनाइड का उपयोग प्रकाश उत्सर्जक डायोड, लेजर, सौर कोशिकाओं और उच्चतम गति एकीकृत परिपथ जैसे विशेष अनुप्रयोगों के लिए किया जाता है। अर्धचालक सामग्री की क्रिस्टल संरचना में न्यूनतम क्रिस्टल दोषों के साथ क्रिस्टल बनाने के सही तरीकों में दशकों लग गए।


सेमीकंडक्टर आईसी एक प्लानर प्रक्रिया में निर्मित होते हैं जिसमें तीन प्रमुख प्रक्रिया चरण शामिल होते हैं{{snd}} फोटोलिथोग्राफी, बयान (जैसे रासायनिक वाष्प जमाव), और नक़्क़ाशी (माइक्रोफैब्रिकेशन)। मुख्य प्रक्रिया कदम डोपिंग और सफाई द्वारा पूरक हैं। अधिक हाल के या उच्च-प्रदर्शन वाले आईसी इसके बजाय मल्टीगेट डिवाइस का उपयोग कर सकते हैं|प्लानर वाले के बजाय मल्टी-गेट फिनफेट या जीएएएफईटी ट्रांजिस्टर, 22 एनएम नोड (इंटेल) या 16/14 एनएम नोड्स से शुरू होते हैं।<ref>Hsu, Chi-Ping (January 17, 2013). [https://www.electronicdesign.com/technologies/digital-ics/article/21795644/16nm14nm-finfets-enabling-the-new-electronics-frontier 16nm/14nm FinFETs: Enabling The New Electronics Frontier]. ''Electronic Design''</ref>
चूँकि सीमॉस उपकरण केवल तार्किक अवस्थाओं के बीच संक्रमण पर धारा खींचता है, सीमॉस उपकरण द्विध्रुवी जंक्शन ट्रांजिस्टर उपकरण की तुलना में बहुत कम धारा की खपत करते हैं।
मोनोक्रिस्टलाइन सिलिकॉन|मोनो-क्रिस्टल सिलिकॉन वेफर (इलेक्ट्रॉनिक्स) का उपयोग अधिकांश अनुप्रयोगों में किया जाता है (या विशेष अनुप्रयोगों के लिए, अन्य अर्धचालक जैसे गैलियम आर्सेनाइड का उपयोग किया जाता है)। वेफर पूरी तरह से सिलिकॉन नहीं होना चाहिए। फोटोलिथोग्राफी का उपयोग सब्सट्रेट के विभिन्न क्षेत्रों को डोपिंग (सेमीकंडक्टर) के रूप में चिह्नित करने के लिए किया जाता है या उन पर पॉलीसिलिकॉन, इंसुलेटर या धातु (आमतौर पर एल्यूमीनियम या तांबा) ट्रैक जमा करने के लिए किया जाता है। डोपेंट अशुद्धियाँ हैं जो जानबूझकर अर्धचालक को उसके इलेक्ट्रॉनिक गुणों को संशोधित करने के लिए पेश की जाती हैं। डोपिंग एक अर्धचालक पदार्थ में डोपेंट जोड़ने की प्रक्रिया है।
{{anchor|circuitLayers}} * एकीकृत परिपथ कई अतिव्यापी परतों से बने होते हैं, प्रत्येक को फोटोलिथोग्राफी द्वारा परिभाषित किया जाता है, और सामान्य रूप से विभिन्न रंगों में दिखाया जाता है। कुछ परतें चिह्नित करती हैं जहां विभिन्न डोपेंट सब्सट्रेट (डिफ्यूजन लेयर्स कहा जाता है) में विसरित होते हैं, कुछ परिभाषित करते हैं कि अतिरिक्त आयन कहाँ लगाए जाते हैं (प्रत्यारोपण परतें), कुछ कंडक्टर (डॉप्ड पॉलीसिलिकॉन या धातु की परतें) को परिभाषित करते हैं, और कुछ संवाहक परतों के बीच कनेक्शन को परिभाषित करते हैं। (के माध्यम से या संपर्क परतों)। सभी घटकों का निर्माण इन परतों के एक विशिष्ट संयोजन से किया जाता है।
* एक स्व-संरेखित सीएमओएस प्रक्रिया में, एक ट्रांजिस्टर बनता है जहां गेट परत (पॉलीसिलिकॉन या धातु) सीएमओएस # उदाहरण: भौतिक लेआउट में नंद गेट एक प्रसार परत।<ref name= selfAlignedCmos >[[Carver Mead|Mead, Carver A.]]; [[Lynn Conway|Conway, Lynn]] (1980) ''[[Introduction to VLSI Systems]]'' Reading, Mass.: Addison-Wesley: ISBN 2-201-04358-0</ref>{{rp|p.1 (see Fig. 1.1)}}
* संधारित्र, एक पारंपरिक विद्युत संधारित्र के समानांतर-प्लेट संधारित्र के रूप में, प्लेटों के बीच इन्सुलेट सामग्री के साथ, प्लेटों के क्षेत्र के अनुसार बनते हैं। आकार की एक विस्तृत श्रृंखला के कैपेसिटर IC पर आम हैं।
* अलग-अलग लंबाई की घुमावदार धारियों का उपयोग कभी-कभी ऑन-चिप प्रतिरोधक बनाने के लिए किया जाता है, हालांकि अधिकांश लॉजिक परिपथ को किसी भी प्रतिरोधक की आवश्यकता नहीं होती है। प्रतिरोधक संरचना की लंबाई और इसकी चौड़ाई का अनुपात, इसकी शीट प्रतिरोधकता के साथ मिलकर, प्रतिरोध को निर्धारित करता है।
* शायद ही कभी, प्रारंभ करनेवाला को छोटे ऑन-चिप कॉइल के रूप में बनाया जा सकता है, या गाइरेटर्स द्वारा सिम्युलेटेड किया जा सकता है।


चूंकि एक सीएमओएस डिवाइस केवल बूलियन बीजगणित (लॉजिक) स्टेट (कंप्यूटर साइंस) के बीच स्टेट ट्रांजिशन फंक्शन पर करंट खींचता है, सीएमओएस डिवाइस बाइपोलर जंक्शन ट्रांजिस्टर डिवाइस की तुलना में बहुत कम करंट की खपत करते हैं।
रैंडम-एक्सेस मेमोरी (रैम) एकीकृत परिपथ का सबसे नियमित प्रकार है; इस प्रकार उच्चतम घनत्व वाले उपकरण मेमोरी हैं; लेकिन एक माइक्रोप्रोसेसर में भी चिप पर मेमोरी होती है। (पहली छवि के नीचे नियमित सरणी संरचना देखें।{{Which|date=October 2018}}) हालांकि दशकों से सिकुड़ती चौड़ाई के साथ संरचनाएं जटिल हैं। ये परतें उपकरण की चौड़ाई की तुलना में बहुत पतली रहती हैं। सामग्री की परतें एक फोटोग्राफिक प्रक्रिया की तरह गढ़ी जाती हैं, हालांकि दृश्य स्पेक्ट्रम में प्रकाश तरंगों का उपयोग सामग्री की एक परत को "प्रकट" करने के लिए नहीं किया जा सकता है, क्योंकि वे सुविधाओं के लिए बहुत बड़े होते हैं। इस प्रकार प्रत्येक परत के लिए पैटर्न बनाने के लिए उच्च आवृत्तियों (सामान्यतः पराबैंगनी) के फोटॉन का उपयोग किया जाता है। प्रत्येक विशेषता के अत्यंत सूक्ष्म होने के कारण इलेक्ट्रॉन सूक्ष्मदर्शी, एक प्रक्रिया अभियंता के लिए आवश्यक उपकरण हैं जो एक निर्माण प्रक्रिया को दोषमार्जित कर सकते हैं।


रैंडम-एक्सेस मेमोरी इंटीग्रेटेड परिपथ का सबसे नियमित प्रकार है; उच्चतम घनत्व वाले उपकरण इस प्रकार यादें हैं; लेकिन एक माइक्रोप्रोसेसर में भी चिप पर मेमोरी होगी। (पहली छवि के नीचे नियमित सरणी संरचना देखें।{{Which|date=October 2018}}) हालांकि संरचनाएं जटिल हैं - चौड़ाई के साथ जो दशकों से सिकुड़ रही हैं - परतें डिवाइस की चौड़ाई की तुलना में बहुत पतली रहती हैं। सामग्री की परतें एक फोटोग्राफिक प्रक्रिया की तरह गढ़ी जाती हैं, हालांकि दृश्य स्पेक्ट्रम में प्रकाश तरंगों का उपयोग सामग्री की एक परत को उजागर करने के लिए नहीं किया जा सकता है, क्योंकि वे सुविधाओं के लिए बहुत बड़े होंगे। इस प्रकार प्रत्येक परत के लिए पैटर्न बनाने के लिए उच्च आवृत्तियों (आमतौर पर पराबैंगनी) के फोटॉन का उपयोग किया जाता है। क्योंकि प्रत्येक सुविधा इतनी छोटी है, एक औद्योगिक प्रक्रिया इंजीनियर के लिए इलेक्ट्रॉन सूक्ष्मदर्शी आवश्यक उपकरण हैं जो एक निर्माण प्रक्रिया को डीबग कर सकते हैं।
वेफर परीक्षण या वेफर जांच के रूप में जानी जाने वाली प्रक्रिया में स्वचालित परीक्षण उपकरण (ATE) का उपयोग करके पैकेजिंग से पहले प्रत्येक उपकरण का परीक्षण किया जाता है। फिर वेफर को आयताकार खण्डों में काटा जाता है, जिनमें से प्रत्येक को डाई (die) कहा जाता है। फिर प्रत्येक अच्छी डाई को एल्यूमीनियम (या सोना) तार बंधन का उपयोग करके एक पैकेज में जोड़ा जाता है जो पैड के साथ थर्मोसोनिक रूप से बंधित होते हैं<ref><!-- Coucoulas, A., http://commons.wikimedia.org/wiki/File:Hot_Work_Ultrasonic_(Thermosonic)_Bonding_549-556.pdf DELETED--> [https://sites.google.com/site/hotworkultrasonicbonding/ "Hot Work Ultrasonic Bonding – A Method Of Facilitating Metal Flow By Restoration Processes"], Proc. 20th IEEE Electronic Components Conf. Washington, D.C., May 1970, pp. 549–556.]</ref> , जो सामान्यतः  डाई के किनारे के आसपास पाया जाता है। थर्मोसोनिक बंधन की शुरुआत सबसे पहले ए. कौकुलस ने की थी, जिन्होंने बाहरी दुनिया को ऐसे महत्वपूर्ण विद्युत संयोजनों को बनाने का एक विश्वसनीय साधन प्रदान किया। पैकेजिंग के बाद, वेफर जांच के दौरान उपयोग किए जाने वाले समान या समान ATE पर उपकरणों का अंतिम परीक्षण किया जाता है। इसमें औद्योगिक सीटी स्कैनिंग का भी उपयोग किया जा सकता है। इनकी परीक्षण लागत, कम लागत वाले उत्पादों पर निर्माण की लागत के 25% से अधिक हो सकती है, लेकिन कम उपज, बड़े या उच्च लागत वाले उपकरणों पर नगण्य भी हो सकती है।


वेफर परीक्षण, या वेफर जांच के रूप में जानी जाने वाली प्रक्रिया में स्वचालित परीक्षण उपकरण (एटीई) का उपयोग करके पैकेजिंग से पहले प्रत्येक उपकरण का परीक्षण किया जाता है। फिर वेफर को आयताकार ब्लॉकों में काटा जाता है, जिनमें से प्रत्येक को डाई (एकीकृत परिपथ) कहा जाता है। प्रत्येक अच्छा डाई (बहुवचन पासा, मर जाता है, या मर जाता है) को फिर एल्यूमीनियम (या सोना) वायर बॉन्डिंग का उपयोग करके एक पैकेज में जोड़ा जाता है जो थर्मोसोनिक बॉन्डिंग होते हैं<ref><!-- Coucoulas, A., http://commons.wikimedia.org/wiki/File:Hot_Work_Ultrasonic_(Thermosonic)_Bonding_549-556.pdf DELETED--> [https://sites.google.com/site/hotworkultrasonicbonding/ "Hot Work Ultrasonic Bonding – A Method Of Facilitating Metal Flow By Restoration Processes"], Proc. 20th IEEE Electronic Components Conf. Washington, D.C., May 1970, pp. 549–556.]</ref> पैड के लिए, आमतौर पर मरने के किनारे के आसपास पाया जाता है। थर्मोसोनिक बॉन्डिंग की शुरुआत सबसे पहले ए. कौकुलस ने की थी, जिसने बाहरी दुनिया को इन महत्वपूर्ण विद्युत कनेक्शनों को बनाने का एक विश्वसनीय साधन प्रदान किया। पैकेजिंग के बाद, वेफर जांच के दौरान उपयोग किए जाने वाले समान या समान ATE पर उपकरणों का अंतिम परीक्षण किया जाता है। औद्योगिक सीटी स्कैनिंग का भी उपयोग किया जा सकता है। परीक्षण लागत कम लागत वाले उत्पादों पर निर्माण की लागत का 25% से अधिक हो सकती है, लेकिन कम उपज, बड़े या उच्च लागत वाले उपकरणों पर नगण्य हो सकती है।
एक निर्माण सुविधा (जिसे आमतौर पर सेमीकंडक्टर फैब के रूप में जाना जाता है) के निर्माण में वर्ष 2016 तक 8 बिलियन अमेरिकी डॉलर से अधिक की लागत आ सकती थी।<ref>{{cite web |title=How Intel Makes a Chip |date=9 June 2016 |author1=Chafkin, Max |author2=King, Ian |publisher=Bloomburg Businessweek |url=https://www.bloomberg.com/news/articles/2016-06-09/how-intel-makes-a-chip}}</ref> नए उत्पादों की बढ़ती जटिलता के कारण एक निर्माण सुविधा की लागत समय के साथ बढ़ती जाती है; इसे रॉक के नियम के रूप में जाना जाता है। ऐसी विशेषताएं निम्न हैं:
* वेफर (इलेक्ट्रॉनिक्स) 300 मिमी व्यास तक (एक सामान्य डिशवेयर प्लेट से अधिक चौड़ा)।
* {{Update inline span|text={{वर्ष 2016 तक}}, 14 एनएम ट्रांजिस्टर.<ref>{{cite web |title=10 nm Fab Watch |author=Lapedus, Mark |publisher=Semiconductor Engineering |url=http://semiengineering.com/10nm-fab-watch/ |date=21 May 2015}}</ref>|date=October 2018|reason=In 2018, we see 7 nm and soon expect 5 nm processes}}
* कॉपर अंतर्संयोजित करता है जहां कॉपर वायरिंग अंतर्संयोजन के लिए एल्युमीनियम की जगह लेती है।
* Low-κ परावैद्युत विसंवाहक।
* विसंवाहक पर सिलिकॉन (SOI)।
* आईबीएम द्वारा उपयोग की जाने वाली प्रक्रिया में तनावपूर्ण सिलिकॉन, स्ट्रेंड सिलिकॉन डाइरेक्टली ऑन इन्सुलेटर (एसएसडीओआई) के रूप में जाना जाता है।
* बहु-द्वारता उपकरण जैसे त्रि-द्वार ट्रांजिस्टर।


{{As of|2016}}, एक सेमीकंडक्टर फैब्रिकेशन प्लांट (आमतौर पर सेमीकंडक्टर फैब के रूप में जाना जाता है) के निर्माण में 8 बिलियन अमेरिकी डॉलर से अधिक की लागत आ सकती है।<ref>{{cite web |title=How Intel Makes a Chip |date=9 June 2016 |author1=Chafkin, Max |author2=King, Ian |publisher=Bloomburg Businessweek |url=https://www.bloomberg.com/news/articles/2016-06-09/how-intel-makes-a-chip}}</ref> नए उत्पादों की बढ़ती जटिलता के कारण एक निर्माण सुविधा की लागत समय के साथ बढ़ती जाती है; इसे रॉक के नियम के रूप में जाना जाता है। ऐसी सुविधा विशेषताएं:
एकीकृत परिपथ का निर्माण या तो एकीकृत उपकरण निर्माताओं (आइडीएम) का उपयोग करके घर में या फाउंड्री मॉडल का उपयोग करके किया जा सकता है। आईडीएम (IDM) ऊर्ध्वाधर रूप से एकीकृत ऐसी कंपनियाँ (जैसे इन्टेल और सैमसंग) हैं जो अपने स्वयं के एकीकृत परिपथ की रचना, निर्माण और बिक्री करती हैं, और प्रायः कल्पित कंपनियों को रचना या निर्माण सेवाएँ प्रदान कर सकती हैं। फाउंड्री मॉडल में, एनवीडिया जैसी कल्पित कंपनियां केवल IC को डिजाइन करती और बेचती हैं और सभी विनिर्माणों को टीएसएमसी (TSMC) जैसे शुद्ध प्ले फाउंड्री को आउटसोर्स करती हैं। ये फाउंड्री, IC डिजाइन सेवाएं प्रदान कर सकती हैं।
* वेफर (इलेक्ट्रॉनिक्स) 300 मिमी व्यास तक (एक सामान्य प्लेट (डिशवेयर) से अधिक चौड़ा)।
* {{Update inline span|text={{As of|2016}}, 14 nm transistors.<ref>{{cite web |title=10 nm Fab Watch |author=Lapedus, Mark |publisher=Semiconductor Engineering |url=http://semiengineering.com/10nm-fab-watch/ |date=21 May 2015}}</ref>|date=October 2018|reason=In 2018, we see 7 nm and soon expect 5 nm processes}}
* कॉपर इंटरकनेक्ट करता है जहां कॉपर वायरिंग इंटरकनेक्ट के लिए एल्युमीनियम की जगह लेती है।
* कम-κ ढांकता हुआ इन्सुलेटर (बिजली)
* इन्सुलेटर पर सिलिकॉन (SOI)।
* आईबीएम द्वारा उपयोग की जाने वाली प्रक्रिया में स्ट्रेनड सिलिकॉन सीधे इंसुलेटर (एसएसडीओआई) पर स्ट्रेनड सिलिकॉन के रूप में जाना जाता है।
* मल्टीगेट डिवाइस जैसे ट्राई-गेट ट्रांजिस्टर।


एकीकृत उपकरण निर्माताओं (आईडीएम) द्वारा या फाउंड्री मॉडल का उपयोग करके आईसी का निर्माण या तो घर में किया जा सकता है। IDM लंबवत रूप से एकीकृत कंपनियाँ (जैसे Intel और Samsung) हैं जो अपने स्वयं के IC का डिज़ाइन, निर्माण और बिक्री करती हैं, और अन्य कंपनियों को डिज़ाइन और/या निर्माण (फाउंड्री) सेवाएँ प्रदान कर सकती हैं (बाद में अक्सर फैबलेस कंपनी को)। फाउंड्री मॉडल में, फैबलेस कंपनियां (जैसे एनवीडिया) केवल आईसी को डिजाइन और बेचती हैं और सभी मैन्युफैक्चरिंग को शुद्ध प्ले # प्योर प्ले फाउंड्री जैसे टीएसएमसी को आउटसोर्स करती हैं। ये फाउंड्री आईसी डिजाइन सेवाएं प्रदान कर सकती हैं।
=== संवेष्टन (Packaging) ===
{{Main|एकीकृत परिपथ संवेष्टन}}
[[File:RUS-IC.JPG|right|thumb|1977 में बनी सोवियत MSI nMOS तार्किक चिप, वर्ष 1970 में डिज़ाइन किए गए चार-चिप कैलकुलेटर सेट का हिस्सा है<ref>{{cite web | url=http://www.155la3.ru/k145_3.htm#k145hk1 | title = 145 series ICs (in Russian) | access-date=22 April 2012 }}</ref>]]
प्रारंभिक एकीकृत परिपथ मृत्तिका समतलीय संकुलों में पैक किए गए थे, जो कि कई वर्षों तक सेना द्वारा उनकी विश्वसनीयता और छोटे आकार के लिए उपयोग किया जाता रहा। वाणिज्यिक परिपथ संवेष्टन (packaging) तीव्र गति से दोहरी इन-लाइन पैकेज (डीआईपी) में प्रतिस्थापित हो गया, जिसमें पहले मृत्तिका (ceramic) में और बाद में प्लास्टिक में पैक किया जाने लगा, जिसे सामान्यतः क्रेसोल-फॉर्मेल्डिहाइड-नोवोलैक कहते हैं। 1980 के दशक में वीएलएसआई (VLSI) परिपथ की पिन संख्या डीआईपी संवेष्टन के लिए व्यावहारिक सीमा से अधिक हो गए, जिससे पिन ग्रिड एरे और लीडलेस चिप संवाहक (एलसीसी) पैकेज का उपयोग होने लगा। 1980 के दशक प्रारंभ में सतह आरूढ़ संवेष्टन का प्रदर्शन हुआ और जो कि 1980 के दशक के अंत में लोकप्रिय हो गई, जिसमें गल-विंग या जे-लीड के रूप में बनाई गई लीड के साथ बारीक लीड पिच का उपयोग किया गया, जैसा कि छोटे-आउटलाइन एकीकृत परिपथ (एसओIC) पैकेज द्वारा उदाहरण दिया गया था - एक वाहक जो एक समकक्ष डीआईपी की तुलना में लगभग 30-50% कम क्षेत्र का अधिग्रहण करता है और सामान्यतः 70% तक पतला होता है। इस पैकेज में "गल विंग" होते हैं, जो दो लंबी तरफ से फैला हुआ होता है और 0.050 इंच की लीड स्पेसिंग होती है।


=== पैकेजिंग ===
1990 के दशक के उत्तरार्ध में, प्लास्टिक क्वाड फ्लैट पैक (पीक्यूएफपी) और पतले छोटे-आउटलाइन पैकेज (टीएसओपी) उच्च पिन संख्या उपकरणों के लिए सबसे ज्यादा प्रचलित हो गए, हालांकि पीजीए (PGA) पैकेज अभी भी उच्च-सिरे माइक्रोप्रोसेसरों के लिए उपयोग किए जाते हैं।
{{Main|Integrated circuit packaging}}
[[File:RUS-IC.JPG|right|thumb|1977 में बनी सोवियत एमएसआई एनएमओएस लॉजिक चिप, 1970 में डिज़ाइन किए गए चार-चिप कैलकुलेटर सेट का हिस्सा है<ref>{{cite web | url=http://www.155la3.ru/k145_3.htm#k145hk1 | title = 145 series ICs (in Russian) | access-date=22 April 2012 }}</ref>]]
सबसे पहले एकीकृत परिपथ सिरेमिक फ्लैटपैक (इलेक्ट्रॉनिक्स) में पैक किए गए थे, जो कि कई वर्षों तक सेना द्वारा उनकी विश्वसनीयता और छोटे आकार के लिए उपयोग किया जाता रहा। वाणिज्यिक परिपथ पैकेजिंग जल्दी से दोहरी इन-लाइन पैकेज (डीआईपी) में चली गई, पहले सिरेमिक में और बाद में प्लास्टिक में, जो आमतौर पर क्रेसोल-फॉर्मेल्डिहाइड-नोवोलैक होता है। 1980 के दशक में वीएलएसआई परिपथ के पिन काउंट डीआईपी पैकेजिंग के लिए व्यावहारिक सीमा से अधिक हो गए, जिससे पिन ग्रिड एरे (पीजीए) और लीडलेस चिप कैरियर (एलसीसी) पैकेज हो गए। सरफेस-माउंट टेक्नोलॉजी पैकेजिंग 1980 के दशक की शुरुआत में दिखाई दी और 1980 के दशक के अंत में लोकप्रिय हो गई, जिसमें गल-विंग या जे-लीड के रूप में बनाई गई लीड के साथ महीन लीड पिच का उपयोग किया गया, जैसा कि स्मॉल आउटलाइन इंटीग्रेटेड परिपथ | स्मॉल-आउटलाइन इंटीग्रेटेड परिपथ ( SOIC) पैकेज - एक वाहक जो एक समकक्ष डीआईपी से लगभग 30-50% कम क्षेत्र पर कब्जा करता है और आमतौर पर 70% पतला होता है। इस पैकेज में दो लंबी भुजाओं से गल विंग लीड उभरी हुई है और 0.050 इंच की लीड स्पेसिंग है।


1990 के दशक के उत्तरार्ध में, PQFP (PQFP) और थिन स्मॉल आउटलाइन पैकेज | थिन स्मॉल-आउटलाइन पैकेज (TSOP) पैकेज हाई पिन काउंट डिवाइस के लिए सबसे आम हो गए, हालांकि PGA पैकेज अभी भी हाई-एंड माइक्रोप्रोसेसर के लिए उपयोग किए जाते हैं।
बॉल ग्रिड ऐरे (बीजीए) पैकेज 1970 के दशक से उपयोग के लिए उपस्थित है। अन्य प्रकार के पैकेजों की तुलना में बहुत अधिक पिन संख्या की सुविधा देने वाले फ्लिप-चिप बॉल ग्रिड ऐरे पैकेज 1990 के दशक में विकसित किए गए थे। एक एफसीबीजीए (FCBGA) पैकेज में डाई को उल्टा (फ़्लिप) लगाया जाता है और पैकेज बॉल्स को एक पैकेज अधःस्तर के माध्यम से जोड़ता है जो तारों के स्थान पर एक मुद्रित-परिपथ बोर्ड के समान होता है। एफसीबीजीए पैकेज डाई परिधि तक सीमित होने के स्थान पर इनपुट-आउटपुट संकेत (I/O क्षेत्र कहा जाता है) की एक सरणी को संपूर्ण डाई पर वितरित करने की अनुमति देता है। बीजीए (BGA) उपकरणों को एक समर्पित परिपथ की आवश्यकता नहीं होने का लाभ होता है, लेकिन उपकरण की विफलता के सम्बन्ध में इसे बदलना बहुत मुश्किल होता है।


बॉल ग्रिड ऐरे (बीजीए) पैकेज 1970 के दशक से मौजूद हैं। फ्लिप चिप | फ्लिप-चिप बॉल ग्रिड ऐरे पैकेज, जो अन्य पैकेज प्रकारों की तुलना में बहुत अधिक पिन काउंट की अनुमति देते हैं, 1990 के दशक में विकसित किए गए थे। एक FCBGA पैकेज में, डाई को उल्टा (फ़्लिप) लगाया जाता है और पैकेज बॉल्स को एक पैकेज सब्सट्रेट के माध्यम से जोड़ता है जो तारों के बजाय एक मुद्रित-परिपथ बोर्ड के समान होता है। FCBGA पैकेज इनपुट/आउटपुट|इनपुट-आउटपुट सिग्नल (जिन्हें एरिया-I/O कहा जाता है) की एक सरणी को डाई परिधि तक सीमित होने के बजाय पूरे डाई पर वितरित करने की अनुमति देता है। BGA उपकरणों को एक समर्पित सॉकेट की आवश्यकता नहीं होने का लाभ होता है, लेकिन डिवाइस की विफलता के मामले में इसे बदलना बहुत कठिन होता है।
इंटेल ने मोबाइल प्लेटफॉर्म के लिए वर्ष 2014 में जारी आखिरी पीजीए (PGA) परिपथ के साथ वर्ष 2004 के प्रारंभ में पीजीए (PGA) से लैंड ग्रिड ऐरे (LGA) और बीजीए (BGA) में प्रतिस्थापन किया । एएमडी (AMD) वर्ष 2018 तक मुख्यधारा के डेस्कटॉप प्रोसेसर पर पीजीए  पैकेज<ref>{{Cite news|url=https://wccftech.com/amd-am4-socket-zen-bristol-bridge-soc-package-pictured/|title=AMD Zen CPU & AM4 Socket Pictured, Launching February 2017 – PGA Design With 1331 Pins Confirmed|last=Moammer|first=Khalid|date=2016-09-16|work=Wccftech|access-date=2018-05-20}}</ref> और मोबाइल प्रोसेसर पर बीजीए (BGA) पैकेज,<ref>{{Cite news|url=https://en.wikichip.org/wiki/amd/ryzen_5/2500u|title=Ryzen 5 2500U – AMD – WikiChip|access-date=2018-05-20|publisher=wikichip.org}}</ref> उपयोग करता है, और उच्च-सिरे डेस्कटॉप और सर्वर माइक्रोप्रोसेसर एलजीए (LGA) पैकेज का उपयोग करते हैं।<ref>{{Cite news|url=https://www.pcworld.com/article/3198924/computers/amds-tr4-threadripper-cpu-socket-is-gigantic.html|title=AMD's 'TR4' Threadripper CPU socket is gigantic|work=PCWorld|access-date=2018-05-20|author=Ung, Gordon Mah |date=May 30, 2017}}</ref>


इंटेल पीजीए से लैंड ग्रिड ऐरे (एलजीए) और बीजीए में 2004 में शुरू हुआ, मोबाइल प्लेटफॉर्म के लिए 2014 में जारी आखिरी पीजीए सॉकेट के साथ।  {{As of|2018}}, एएमडी मुख्यधारा के डेस्कटॉप प्रोसेसर पर पीजीए पैकेज का उपयोग करता है,<ref>{{Cite news|url=https://wccftech.com/amd-am4-socket-zen-bristol-bridge-soc-package-pictured/|title=AMD Zen CPU & AM4 Socket Pictured, Launching February 2017 – PGA Design With 1331 Pins Confirmed|last=Moammer|first=Khalid|date=2016-09-16|work=Wccftech|access-date=2018-05-20}}</ref> मोबाइल प्रोसेसर पर बीजीए पैकेज,<ref>{{Cite news|url=https://en.wikichip.org/wiki/amd/ryzen_5/2500u|title=Ryzen 5 2500U – AMD – WikiChip|access-date=2018-05-20|publisher=wikichip.org}}</ref> और हाई-एंड डेस्कटॉप और सर्वर माइक्रोप्रोसेसर LGA पैकेज का उपयोग करते हैं।<ref>{{Cite news|url=https://www.pcworld.com/article/3198924/computers/amds-tr4-threadripper-cpu-socket-is-gigantic.html|title=AMD's 'TR4' Threadripper CPU socket is gigantic|work=PCWorld|access-date=2018-05-20|author=Ung, Gordon Mah |date=May 30, 2017}}</ref>
डाई से निकलने वाले विद्युत संकेतों को डाई को पैकेज से विद्युत् रूप से जोड़ने वाले पदार्थ, पैकेज में प्रवाहकीय निशान (पथ) और मुद्रित परिपथ बोर्ड पर प्रवाहकीय निशान से पैकेज को जोड़ने वाली लीडों से होकर अवश्य ही गुजरना चाहिए। इन विद्युत संकेतों के मार्ग में उपयोग की जाने वाली सामग्रियों और संरचनाओं में एक ही डाई के विभिन्न हिस्सों की यात्रा करने वाले तत्वों की तुलना में बहुत भिन्न विद्युतीय गुण होते हैं। फलस्वरूप, उन्हें संकेतों के भ्रष्ट न होने के सुनिश्चितीकरण करने के लिए विशेष रचना तकनीकों और डाई तक ही सीमित संकेतों की तुलना में बहुत अधिक विद्युत शक्ति की आवश्यकता होती है।
मरने से निकलने वाले विद्युत संकेतों को मुद्रित परिपथ बोर्ड पर पैकेज को प्रवाहकीय निशान से जोड़ने वाले लीड के माध्यम से, पैकेज में प्रवाहकीय सिग्नल ट्रेस (पथ) के माध्यम से, पैकेज में मरने को विद्युत रूप से जोड़ने वाली सामग्री से गुजरना होगा। इन विद्युत संकेतों के मार्ग में उपयोग की जाने वाली सामग्रियों और संरचनाओं में एक ही मरने के विभिन्न हिस्सों की यात्रा करने वालों की तुलना में बहुत भिन्न विद्युत गुण होते हैं। नतीजतन, उन्हें यह सुनिश्चित करने के लिए विशेष डिजाइन तकनीकों की आवश्यकता होती है कि सिग्नल दूषित न हों, और मरने तक ही सीमित संकेतों की तुलना में बहुत अधिक विद्युत शक्ति।


जब एक पैकेज में कई मर जाते हैं, तो परिणाम पैकेज में एक सिस्टम होता है, जिसे संक्षिप्त किया जाता है {{Abbr|SiP|System in Package}}. एक बहु-चिप मॉड्यूल ({{Abbr|MCM|multi-chip module}}), अक्सर सिरेमिक से बने एक छोटे सब्सट्रेट पर कई डाई को मिलाकर बनाया जाता है। एक बड़े एमसीएम और एक छोटे मुद्रित परिपथ बोर्ड के बीच का अंतर कभी-कभी अस्पष्ट होता है।
जब एक पैकेज में कई डाई रखे जाते हैं, तो परिणामस्वरुप पैकेज में एक तंत्र प्राप्त होता है, जिसे संक्षिप्त रूप से एसआईपी (SiP) कहा जाता है। प्रायः मृत्तिका (ceramic) से बने एक छोटे अधःस्तर पर कई डाई को मिलाकर एक बहु-चिप मॉड्यूल बनाया जाता है। एक बड़े बहु-चिप मॉड्यूल और एक छोटे मुद्रित परिपथ बोर्ड के बीच का अंतर कभी-कभी अस्पष्ट होता है।


पैकेज्ड इंटीग्रेटेड परिपथ आमतौर पर काफी बड़े होते हैं जिनमें पहचान की जानकारी शामिल होती है। चार सामान्य खंड हैं निर्माता का नाम या लोगो, भाग संख्या, एक भाग उत्पादन बैच संख्या और सीरियल नंबर, और चार अंकों का दिनांक-कोड यह पहचानने के लिए कि चिप का निर्माण कब किया गया था। अत्यधिक छोटे सतह-माउंट प्रौद्योगिकी भागों में अक्सर एकीकृत परिपथ की विशेषताओं को खोजने के लिए निर्माता की लुकअप तालिका में उपयोग की जाने वाली संख्या ही होती है।
पैकेज्ड एकीकृत परिपथ सामान्यतः काफी बड़े होते हैं, जिनमें पहचान की सूचना सम्मिलित होती है। यह पहचानने के लिए कि चिप का निर्माण कब किया गया था, इसमें चार सामान्य खंड होते हैं - निर्माता का नाम या प्रतीक चिन्ह, भाग संख्या, एक भाग उत्पादन बैच संख्या और क्रम संख्या, और चार अंकों का दिनांक-कोड। अत्यधिक छोटे सतह-आरूढ़ प्रौद्योगिकी भागों में प्रायः एकीकृत परिपथ की विशेषताओं को खोजने के लिए निर्माता की खोज तालिका में उपयोग की जाने वाली संख्या ही होती है।


निर्माण की तारीख को आमतौर पर दो अंकों के वर्ष के रूप में दर्शाया जाता है, जिसके बाद दो अंकों का सप्ताह कोड होता है, जैसे कि कोड 8341 वाला एक हिस्सा 1983 के सप्ताह 41 में या लगभग अक्टूबर 1983 में निर्मित किया गया था।
इसमें निर्माण की तारीख को सामान्यतः दो अंकों के वर्ष के रूप में दर्शाया जाता है, जिसके बाद दो अंकों का सप्ताह कोड होता है, जैसे कि कोड 8341 वाला एक भाग का निर्माण वर्ष 1983 के 41वें सप्ताह में या लगभग अक्टूबर, 1983 में किया गया था।


== बौद्धिक संपदा ==
== बौद्धिक संपदा ==
{{Main|Integrated circuit layout design protection}}
{{Main|एकीकृत परिपथ लेआउट डिज़ाइन सुरक्षा}}
एक एकीकृत परिपथ की प्रत्येक परत की तस्वीर खींचकर और प्राप्त तस्वीरों के आधार पर इसके उत्पादन के लिए फोटोमास्क तैयार करने की संभावना रचना विन्यासों (layout designs) की सुरक्षा के लिए कानून बनाने का एक कारण है। वर्ष 1984 के संयुक्त राज्य अर्धचालक सुरक्षा कानून (US semiconductor chip protection act) ने एकीकृत परिपथ का उत्पादन करने के लिए उपयोग किए जाने वाले फोटोमास्क के लिए बौद्धिक संपदा संरक्षण की स्थापना की।<ref name="USC-circ100">{{cite web|title=Federal Statutory Protection for Mask Works|url=https://copyright.gov/circs/circ100.pdf|website=United States Copyright Office|publisher=United States Copyright Office|access-date=22 October 2016}}</ref>
 
एक एकीकृत परिपथ की प्रत्येक परत की तस्वीर खींचकर और प्राप्त तस्वीरों के आधार पर इसके उत्पादन के लिए फोटोमास्क तैयार करने की संभावना रचना विन्यासों (layout designs) की सुरक्षा के लिए कानून बनाने का एक कारण है। वर्ष 1984 के संयुक्त राज्य अर्धचालक सुरक्षा कानून ने एकीकृत परिपथ का उत्पादन करने के लिए उपयोग किए जाने वाले फोटोमास्क के लिए बौद्धिक संपदा संरक्षण की स्थापना की।<ref name="USC-circ100">{{cite web|title=Federal Statutory Protection for Mask Works|url=https://copyright.gov/circs/circ100.pdf|website=United States Copyright Office|publisher=United States Copyright Office|access-date=22 October 2016}}</ref>


वर्ष 1989 में वाशिंगटन, डीसी (Washington, D.C.) में आयोजित एक राजनयिक सम्मेलन ने एकीकृत परिपथ के संबंध में बौद्धिक संपदा पर एक संधि को अपनाया,<ref>{{cite web|url=https://www.wipo.int/treaties/en/ip/washington/index.html|title=Washington Treaty on Intellectual Property in Respect of Integrated Circuits|website=www.wipo.int}}</ref> जिसे वाशिंगटन संधि या आईपीआईसी संधि (IPIC Treaty) भी कहा जाता है। यह संधि वर्तमान में लागू नहीं है, परन्तु इसे आंशिक रूप से ट्रिप्स समझौते (TRIPS agreement) में एकीकृत किया गया था।<ref>On 1 January 1995, the ''Agreement on Trade-Related Aspects of Intellectual Property Rights'' (TRIPs) (Annex 1C to the World Trade Organization (WTO) Agreement), went into force. Part II, section 6 of TRIPs protects semiconductor chip products and was the basis for Presidential Proclamation No. 6780, 23 March 1995, under SCPA § 902(a)(2), extending protection to all present and future WTO members.</ref>
वर्ष 1989 में वाशिंगटन, डीसी में आयोजित एक राजनयिक सम्मेलन ने एकीकृत परिपथ के संबंध में बौद्धिक संपदा पर एक संधि को अपनाया,<ref>{{cite web|url=https://www.wipo.int/treaties/en/ip/washington/index.html|title=Washington Treaty on Intellectual Property in Respect of Integrated Circuits|website=www.wipo.int}}</ref> जिसे वाशिंगटन संधि या आईपीIC संधि (IPIC Treaty) भी कहा जाता है। यह संधि वर्तमान में लागू नहीं है, परन्तु इसे आंशिक रूप से ट्रिप्स समझौते (TRIPS एग्रीमेंट) में एकीकृत किया गया था।<ref>On 1 January 1995, the ''Agreement on Trade-Related Aspects of Intellectual Property Rights'' (TRIPs) (Annex 1C to the World Trade Organization (WTO) Agreement), went into force. Part II, section 6 of TRIPs protects semiconductor chip products and was the basis for Presidential Proclamation No. 6780, 23 March 1995, under SCPA § 902(a)(2), extending protection to all present and future WTO members.</ref>


एकीकृत परिपथ से जुड़े कई संयुक्त राज्य पेटेंट हैं, जिनमें जे.एस. किल्बी {{US patent|3138743|US3,138,743}}, {{US patent|3261081|US3,261,081}}, {{US patent|3434015|US3,434,015}} और आर.एफ. स्टीवर्ट {{US patent|3138747|US3,138,747}}. द्वारा पेटेंट शामिल हैं |  
एकीकृत परिपथ से जुड़े कई संयुक्त राज्य पेटेंट हैं, जिनमें जे.एस. किल्बी {{US patent|3138743|US3,138,743}}, {{US patent|3261081|US3,261,081}}, {{US patent|3434015|US3,434,015}} और आर.एफ. स्टीवर्ट {{US patent|3138747|US3,138,747}}. द्वारा पेटेंट शामिल हैं |  


आईसी (IC) रचना विन्यासों की रक्षा करने वाले राष्ट्रीय कानूनों को जापान,<ref>Japan was the first country to enact its own version of the SCPA, the Japanese "Act Concerning the Circuit Layout of a Semiconductor Integrated Circuit" of 1985.</ref> यूरोपीय आर्थिक समुदाय (EC),<ref>In 1986 the EC promulgated a directive requiring its members to adopt national legislation for the protection of semiconductor topographies. Council Directive 1987/54/EEC of 16 December 1986 on the ''Legal Protection of Topographies of Semiconductor Products'', art. 1(1)(b), 1987 O.J. (L 24) 36.</ref>  यूके, ऑस्ट्रेलिया और कोरिया सहित कई देशों में अपनाया गया है। यूके ने कॉपीराइट, डिजाइन और पेटेंट अधिनियम, 1988, c. 48, § 213 अधिनियमित किया, जिसका कॉपीराइट कानून प्रारंभ में स्थापित होने के बाद पूरी तरह से चिप स्थलाकृतियों की रक्षा करता है। ब्रिटिश लीलैंड मोटर कार्पोरेशन बनाम आर्मस्ट्रांग पेटेंट कंपनी (British Leyland Motor Corp. v. Armstrong Patents Co.) देखें।
IC रचना विन्यासों की रक्षा करने वाले राष्ट्रीय कानूनों को जापान,<ref>Japan was the first country to enact its own version of the SCPA, the Japanese "Act Concerning the Circuit Layout of a Semiconductor Integrated Circuit" of 1985.</ref> यूरोपीय आर्थिक समुदाय (EC),<ref>In 1986 the EC promulgated a directive requiring its members to adopt national legislation for the protection of semiconductor topographies. Council Directive 1987/54/EEC of 16 December 1986 on the ''Legal Protection of Topographies of Semiconductor Products'', art. 1(1)(b), 1987 O.J. (L 24) 36.</ref>  यूके, ऑस्ट्रेलिया और कोरिया सहित कई देशों में अपनाया गया है। यूके ने कॉपीराइट, डिजाइन और पेटेंट अधिनियम, 1988, c. 48, § 213 अधिनियमित किया, जिसका कॉपीराइट कानून प्रारंभ में स्थापित होने के बाद पूरी तरह से चिप स्थलाकृतियों की रक्षा करता है। ब्रिटिश लीलैंड मोटर कार्पोरेशन बनाम आर्मस्ट्रांग पेटेंट कंपनी देखें।


यूके के कॉपीराइट दृष्टिकोण की यूएस चिप उद्योग द्वारा अपर्याप्तता की आलोचना को इसके बाद के चिप अधिकारों के विकास में संक्षेपित किया गया है।<ref>{{cite journal|doi=10.1109/MM.1985.304489|title=MicroLaw|journal=IEEE Micro|volume=5|issue=4|pages=90–92|year=1985|last1=Stern|first1=Richard}}</ref>
यूके के कॉपीराइट दृष्टिकोण की यूएस चिप उद्योग द्वारा अपर्याप्तता की आलोचना को इसके बाद के चिप अधिकारों के विकास में संक्षेपित किया गया है।<ref>{{cite journal|doi=10.1109/MM.1985.304489|title=MicroLaw|journal=IEEE Micro|volume=5|issue=4|pages=90–92|year=1985|last1=Stern|first1=Richard}}</ref>


ऑस्ट्रेलिया ने परिपथ रचना विन्यास अधिनियम 1989 को चिप संरक्षण के एक ''स्वजातिक'' रूप (''sui generis'' form) में पारित किया।{{citation needed|date=December 2020}} कोरिया ने अर्धचालक एकीकृतपरिपथ के रचना विन्यास के संबंध में अधिनियम पारित किया।{{citation needed|date=December 2020}}
ऑस्ट्रेलिया ने परिपथ रचना विन्यास अधिनियम 1989 को चिप संरक्षण के एक ''स्वजातिक'' रूप (''sui generis'' form) में पारित किया।{{citation needed|date=December 2020}} कोरिया ने अर्धचालक एकीकृत परिपथ के रचना विन्यास के संबंध में अधिनियम पारित किया।
== पीढ़ी ==
== पीढ़ियाँ ==
{{See also|List of semiconductor scale examples|MOS integrated circuit|Transistor count}}
{{See also|अर्धचालक पैमाने के उदाहरणों की सूची|एमओएस एकीकृत सर्किट|ट्रांजिस्टर गिनती}}
सरल एकीकृत परिपथों के शुरुआती दिनों में, प्रौद्योगिकी के बड़े पैमाने ने प्रत्येक चिप को केवल कुछ ट्रांजिस्टर तक सीमित कर दिया था, और एकीकरण की निम्न डिग्री का मतलब था कि डिजाइन प्रक्रिया अपेक्षाकृत सरल थी। पहले पास की उपज भी आज के मानकों से काफी कम थी। जैसे-जैसे मेटल-ऑक्साइड-सेमीकंडक्टर (MOS) तकनीक आगे बढ़ी, लाखों और फिर अरबों MOS ट्रांजिस्टर एक चिप पर रखे जा सकते थे,<ref>Peter Clarke, ''Intel enters billion-transistor processor era'', [http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=172301051 EE Times, 14 October 2005] {{Webarchive|url=https://web.archive.org/web/20130510121557/http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=172301051 |date=10 May 2013 }}</ref> और अच्छे डिजाइनों के लिए पूरी तरह से योजना बनाने की आवश्यकता थी, जिससे इलेक्ट्रॉनिक डिजाइन ऑटोमेशन, या ईडीए के क्षेत्र में वृद्धि हुई।
 
कुछ एसएसआई और एमएसआई चिप्स, जैसे असतत ट्रांजिस्टर, अभी भी बड़े पैमाने पर उत्पादित होते हैं, दोनों पुराने उपकरणों को बनाए रखने और नए उपकरणों का निर्माण करने के लिए केवल कुछ द्वारों की आवश्यकता होती है। उदाहरण के लिए, ट्रांजिस्टर-ट्रांजिस्टर लॉजिक चिप्स के 7400-श्रृंखला के एकीकृत परिपथ एक वास्तविक मानक बन गए हैं और उत्पादन में बने हुए हैं।
प्रौद्योगिकी के बड़े पैमाने ने सरल एकीकृत परिपथों के प्रारम्भिक दिनों में प्रत्येक चिप को केवल कुछ ट्रांजिस्टर तक सीमित कर दिया था, और एकीकरण की निम्न कोटि का अर्थ था कि रचना प्रक्रिया अपेक्षाकृत सरल थी। इसका उत्पादन भी आज के मानकों से काफी निम्न था। जैसे-जैसे धातु-ऑक्साइड-अर्धचालक (मॉस) तकनीक का विकास हुआ, तो लाखों और फिर अरबों मॉस ट्रांजिस्टरों को एक चिप पर रखा जा सकता था,<ref>Peter Clarke, ''Intel enters billion-transistor processor era'', [http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=172301051 EE Times, 14 October 2005] {{Webarchive|url=https://web.archive.org/web/20130510121557/http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=172301051 |date=10 May 2013 }}</ref> और इलेक्ट्रॉनिक रचना स्वचालन (ईडीए) के क्षेत्र को जन्म देते हुए अच्छी रचनाओं के लिए गहन योजना की आवश्यकता थी। असतत ट्रांजिस्टर जैसे कुछ एसएसआई (SSI) और एमएसआई (MSI) चिपों का उत्पादन आज भी बड़े पैमाने पर होता है, जो पुराने उपकरणों को बनाए रखने और केवल कुछ द्वारों की आवश्यकता वाले नए उपकरणों का निर्माण करने का कार्य करता है। उदाहरण के लिए, टीटीएल चिप की 7400 श्रृंखला एक वास्तविक मानक बनने के साथ उत्पादन में बनी हुई है।


{|class="wikitable sortable"
{|class="wikitable sortable"
! Acronym !! Name !! Year !! [[Transistor count]]<ref>Dalmau, M.   
! संक्षिप्त रूप !! नाम !! वर्ष !! [[Transistor count|ट्रांजिस्टरों की संख्या]] <ref>Dalmau, M.   
[http://www.iutbayonne.univ-pau.fr/~dalmau/documents/cours/archi/MICROPancien.pdf Les Microprocesseurs]. IUT de Bayonne</ref> || [[Logic gate]]s number<ref>{{cite book|language=fr|url=https://books.google.com/books?id=ZbcsAQAAIAAJ&q=ssi+msi+12+99+portes+lsi|title=Bulletin de la Société fribourgeoise des sciences naturelles, Volumes 62 à 63|year=1973}}</ref>
[http://www.iutbayonne.univ-pau.fr/~dalmau/documents/cours/archi/MICROPancien.pdf Les Microprocesseurs]. IUT de Bayonne</ref> || [[Logic gate|तर्क द्वारों की संख्या]]<ref>{{cite book|language=fr|url=https://books.google.com/books?id=ZbcsAQAAIAAJ&q=ssi+msi+12+99+portes+lsi|title=Bulletin de la Société fribourgeoise des sciences naturelles, Volumes 62 à 63|year=1973}}</ref>
|-
|-
| SSI || ''small-scale integration'' || 1964 || 1 to 10 || 1 to 12
| एसएसआई (SSI) || ''छोटे पैमाने पर एकीकरण'' || 1964 || 1 से 10 || 1 से 12
|-
|-
| MSI || ''medium-scale integration'' || 1968 || 10 to 500 || 13 to 99
| एमएसआई (MSI) || ''मध्यम पैमाने पर एकीकरण'' || 1968 || 10 से 500 || 13 से 99
|-
|-
| LSI|| ''large-scale integration'' || 1971 || 500 to 20 000 || 100 to 9999
| एलएसआई (LSI)|| ''बड़े पैमाने पर एकीकरण'' || 1971 || 500 से 20 000 || 100 से 9999
|-
|-
| VLSI || ''[[very large-scale integration]]'' || 1980 || 20 000 to 1 000 000 || 10 000 to 99 999
| वीएलएसआई (VLSI) || ''अधिक बड़े पैमाने पर एकीकरण''|| 1980 || 20 000 से 1 000 000 || 10 000 से 99 999
|-
|-
| ULSI || ''ultra-large-scale integration'' || 1984 || 1 000 000 and more || 100 000 and more
| यूएलएसआई (ULSI) || ''अत्यधिक बड़े पैमाने पर एकीकरण'' || 1984 || 1 000 000 और अधिक || 100 000 और अधिक
|}
|}


=== छोटे पैमाने पर एकीकरण===
पहले एकीकृत परिपथों में केवल कुछ ट्रांजिस्टर होते थे। कई दस ट्रांजिस्टर वाले प्रारंभिक अंकीय परिपथ में कुछ तर्क द्वार होते थे, और प्लेसी एसएल201 या फिलिप्स टीएए320 जैसे प्रारम्भिक रैखिक एकीकृत परिपथों में दो ट्रांजिस्टर थे। तब से एक एकीकृत परिपथ में ट्रांजिस्टर की संख्या में नाटकीय रूप से वृद्धि हुई है। सैद्धांतिक अवधारणा का वर्णन करते समय बड़े पैमाने पर एकीकरण (एलएसआई) शब्द का प्रयोग पहली बार आईबीएम वैज्ञानिक रॉल्फ लैंडौअर द्वारा किया गया था;<ref>{{Cite journal|last=Safir|first=Ruben|date=March 2015|title=System on Chip – Integrated Circuits|url=https://books.google.com/books?id=JsOmCQAAQBAJ&pg=PT39|journal=NYLXS Journal|isbn=9781312995512}}</ref> उस शब्द ने छोटे पैमाने के एकीकरण (एसएसआई), मध्यम पैमाने के एकीकरण (एमएसआई), बहुत बड़े पैमाने पर एकीकरण (वीएलएसआई) और अत्यधिक बड़े पैमाने पर एकीकरण (यूएलएसआई) को जन्म दिया। प्रारंभिक एकीकृत परिपथ छोटे पैमाने के एकीकरण (एसएसआई) थे।


=== छोटे पैमाने पर एकीकरण (एसएसआई) {{Anchor|SSI, MSI and LSI|SSI}}===<!-- This section is linked from [[PDP-11]] and Computer fan-->
प्रारंभिक अन्तरिक्षीय परियोजनाओं के लिए एसएसआई (SSI) परिपथ महत्वपूर्ण थे, और इन परियोजनाओं ने प्रौद्योगिकी के विकास को प्रेरित करने में सहायता प्रदान की। एलजीएम-30 मिनटमैन  और अपोलो दोनों कार्यक्रमों को अपने जड़त्वीय मार्गदर्शन प्रणालियों के लिए हल्के अंकीय कंप्यूटरों की आवश्यकता थी। हालांकि अपोलो मार्गदर्शन कंप्यूटर ने एकीकृत-परिपथ प्रौद्योगिकी का नेतृत्व और प्रेरण किया,<ref>{{cite book |last=Mindell |first=David A. |title=Digital Apollo: Human and Machine in Spaceflight |year=2008 |publisher=The MIT Press |isbn=978-0-262-13497-2}}</ref> जबकि मिनटमैन मिसाइल ने इसे बड़े पैमाने पर उत्पादन के लिए मजबूर किया। मिनटमैन मिसाइल कार्यक्रम और विभिन्न अन्य संयुक्त राज्य नौसेना कार्यक्रमों ने वर्ष 1962 में कुल $4 मिलियन एकीकृत परिपथ बाजार के लिए उत्तरदायी था, और नासा के बजट और संयुक्त राज्य अमेरिका के सैन्य बजट पर वर्ष 1968 तक संयुक्त राज्य सरकार का खर्च अभी भी $312 मिलियन के कुल उत्पादन के 37% था।
पहले एकीकृत परिपथों में केवल कुछ ट्रांजिस्टर होते थे। दसियों ट्रांजिस्टर वाले प्रारंभिक डिजिटल परिपथ में कुछ लॉजिक गेट उपलब्ध थे, और प्रारंभिक रैखिक IC जैसे कि प्लेसी SL201 या Philips TAA320 में कम से कम दो ट्रांजिस्टर थे। तब से एक एकीकृत परिपथ में ट्रांजिस्टर की संख्या में नाटकीय रूप से वृद्धि हुई है। सैद्धांतिक अवधारणा का वर्णन करते समय बड़े पैमाने पर एकीकरण (LSI) शब्द का प्रयोग पहली बार IBM वैज्ञानिक रॉल्फ लैंडौअर द्वारा किया गया था;<ref>{{Cite journal|last=Safir|first=Ruben|date=March 2015|title=System on Chip – Integrated Circuits|url=https://books.google.com/books?id=JsOmCQAAQBAJ&pg=PT39|journal=NYLXS Journal|isbn=9781312995512}}</ref> उस शब्द ने छोटे पैमाने के एकीकरण (एसएसआई), मध्यम पैमाने के एकीकरण (एमएसआई), बहुत बड़े पैमाने पर एकीकरण (वीएलएसआई), और अल्ट्रा-बड़े पैमाने पर एकीकरण (यूएलएसआई) को जन्म दिया। प्रारंभिक एकीकृत परिपथ एसएसआई थे।
 
प्रारंभिक एयरोस्पेस परियोजनाओं के लिए एसएसआई परिपथ महत्वपूर्ण थे, और एयरोस्पेस परियोजनाओं ने प्रौद्योगिकी के विकास को प्रेरित करने में मदद की। LGM-30 Minuteman और Apollo कार्यक्रम दोनों को अपने जड़त्वीय मार्गदर्शन प्रणालियों के लिए हल्के डिजिटल कंप्यूटरों की आवश्यकता थी। हालांकि अपोलो गाइडेंस कंप्यूटर ने एकीकृत-परिपथ प्रौद्योगिकी का नेतृत्व और प्रेरित किया,<ref>{{cite book |last=Mindell |first=David A. |title=Digital Apollo: Human and Machine in Spaceflight |year=2008 |publisher=The MIT Press |isbn=978-0-262-13497-2}}</ref> यह मिनुटमैन मिसाइल थी जिसने इसे बड़े पैमाने पर उत्पादन के लिए मजबूर किया। मिनुटमैन मिसाइल कार्यक्रम और विभिन्न अन्य संयुक्त राज्य नौसेना कार्यक्रमों ने 1962 में कुल $4 मिलियन एकीकृत परिपथ बाजार के लिए जिम्मेदार था, और 1968 तक, नासा के बजट और संयुक्त राज्य अमेरिका के सैन्य बजट पर यू.एस. सरकार का खर्च अभी भी 312 मिलियन डॉलर का 37% था। कुल उत्पादन।
 
अमेरिकी सरकार की मांग ने नवजात एकीकृत परिपथ बाजार का समर्थन किया जब तक कि आईसी फर्मों को उद्योग (विनिर्माण) बाजार और अंततः उपभोक्ता बाजार में प्रवेश करने की अनुमति देने के लिए लागत पर्याप्त नहीं हो गई। प्रति एकीकृत परिपथ की औसत कीमत 1962 में $50.00 से गिरकर 1968 में $2.33 हो गई।<ref>{{cite book| last = Ginzberg| first = Eli| title = Economic impact of large public programs: the NASA Experience| year = 1976| publisher = Olympus Publishing Company| isbn = 978-0-913420-68-3| page = 57 }}</ref> 1970 के दशक के अंत तक उपभोक्ता उत्पादों में एकीकृत परिपथ दिखाई देने लगे। टेलीविज़न रिसीवर्स में एक विशिष्ट अनुप्रयोग फ़्रीक्वेंसी मॉड्यूलेशन इंटर-कैरियर साउंड प्रोसेसिंग था।
 
पहला अनुप्रयोग MOSFET चिप्स छोटे पैमाने पर एकीकरण (SSI) चिप्स थे।<ref name="forging"/>1960 में मोहम्मद एम. अटाला के एमओएस इंटीग्रेटेड परिपथ चिप के प्रस्ताव के बाद,<ref name="Moskowitz">{{cite book|last1=Moskowitz|first1=Sanford L.|url=https://books.google.com/books?id=2STRDAAAQBAJ&pg=PA165|title=Advanced Materials Innovation: Managing Global Technology in the 21st century|date=2016|publisher=[[John Wiley & Sons]]|isbn=9780470508923|pages=165–167}}</ref> गढ़ी जाने वाली सबसे पहली प्रायोगिक एमओएस चिप एक 16-ट्रांजिस्टर चिप थी जिसे 1962 में आरसीए में फ्रेड हेमैन और स्टीवन हॉफस्टीन द्वारा बनाया गया था।<ref name="computerhistory-digital"/>एमओएस एसएसआई चिप्स का पहला व्यावहारिक अनुप्रयोग नासा के उपग्रहों के लिए था।<ref name="forging" />
 


=== मध्यम स्तर का एकीकरण (एमएसआई) {{Anchor|MSI}}===
जब तक एकीकृत परिपथ कंपनियों को औद्योगिक बाजार और अंततः उपभोक्ता बाजार में प्रवेश करने की अनुमति देने के लिए लागत कम नहीं हुई, तब तक संयुक्त राज्य सरकार की मांग ने नवविकसित एकीकृत परिपथ बाजार का समर्थन किया। प्रति एकीकृत परिपथ का औसत मूल्य वर्ष 1962 में $50 से गिरकर वर्ष 1968 में $2.33 हो गया।<ref>{{cite book| last = Ginzberg| first = Eli| title = Economic impact of large public programs: the NASA Experience| year = 1976| publisher = Olympus Publishing Company| isbn = 978-0-913420-68-3| page = 57 }}</ref> 1970 के दशक के अंत तक उपभोक्ता उत्पादों में एकीकृत परिपथ की पहुँच हो गई। फ़्रीक्वेंसी मॉड्यूलेशन इंटर-कैरियर साउंड प्रोसेसिंग दूरदर्शन अवशोषकों में एक विशिष्ट अनुप्रयोग था।
एकीकृत परिपथों के विकास के अगले चरण में ऐसे उपकरण पेश किए गए जिनमें प्रत्येक चिप पर सैकड़ों ट्रांजिस्टर होते हैं, जिन्हें मध्यम-स्तरीय एकीकरण (MSI) कहा जाता है।


MOSFET स्केलिंग तकनीक ने उच्च-घनत्व वाले चिप्स बनाना संभव बना दिया है।<ref name="computerhistory-transistor"/>1964 तक, एमओएस चिप्स द्विध्रुवी जंक्शन ट्रांजिस्टर चिप्स की तुलना में उच्च ट्रांजिस्टर घनत्व और कम विनिर्माण लागत तक पहुंच गए थे।<ref name="ieee"/>
छोटे पैमाने पर एकीकरण (SSI) चिप, मॉस चिप का पहला अनुप्रयोग था।<ref name="forging"/> वर्ष 1960 में मोहम्मद एम. अटाला के मॉस एकीकृत परिपथ चिप के प्रस्ताव के बाद,<ref name="Moskowitz">{{cite book|last1=Moskowitz|first1=Sanford L.|url=https://books.google.com/books?id=2STRDAAAQBAJ&pg=PA165|title=Advanced Materials Innovation: Managing Global Technology in the 21st century|date=2016|publisher=[[John Wiley & Sons]]|isbn=9780470508923|pages=165–167}}</ref> बनाई जाने वाली सबसे पहली प्रायोगिक मॉस चिप 16-ट्रांजिस्टर चिप थी, जिसे वर्ष 1962 में आरसीए (RCA) में फ्रेड हेमैन और स्टीवन हॉफस्टीन द्वारा बनाया गया था।<ref name="computerhistory-digital"/> मॉस एसएसआई चिपों का पहला व्यावहारिक अनुप्रयोग नासा के उपग्रहों के लिए था।<ref name="forging" />
=== मध्यम पैमाने पर एकीकरण (medium-scale integration)===
एकीकृत परिपथों के विकास के अगले चरण में ऐसे उपकरण प्रस्तुत किए गए जिनमें प्रत्येक चिप पर सैकड़ों ट्रांजिस्टर होते हैं, जिन्हें मध्यम पैमाने पर एकीकरण (MSI) कहा जाता है।


1964 में, फ्रैंक वानलास ने एक सिंगल-चिप 16-बिट शिफ्ट रजिस्टर का प्रदर्शन किया, जिसे उन्होंने डिज़ाइन किया था, जिसमें एक एकल चिप पर तत्कालीन-अविश्वसनीय 120 MOS ट्रांजिस्टर थे।<ref name="forging">{{cite book | title = We were burning: Japanese entrepreneurs and the forging of the electronic age | author = Johnstone, Bob | publisher = Basic Books | year = 1999 | isbn = 978-0-465-09118-8 | pages = 47–48 | url = https://books.google.com/books?id=PE1bQS9VpWoC&pg=PA47 }}</ref><ref>{{cite web| url = http://www.eecs.umich.edu/eecs/about/articles/2007/Boysel.html| title = Making Your First Million (and other tips for aspiring entrepreneurs)| author = Boysel, Lee | date = 2007-10-12| work = U. Mich. EECS Presentation / ECE Recordings}}</ref> उसी वर्ष, जनरल माइक्रोइलेक्ट्रॉनिक ने पहली वाणिज्यिक एमओएस एकीकृत परिपथ चिप पेश की, जिसमें 120 पीएमओएस लॉजिक | पी-चैनल एमओएस ट्रांजिस्टर शामिल थे।<ref name="computerhistory1964"/>यह एक 20-बिट शिफ्ट रजिस्टर था, जिसे रॉबर्ट नॉर्मन द्वारा विकसित किया गया था<ref name="computerhistory-digital"/>और फ्रैंक वानलास।<ref>{{cite journal |last1=Kilby |first1=J. S. |title=Miniaturized electronic circuits [US Patent No. 3,138, 743] |journal=IEEE Solid-State Circuits Society Newsletter |date=2007 |volume=12 |issue=2 |pages=44–54 |doi=10.1109/N-SSC.2007.4785580 |url=https://www.researchgate.net/publication/245509003 }}</ref> मूर के नियम द्वारा अनुमानित दर पर MOS चिप्स जटिलता में और बढ़ गए, जिससे 1960 के दशक के अंत तक एक चिप पर सैकड़ों MOSFETs के साथ चिप्स बन गए।<ref name="ieee"/>
मॉस्फेट स्केलिंग तकनीक ने उच्च-घनत्व वाले चिपों के निर्माण को संभव बना दिया है।<ref name="computerhistory-transistor"/> मॉस चिप वर्ष 1964 तक द्विध्रुवी जंक्शन ट्रांजिस्टर चिपों की तुलना में उच्च ट्रांजिस्टर घनत्व और कम विनिर्माण लागत तक पहुंच गए थे।<ref name="ieee"/>


फ्रैंक वानलास ने वर्ष 1964 में स्वयं द्वारा रचित एक एकल-चिप 16-बिट शिफ्ट रजिस्टर को प्रस्तुत किया, जिसमें एक चिप पर तत्कालीन-अविश्वसनीय 120 मॉस ट्रांजिस्टर थे।<ref name="forging">{{cite book | title = We were burning: Japanese entrepreneurs and the forging of the electronic age | author = Johnstone, Bob | publisher = Basic Books | year = 1999 | isbn = 978-0-465-09118-8 | pages = 47–48 | url = https://books.google.com/books?id=PE1bQS9VpWoC&pg=PA47 }}</ref><ref>{{cite web| url = http://www.eecs.umich.edu/eecs/about/articles/2007/Boysel.html| title = Making Your First Million (and other tips for aspiring entrepreneurs)| author = Boysel, Lee | date = 2007-10-12| work = U. Mich. EECS Presentation / ECE Recordings}}</ref> उसी वर्ष जनरल माइक्रोइलेक्ट्रॉनिक ने पहला वाणिज्यिक मॉस एकीकृत परिपथ चिप प्रस्तुत किया, जिसमें 120 पी-चैनल मॉस ट्रांजिस्टर सम्मिलित था।<ref name="computerhistory1964"/> यह एक 20-बिट शिफ्ट रजिस्टर था, जिसे रॉबर्ट नॉर्मन<ref name="computerhistory-digital"/> और फ्रैंक वानलास<ref>{{cite journal |last1=Kilby |first1=J. S. |title=Miniaturized electronic circuits [US Patent No. 3,138, 743] |journal=IEEE Solid-State Circuits Society Newsletter |date=2007 |volume=12 |issue=2 |pages=44–54 |doi=10.1109/N-SSC.2007.4785580 |url=https://www.researchgate.net/publication/245509003 }}</ref> द्वारा विकसित किया गया था। मूर के नियम द्वारा भविष्यवाणी की गई दर से MOS चिप और अधिक जटिल हो गए, जिससे 1960 के दशक के अंत तक एक चिप पर सैकड़ों मॉस्फेट के साथ चिपों का निर्माण होने लगा।<ref name="ieee"/>
=== बड़े पैमाने पर एकीकरण ===
समान मॉस्फेट स्केलिंग तकनीक और आर्थिक कारकों द्वारा संचालित अग्रिम विकास ने 1970 के दशक के मध्य तक "बड़े पैमाने पर एकीकरण" का नेतृत्व किया, जिसमें एक चिप पर हजारों ट्रांजिस्टर होते थे।<ref name="Hittinger">{{cite journal |last1=Hittinger |first1=William C. |title=Metal-Oxide-Semiconductor Technology |journal=Scientific American |date=1973 |volume=229 |issue=2 |pages=48–59 |jstor=24923169 |doi=10.1038/scientificamerican0873-48 |bibcode=1973SciAm.229b..48H }}</ref>


=== बड़े पैमाने पर एकीकरण (LSI) {{Anchor|LSI}}===
एसएसआई (SSI), एमएसआई (MSI) और शुरुआती एलएसआई (LSI) और वीएलएसआई (VLSI) उपकरणों (जैसे कि 1970 के दशक के शुरुआती माइक्रोप्रोसेसरों) को संसाधित और निर्मित करने के लिए उपयोग किए जाने वाले मुखौटे (masks) प्रायः रूबीलिथ-टेप या इसी तरह का उपयोग मुख्यतः हाथ से बनाए जाते थे।<ref>{{cite web |url=https://www.cnet.com/news/intels-accidental-revolution/ |title=Intel's Accidental Revolution |website=CNET|author=Kanellos, Michael |date=January 16, 2002}}</ref> यह मेमोरी या प्रोसेसर जैसे बड़े या जटिल एकीकृत परिपथ के लिए प्रायः परिपथ विन्यास के प्रभारी विशेष रूप से किराए के पेशेवरों द्वारा किया जाता था, जिन्हें अभियंताओं की एक टीम की देखरेख में रखा जाता था, जो परिपथ रचनाकारों के साथ प्रत्येक मुखौटे की शुद्धता और पूर्णता का निरीक्षण और सत्यापन भी करते थे।
समान MOSFET स्केलिंग तकनीक और आर्थिक कारकों द्वारा संचालित आगे के विकास ने 1970 के दशक के मध्य तक प्रति चिप हजारों ट्रांजिस्टर के साथ बड़े पैमाने पर एकीकरण (LSI) का नेतृत्व किया।<ref name="Hittinger">{{cite journal |last1=Hittinger |first1=William C. |title=Metal-Oxide-Semiconductor Technology |journal=Scientific American |date=1973 |volume=229 |issue=2 |pages=48–59 |jstor=24923169 |doi=10.1038/scientificamerican0873-48 |bibcode=1973SciAm.229b..48H }}</ref>
एसएसआई, एमएसआई और शुरुआती एलएसआई और वीएलएसआई उपकरणों (जैसे कि 1970 के दशक के शुरुआती माइक्रोप्रोसेसरों) को संसाधित करने और निर्माण करने के लिए उपयोग किए जाने वाले मुखौटे ज्यादातर हाथ से बनाए जाते थे, अक्सर रूबीलिथ-टेप या इसी तरह का उपयोग करते थे।<ref>{{cite web |url=https://www.cnet.com/news/intels-accidental-revolution/ |title=Intel's Accidental Revolution |website=CNET|author=Kanellos, Michael |date=January 16, 2002}}</ref> बड़े या जटिल आईसी (जैसे कंप्यूटर मेमोरी या प्रोसेसर (कंप्यूटिंग)) के लिए, यह अक्सर परिपथ लेआउट के प्रभारी विशेष रूप से किराए के पेशेवरों द्वारा किया जाता था, जिन्हें इंजीनियरों की एक टीम की देखरेख में रखा जाता था, जो परिपथ डिजाइनरों के साथ भी होगा। प्रत्येक मास्क का निरीक्षण और कार्यात्मक सत्यापन।


एकीकृत परिपथ जैसे 1K-बिट RAM, कैलकुलेटर चिप्स, और पहला माइक्रोप्रोसेसर, जो 1970 के दशक की शुरुआत में मध्यम मात्रा में निर्मित होना शुरू हुआ, में 4,000 ट्रांजिस्टर थे। ट्रू एलएसआई परिपथ, 10,000 ट्रांजिस्टर के करीब, कंप्यूटर की मुख्य यादों और दूसरी पीढ़ी के माइक्रोप्रोसेसरों के लिए 1974 के आसपास निर्मित होने लगे।
1K-बिट रैम, कैलकुलेटर चिप्स, और पहला माइक्रोप्रोसेसर जैसे एकीकृत परिपथों में 4,000 ट्रांजिस्टर होते थे , जो 1970 के दशक के प्रारंभ में मध्यम मात्रा में निर्मित होना प्रारंभ हुए थे। कंप्यूटर की मुख्य मेमोरी और दूसरी पीढ़ी के माइक्रोप्रोसेसरों के लिए लगभग 10,000 ट्रांजिस्टर वाले शुद्ध एलएसआई परिपथ का निर्माण वर्ष 1974 के आसपास प्रारंभ हो गया था।


=== बहुत बड़े पैमाने पर एकीकरण (वीएलएसआई) ===
=== बहुत बड़े पैमाने पर एकीकरण ===
{{Main|Very-large-scale integration}}
{{Main|बड़े पैमाने पर एकीकरण}}
[[File:80486DX2 200x.png|right|thumb|Intel 80486DX2 माइक्रोप्रोसेसर पर ऊपरी इंटरकनेक्ट परतें मर जाती हैं]]
[[File:80486DX2 200x.png|right|thumb|Intel 80486DX2 माइक्रोप्रोसेसर डाई पर ऊपरी इंटरकनेक्ट परतें ]]
वेरी-लार्ज-स्केल इंटीग्रेशन (वीएलएसआई) एक ऐसा विकास है जिसकी शुरुआत 1980 के दशक की शुरुआत में सैकड़ों हजारों ट्रांजिस्टर के साथ हुई थी, और 2016 तक, ट्रांजिस्टर की संख्या प्रति चिप दस बिलियन ट्रांजिस्टर से आगे बढ़ रही है।
"बहुत बड़े पैमाने पर एकीकरण (VLSI)" 1980 के दशक की शुरुआत में सैकड़ो-हजारों ट्रांजिस्टरों के साथ प्रारंभ हुआ एक विकास है, जिसमें वर्ष 2016 तक एक चिप में ट्रांजिस्टरों की संख्या दस बिलियन से अधिक पहुँच गई थी।


इस बढ़े हुए घनत्व को प्राप्त करने के लिए कई विकासों की आवश्यकता थी। निर्माता छोटे MOSFET डिज़ाइन नियमों और क्लीनरूम में चले गए। प्रक्रिया में सुधार के मार्ग को सेमीकंडक्टर्स (आईटीआरएस) के लिए अंतर्राष्ट्रीय प्रौद्योगिकी रोडमैप द्वारा संक्षेपित किया गया था, जिसे बाद में उपकरणों और प्रणालियों के लिए अंतर्राष्ट्रीय रोडमैप (आईआरडीएस) द्वारा सफल बनाया गया है। इलेक्ट्रॉनिक डिजाइन ऑटोमेशन में सुधार हुआ, जिससे डिजाइनों को उचित समय में खत्म करना व्यावहारिक हो गया। अधिक ऊर्जा कुशल CMOS ने NMOS तर्क और PMOS तर्क को बदल दिया, ऊर्जा खपत में निषेधात्मक वृद्धि से बचा। आधुनिक वीएलएसआई उपकरणों की जटिलता और घनत्व ने मास्क की जांच करना या हाथ से मूल डिजाइन करना संभव नहीं बना दिया। इसके बजाय, इंजीनियर उपयोग करते हैं {{Abbr|EDA|Electronic design automation}} सबसे कार्यात्मक सत्यापन कार्य करने के लिए उपकरण।<ref>{{cite journal|doi=10.1109/AFIPS.1968.93|year=1968|journal=Afips 1968|author=O'Donnell, C.F. |url=http://www.computer.org/csdl/proceedings/afips/1968/5072/00/50720867.pdf|title=Engineering for systems using large scale integration|page= 870}}</ref>
इस बढ़े हुए घनत्व को प्राप्त करने के लिए कई विकासों की आवश्यकता थी। निर्माता छोटे मॉस्फेट रचना विन्यास नियमों और स्वच्छ निर्माण सुविधाओं की ओर प्रतिस्थापित होते चले गए। इस प्रक्रिया में सुधार के मार्ग को अंतर्राष्ट्रीय प्रौद्योगिकी रोडमैप द्वारा अर्धचालकों (ITRS) के लिए संक्षेपित किया गया था, जो बाद में उपकरणों और प्रणालियों के लिए अंतर्राष्ट्रीय रोडमैप (IRDS) द्वारा विस्थापित किया गया था। इलेक्ट्रॉनिक रचना उपकरण में सुधार के कारण रचनाओं को उचित समय में समाप्त करना व्यावहारिक हो गया। अधिक ऊर्जा कुशल सीमॉस ने बिजली की खपत में निषेधात्मक वृद्धि से बचाने के लिए एनमॉस (NMOS) और पीमॉस (PMOS) का स्थान ले लिया। आधुनिक वीएलएसआई (VLSI) उपकरणों की जटिलता और घनत्व ने मुखौटे की जांच या हाथ से मूल रचना को असंभव बना दिया। अभियंता इसके स्थान पर सबसे कार्यात्मक सत्यापन कार्य करने के लिए ईडीए (EDA) उपकरण का उपयोग करते हैं।<ref>{{cite journal|doi=10.1109/AFIPS.1968.93|year=1968|journal=Afips 1968|author=O'Donnell, C.F. |url=http://www.computer.org/csdl/proceedings/afips/1968/5072/00/50720867.pdf|title=Engineering for systems using large scale integration|page= 870}}</ref>
1986 में, एक-मेगाबिट रैंडम-एक्सेस मेमोरी (RAM) चिप्स पेश किए गए, जिसमें एक मिलियन से अधिक ट्रांजिस्टर थे। माइक्रोप्रोसेसर चिप्स ने 1989 में मिलियन-ट्रांजिस्टर का निशान और 2005 में बिलियन-ट्रांजिस्टर का निशान पार किया।<ref>{{cite web |last1=Clarke |first1=Peter |title=Intel enters billion-transistor processor era |url=https://www.eetimes.com/intel-enters-billion-transistor-processor-era/ |website=EETimes.com |access-date=May 23, 2022 |date=14 October 2005}}</ref> यह प्रवृत्ति काफी हद तक बेरोकटोक जारी है, 2007 में पेश किए गए चिप्स में दसियों अरबों मेमोरी ट्रांजिस्टर शामिल हैं।<ref>{{cite web |title=Samsung First to Mass Produce 16Gb NAND Flash Memory |url=https://phys.org/news/2007-04-samsung-mass-16gb-nand-memory.html |website=phys.org |access-date=May 23, 2022 |date=April 30, 2007}}</ref>


वर्ष 1986 में एक-मेगाबिट रैंडम-एक्सेस मेमोरी चिप प्रस्तुत किए गए, जिसमें एक मिलियन से अधिक ट्रांजिस्टर थे। माइक्रोप्रोसेसर चिपों ने वर्ष 1989 में मिलियन-ट्रांजिस्टर का और वर्ष 2005 में बिलियन-ट्रांजिस्टर का लक्ष्य प्राप्त किया।<ref>{{cite web |last1=Clarke |first1=Peter |title=Intel enters billion-transistor processor era |url=https://www.eetimes.com/intel-enters-billion-transistor-processor-era/ |website=EETimes.com |access-date=May 23, 2022 |date=14 October 2005}}</ref> यह प्रवृत्ति काफी हद तक 2007 में प्रस्तुत चिपों में दसियों अरबों मेमोरी ट्रांजिस्टर के साथ बिना अवरोध के जारी है।<ref>{{cite web |title=Samsung First to Mass Produce 16Gb NAND Flash Memory |url=https://phys.org/news/2007-04-samsung-mass-16gb-nand-memory.html |website=phys.org |access-date=May 23, 2022 |date=April 30, 2007}}</ref>


=== ULSI, WSI, SoC और 3D-IC ===
=== यूएलएसआई (ULSI), (WSI), एसओसी (SoC) और 3डी-IC (3D-IC) ===
{{See|Wafer-scale integration|System on a chip|Three-dimensional integrated circuit}}
यूएलएसआई (ULSI) शब्द, जिसका पूर्ण रूप "अत्यधिक बड़े पैमाने पर एकीकरण" है, को जटिलता के अग्रिम विकास को प्रतिबिंबित करने के लिए 1 मिलियन से अधिक ट्रांजिस्टर के चिपों के लिए प्रस्तावित किया गया था।<ref>{{cite journal|last1=Meindl|first1=J.D.|title=Ultra-large scale integration|journal=IEEE Transactions on Electron Devices|volume=31|issue=11|pages=1555–1561|doi=10.1109/T-ED.1984.21752|year=1984|bibcode=1984ITED...31.1555M|s2cid=19237178}}</ref>
जटिलता के और विकास को प्रतिबिंबित करने के लिए, ULSI शब्द जो अल्ट्रा-लार्ज-स्केल इंटीग्रेशन के लिए है, 1 मिलियन से अधिक ट्रांजिस्टर के चिप्स के लिए प्रस्तावित किया गया था।<ref>{{cite journal|last1=Meindl|first1=J.D.|title=Ultra-large scale integration|journal=IEEE Transactions on Electron Devices|volume=31|issue=11|pages=1555–1561|doi=10.1109/T-ED.1984.21752|year=1984|bibcode=1984ITED...31.1555M|s2cid=19237178}}</ref>
वेफर-स्केल इंटीग्रेशन (WSI) बहुत बड़े एकीकृत परिपथों के निर्माण का एक साधन है जो एक एकल सुपर-चिप का उत्पादन करने के लिए संपूर्ण सिलिकॉन वेफर का उपयोग करता है। बड़े आकार और कम पैकेजिंग के संयोजन के माध्यम से, WSI कुछ प्रणालियों के लिए नाटकीय रूप से कम लागत का कारण बन सकता है, विशेष रूप से बड़े पैमाने पर समानांतर सुपर कंप्यूटर। यह नाम वेरी-लार्ज-स्केल इंटीग्रेशन शब्द से लिया गया है, जब डब्ल्यूएसआई विकसित किया जा रहा था, तब कला की वर्तमान स्थिति।<ref>{{cite web|date=1985|last1=Shanefield|first1=Daniel|title=Wafer scale integration|url=http://www.google.com/patents/US4866501|website=google.com/patents|access-date=21 September 2014}}</ref>
एक सिस्टम-ऑन-ए-चिप (एसओसी या एसओसी) एक एकीकृत परिपथ है जिसमें कंप्यूटर या अन्य सिस्टम के लिए आवश्यक सभी घटकों को एक चिप पर शामिल किया जाता है। इस तरह के एक उपकरण का डिज़ाइन जटिल और महंगा हो सकता है, और जबकि प्रदर्शन लाभ एक ही बार में सभी आवश्यक घटकों को एकीकृत करने से प्राप्त किया जा सकता है, लाइसेंस की लागत और एक-मरने वाली मशीन को विकसित करने की लागत अभी भी अलग-अलग उपकरणों से अधिक है। उपयुक्त लाइसेंस के साथ, इन कमियों को कम विनिर्माण और असेंबली लागत और बहुत कम बिजली बजट द्वारा ऑफसेट किया जाता है: क्योंकि घटकों के बीच सिग्नल ऑन-डाई रखे जाते हैं, बहुत कम बिजली की आवश्यकता होती है (देखें #पैकेजिंग)।<ref>{{cite web|last1=Klaas|first1=Jeff|title=System-on-a-chip|date=2000|url=http://www.google.com/patents/US6816750|website=google.com/patents|access-date=21 September 2014}}</ref> इसके अलावा, सिग्नल स्रोत और गंतव्य हैं मरने पर संदर्भ का स्थान, तारों की लंबाई को कम करना और इसलिए विलंबता (इंजीनियरिंग), डेटा ट्रांसमिशन बिजली की लागत और एक ही चिप पर मॉड्यूल के बीच संचार से अपशिष्ट गर्मी। इसने तथाकथित नेटवर्क ऑन चिप | नेटवर्क-ऑन-चिप (एनओसी) उपकरणों की खोज को प्रेरित किया है, जो पारंपरिक बस (कंप्यूटिंग) के विपरीत डिजिटल संचार नेटवर्क के लिए सिस्टम-ऑन-चिप डिज़ाइन पद्धति को लागू करते हैं।


एक त्रि-आयामी एकीकृत परिपथ (3D-IC) में सक्रिय इलेक्ट्रॉनिक घटकों की दो या दो से अधिक परतें होती हैं जो एक एकल परिपथ में लंबवत और क्षैतिज रूप से एकीकृत होती हैं। परतों के बीच संचार ऑन-डाई सिग्नलिंग का उपयोग करता है, इसलिए बिजली की खपत समकक्ष अलग परिपथ की तुलना में बहुत कम है। छोटे ऊर्ध्वाधर तारों का विवेकपूर्ण उपयोग तेजी से संचालन के लिए समग्र तार की लंबाई को काफी हद तक कम कर सकता है।<ref>{{cite journal|last1=Topol|first1=A.W.|last2=Tulipe|first2=D.C.La|last3=Shi|first3=L|last4=et.|first4=al|title=Three-dimensional integrated circuits|journal=IBM Journal of Research and Development|volume=50|issue=4.5|pages=491–506|doi=10.1147/rd.504.0491|year=2006|s2cid=18432328|url=https://semanticscholar.org/paper/8de20d9e01b189c02f5e68ae3720965bed48c82c}}</ref>
वेफर-स्तर एकीकरण (WSI) बहुत बड़े एकीकृत परिपथों के निर्माण का एक साधन है जो एक एकल "सुपर-चिप" का उत्पादन करने के लिए पूरे सिलिकॉन वेफर का उपयोग करता है। डब्ल्यूएसआई (WSI), बड़े आकार और कम पैकेजिंग के संयोजन के माध्यम से कुछ प्रणालियों, विशेष रूप से बड़े पैमाने पर समानांतर सुपर कंप्यूटर, के लिए नाटकीय रूप से कम लागत का कारण बन सकता है। यह नाम "बड़े पैमाने पर एकीकरण" शब्द से लिया गया है, जो तब कला की वर्तमान स्थिति को प्रदर्शित करता था, जब डब्ल्यूएसआई (WSI) को विकसित किया जा रहा था।<ref>{{cite web|date=1985|last1=Shanefield|first1=Daniel|title=Wafer scale integration|url=http://www.google.com/patents/US4866501|website=google.com/patents|access-date=21 September 2014}}</ref>


एक सिस्टम-ऑन-ए-चिप एक एकीकृत परिपथ होता है, जिसमें कंप्यूटर या अन्य सिस्टम के लिए आवश्यक सभी घटकों को एक चिप पर सम्मिलित किया जाता है। इस तरह के एक उपकरण का रचना जटिल और महंगी हो सकती है, और जबकि प्रदर्शन लाभ एक ही बार में सभी आवश्यक घटकों को एकीकृत करने से हो सकते हैं, लाइसेंस की लागत और एक-डाई मशीन विकसित करने की लागत अभी भी अलग-अलग उपकरणों से अधिक है। इन कमियों को कम विनिर्माण और एकत्रण लागत और बहुत कम बिजली बजट द्वारा उपयुक्त लाइसेंस के साथ ऑफसेट किया जाता है, क्योंकि घटकों के बीच सिग्नल ऑन-डाई रखे जाते हैं, जिसमें बहुत कम बिजली की आवश्यकता होती है (पैकेजिंग देखें)।<ref>{{cite web|last1=Klaas|first1=Jeff|title=System-on-a-chip|date=2000|url=http://www.google.com/patents/US6816750|website=google.com/patents|access-date=21 September 2014}}</ref> इसके अलावा, संकेत स्रोत और गंतव्य भौतिक रूप से डाई के करीब होते हैं, जो तारों की लंबाई, और इसलिए विलंबता, हस्तांतरण सामर्थ्य लागत और एक ही चिप पर मॉड्यूलों के बीच संचार से अपशिष्ट ऊष्मा को कम करते हैं। इसने तथाकथित नेटवर्क-ऑन-चिप (एनओसी) उपकरणों की खोज का नेतृत्व किया है, जो पारंपरिक बस निर्माणकला के विपरीत अंकीय संचार नेटवर्क के लिए सिस्टम-ऑन-चिप रचना पद्धति को प्रयुक्त करते हैं।


एक त्रि-आयामी एकीकृत परिपथ में सक्रिय इलेक्ट्रॉनिक घटकों की दो या दो से अधिक परतें होती हैं जो एक एकल परिपथ में लंबवत और क्षैतिज रूप से एकीकृत होती हैं। परतों के बीच संचार ऑन-डाई संकेतन का उपयोग करता है, इसलिए बिजली की खपत समकक्ष अन्य परिपथों की तुलना में बहुत कम होती है। छोटे ऊर्ध्वाधर तारों का विवेकपूर्ण उपयोग तेजी से संचालन के लिए समग्र तार की लंबाई को काफी हद तक कम कर सकता है।<ref>{{cite journal|last1=Topol|first1=A.W.|last2=Tulipe|first2=D.C.La|last3=Shi|first3=L|last4=et.|first4=al|title=Three-dimensional integrated circuits|journal=IBM Journal of Research and Development|volume=50|issue=4.5|pages=491–506|doi=10.1147/rd.504.0491|year=2006|s2cid=18432328|url=https://semanticscholar.org/paper/8de20d9e01b189c02f5e68ae3720965bed48c82c}}</ref>
== सिलिकॉन लेबलिंग और भित्तिचित्र ==
== सिलिकॉन लेबलिंग और भित्तिचित्र ==
अधिकांश सिलिकॉन चिपों के एक कोने में एक क्रम संख्या होती है, जो उत्पादन के दौरान उनकी पहचान करने के काम आती है। कुछ निर्माता इसमें अपना प्रतीक चिन्ह (logo) लगा देते हैं। जब से आईसी (IC) का निर्माण हुआ है, कुछ चिप निर्माताओं ने गुप्त, गैर-कार्यात्मक छवियों (images) या शब्दों के लिए सिलिकॉन सतह वाले क्षेत्र का उपयोग किया है। इन्हें कभी-कभी चिप कला, सिलिकॉन कला, सिलिकॉन भित्तिचित्र (graffiti) या सिलिकॉन डूडलिंग (doodling) के रूप में जाना जाता है।{{citation needed|date=December 2020}}
अधिकांश सिलिकॉन चिपों के एक कोने में एक क्रम संख्या होती है, जो उत्पादन के दौरान उनकी पहचान करने के काम आती है। कुछ निर्माता इसमें अपना प्रतीक चिन्ह लगा देते हैं। जब से IC का निर्माण हुआ है, कुछ चिप निर्माताओं ने गुप्त, गैर-कार्यात्मक छवियों या शब्दों के लिए सिलिकॉन सतह वाले क्षेत्र का उपयोग किया है। इन्हें कभी-कभी चिप कला, सिलिकॉन कला, सिलिकॉन भित्तिचित्र या सिलिकॉन डूडलिंग के रूप में जाना जाता है।
== आईसी और आईसी परिवार (ICs and IC families) ==
== IC और IC परिवार ==
* 555 टाइमर आईसी (555 timer IC)
* 555 टाइमर IC
* परिचालन प्रवर्धक (Operational amplifier)
* परिचालन प्रवर्धक
* 7400-श्रृंखला एकीकृत परिपथ
* 7400-श्रृंखला एकीकृत परिपथ
* 4000-श्रृंखला एकीकृत परिपथ, 7400 श्रृंखला के लिए CMOS समकक्ष (यह भी देखें: HCMOS)
* 4000-श्रृंखला एकीकृत परिपथ, 7400 श्रृंखला के लिए सीमॉस समकक्ष (यह भी देखें: HCMOS)
* इंटेल 4004, जिसे सामान्यतः व्यावसायिक रूप से उपलब्ध पहला माइक्रोप्रोसेसर माना जाता है, जिसके कारण प्रसिद्ध 8080 सीपीयू (CPU) और फिर आईबीएम (IBM) के व्यक्तिगत कंप्यूटर 8088, 80286 और 486 आदिका विकास हुआ।
* इंटेल 4004, जिसे सामान्यतः व्यावसायिक रूप से उपलब्ध पहला माइक्रोप्रोसेसर माना जाता है, जिसके कारण प्रसिद्ध 8080 सीपीयू (CPU) और फिर आईबीएम (IBM) के व्यक्तिगत कंप्यूटर 8088, 80286 और 486 आदिका विकास हुआ।
* मॉस तकनीक 6502 (MOS Technology 6502) और ज़ीलॉग Z80 (Zilog Z80) माइक्रोप्रोसेसर, जिनका उपयोग 1980 के दशक की शुरुआत में कई घरेलू कंप्यूटरों में किया गया था
* मॉस तकनीक 6502 और ज़ीलॉग Z80 माइक्रोप्रोसेसर, जिनका उपयोग 1980 के दशक की शुरुआत में कई घरेलू कंप्यूटरों में किया गया था
* कंप्यूटर से संबंधित चिपों की मोटोरोला 6800 श्रृंखला (Motorola 6800 series), और इसके विकास के साथ 68000 और 88000 श्रृंखला (कुछ एप्पल कंप्यूटरों में और 1980 के दशक में कमोडोर अमीगा (Amiga) श्रृंखला में प्रयुक्त)
* कंप्यूटर से संबंधित चिपों की मोटोरोला 6800 श्रृंखला, और इसके विकास के साथ 68000 और 88000 श्रृंखला (कुछ एप्पल कंप्यूटरों में और 1980 के दशक में कमोडोर अमीगा श्रृंखला में प्रयुक्त)
* सादृश्य एकीकृत परिपथों (analog integrated circuits) की एलएम-श्रृंखला (LM-Series) |
* अनुरूप एकीकृत परिपथों की एलएम-श्रृंखला|


== यह भी देखें ==
== यह भी देखें ==
{{Portal|Electronics|Physics|Technology|Telecommunication|Engineering|History of science|Companies|Computer programming|Amiga/Selected biography|Telephones}}
{{Portal|Electronics|Physics|Technology|Telecommunication|Engineering|History of science|Companies|Computer programming|Amiga/Selected biography|Telephones}}
* चिपसेट
* चिपसेट
*चिप्स और विज्ञान अधिनियम
*चिप और विज्ञान अधिनियम
* एकीकृत इंजेक्शन तर्क
* एकीकृत इंजेक्शन तर्क
*आयन आरोपण
*आयन आरोपण
*माइक्रोइलेक्ट्रॉनिक्स
*माइक्रोइलेक्ट्रॉनिक्स
* मोनोलिथिक माइक्रोवेव इंटीग्रेटेड परिपथ
* अखंड माइक्रोवेव एकीकृत परिपथ
* बहु-दहलीज CMOS
* बहु-द्वार सीमॉस
*सिलिकॉन-जर्मेनियम*
*सिलिकॉन-जर्मेनियम*
* साउंड चिप
* साउंड चिप
* मसाला
* स्पाइस (SPICE)
*चिप वाहक
*चिप वाहक
*डार्क सिलिकॉन
*डार्क सिलिकॉन
*एकीकृत निष्क्रिय उपकरण
*एकीकृत निष्क्रिय उपकरण
*उच्च तापमान परिचालन जीवन
*उच्च तापमान परिचालन जीवनकाल
*एकीकृत परिपथ के लिए थर्मल सिमुलेशन
*एकीकृत परिपथ के लिए ऊष्मीय सिमुलेशन
*एकीकृत परिपथों में ऊष्मा उत्पन्न करना
*एकीकृत परिपथों में ऊष्मा उत्पन्न करना


== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची==
*विशिष्ट एकीकृत परिपथ आवेदन
*डिजिटल डाटा
*आंकड़े
*के माध्यम से (इलेक्ट्रॉनिक्स)
*विनिर्माण क्षमता के लिए डिजाइन (आईसी)
*संवहन दस्तावेज़ स्वरूप
*मास्क डेटा तैयारी
*असफलता विश्लेषण
*सिलिकॉन सत्यापन पोस्ट करें
*रजिस्टर ट्रांसफर लेवल
*सी (प्रोग्रामिंग भाषा)
*यात्रा
*उत्पाद आवश्यकता दस्तावेज़
*मांग
*बाज़ार अवसर
*जीवन का अंत (उत्पाद)
*निर्देश समुच्चय
*तर्क अनुकरण
*सिग्नल की समग्रता
*टाइमिंग क्लोजर
*डिजाइन नियम की जाँच
*औपचारिक तुल्यता जाँच
*सामान्य केन्द्रक
*ऑप एंप
*मेंटर ग्राफिक्स
*एकीकृत परिपथों और प्रणालियों के कंप्यूटर सहायता प्राप्त डिजाइन पर आईईईई लेनदेन
*ज्यामितीय आकार
*मुखौटा डेटा तैयारी
*मानक सेल
*स्थान और मार्ग
*योजनाबद्ध संचालित लेआउट
*फ्लोरप्लान (माइक्रोइलेक्ट्रॉनिक्स)
*उपयोगिता के चाकू
*डेटा सामान्य
*अवरोध
*विद्युत प्रतिरोध और चालकता
*एकदिश धारा
*अस्थायी प्रतिसाद
*प्रत्यक्ष वर्तमान परिपथ
*जीएनयू परिपथ विश्लेषण पैकेज
*गाउस विलोपन
*टुकड़े-टुकड़े रैखिक कार्य
*जमीन (बिजली)
*ढांच के रूप में
*सादृश्य के माध्यम से और भर में
*एकीकृत परिपथ
*नोर गेट
*नॉन - वोलेटाइल मेमोरी
*स्थिर रैम
*व्यक्तिगत अंकीय सहायक
*पहूंच समय
*सीरियल उपस्थिति का पता लगाने
*ठोस अवस्था भंडारण
*दावों कहंग
*साइमन मिन Wed
*सैन्य उपकरणों
*डेटा स्टोरेज डिवाइस
*हाइनिक्स सेमीकंडक्टर
*विद्युत क्षेत्र स्क्रीनिंग
*निरपेक्ष तापमान
*दूसरे कंप्यूटर पर निर्भर रहने वाला कंप्यूटर प्रोग्राम
*पतली छोटी रूपरेखा पैकेज
*त्रुटि सुधार कोड
*पुनर्विक्रय (इलेक्ट्रॉनिक्स)
*ब्लॉक आकार (डेटा भंडारण और संचरण)
*आईसी पैकेज
*डाई (एकीकृत परिपथ)
*विशिष्ट एकीकृत परिपथ आवेदन
*छाया राम
*कचरा संग्रह (कंप्यूटिंग)
*एसिड
*डेटा रूट
*आधार सामग्री अतिरेक
*करनेगी मेलों विश्वविद्याल
*अर्धचालक पैमाने के उदाहरणों की सूची
*एकीकृत परिपथ
*एचिंग
*रासायनिक वाष्प निक्षेपन
*-संश्लेषण
*रोशनी
*सूक्ष्म और नैनो-संरचनाओं का निर्देशित संयोजन
*संपर्क मुद्रण
*निकटता फ्यूज
*यूनाइटेड स्टेट्स आर्मी रिसर्च लेबोरेटरी
*आरसीए साफ
*खड़ी लहर
*विद्युतीय इन्सुलेशन
*सोडियम हाइड्रॉक्साइड
*संख्यात्मक छिद्र
*रासायनिक यांत्रिक चमकाने
*फोटॉनों
*नोबल गैस
*निस्तो
*फोटोलिथोग्राफी की रसायन शास्त्र
*सॉफ्ट लिथोग्राफी
*कंपन
*त्वचा का प्रभाव
*विद्युत का झटका
*विद्युत प्रवाह
*एकदिश धारा
*समाक्षीय तार
*चुम्बकीय अनुनाद इमेजिंग
*आवृति का उतार - चढ़ाव
*आयाम अधिमिश्रण
*पढ़ें (कंप्यूटर)
*DVD-RW
*सीडी आरडब्ल्यू
*द्विध्रुवी ट्रांजिस्टर
*दुगनी डाटा दर
*सीपीयू कैश
*न ही फ्लैश
*ईसीसी मेमोरी
*दृढ़ता (कंप्यूटर विज्ञान)
*घूंट
*आदेश दिया
*अड़चन (इंजीनियरिंग)
*डीडीआर4 एसडीआरएएम
*नॉन - वोलेटाइल मेमोरी
*ट्रांसफॉर्मर रीड-ओनली स्टोरेज
*उत्पाद वापसी
*शब्द (डेटा प्रकार)
*साइमन वेड
*इन-प्लेस प्रोग्रामेबल
*प्रारंभिक भंडारण
*नॉन-वोलाटाइल
*घरेलु उपकरण
*फाइल का प्रारूप
*टीएफटी स्क्रीन
*आईबीएम संगत
*गृह कम्प्यूटर
*चुम्बकीय डिस्क
*लिनक्स वितरण
*सहायक कोष
*विपुल भंडारण
*तार का बंधन
*विद्युत रूप से परिवर्तनशील रीड ओनली मेमोरी
*एक बार लिखें कई पढ़ें
*पिछेड़ी संगतता
*विद्युतीय इन्सुलेशन
*abandonware
*केवल लिखने के लिए स्मृति (इंजीनियरिंग)
*वोल्टेज रेगुलेटर
*स्विचिंग रेगुलेटर
*वयर्थ ऊष्मा
*आवृत्ति मुआवजा
*चालू बिजली)
*विद्युतचुंबकीय व्यवधान
*स्विच-मोड बिजली की आपूर्ति
*समाई गुणक
*दोहरी इन-लाइन पैकेज
*क्रोबार (परिपथ)
*फोल्डबैक (बिजली आपूर्ति डिजाइन)
*डिज़ाइन प्रक्रिया
*जाँच और वैधता
*पुराना पड़ जाना
*ढांच के रूप में
*शर्म
*द्विक फिल्टर
*अण्डाकार फिल्टर
*गंभीर रूप से नम
*स्क्वेर वेव
*आवृत्ति निर्भर नकारात्मक रोकनेवाला
== अग्रिम पठन ==
== अग्रिम पठन ==
* {{cite book |last=Veendrick |first=H.J.M. |year=2017 |title=Nanometer CMOS ICs, from Basics to ASICs |publisher=Springer |isbn=978-3-319-47595-0 |oclc=990149326}}
* {{cite book |last=Veendrick |first=H.J.M. |year=2017 |title=Nanometer CMOS ICs, from Basics to ASICs |publisher=Springer |isbn=978-3-319-47595-0 |oclc=990149326}}
Line 460: Line 283:
{{Processor technologies}}
{{Processor technologies}}
{{Digital electronics}}
{{Digital electronics}}
{{Electronic systems}}
{{Electronic components}}
{{Semiconductor packages}}
{{Technology topics}}
{{Computer science}}
{{Computer science}}
{{Wafer bonding}}
{{MOS Interface}}
{{MOS Video/Sound}}
{{Authority control}}
{{Authority control}}
[[Category:1949 कंप्यूटिंग में]]
[[Category:1949 में कंप्यूटर से संबंधित परिचय]]
[[Category:20वीं सदी के आविष्कार]]
[[Category:AC with 0 elements]]
[[Category:All Wikipedia articles in need of updating]]
[[Category:All articles needing additional references]]
[[Category:All articles with specifically marked weasel-worded phrases]]
[[Category:All articles with unsourced statements]]
[[Category:Articles needing additional references from May 2022]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:Articles with specifically marked weasel-worded phrases from October 2018]]
[[Category:Articles with unsourced statements from December 2020]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:Commons category link is locally defined]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia articles in need of updating from October 2018]]
[[Category:अमेरिकी आविष्कार]]
[[Category:अर्धचालक उपकरण]]
[[Category:एकीकृत सर्किट| ]]
[[Category:एकीकृत सर्किट| ]]
[[Category: 1949 कंप्यूटिंग में]]
[[Category:खोज और आविष्कार विवाद]]
[[Category:20वीं सदी के आविष्कार]]
[[Category:जर्मन आविष्कार]]
[[Category: अमेरिकी आविष्कार]]
[[Category: 1949 में कंप्यूटर से संबंधित परिचय]]
[[Category:डिजिटल इलेक्ट्रॉनिक्स]]
[[Category:डिजिटल इलेक्ट्रॉनिक्स]]
[[Category: खोज और आविष्कार विवाद]]
[[Category: जर्मन आविष्कार]]
[[Category: अर्धचालक उपकरण]]
[[Category: Machine Translated Page]]

Latest revision as of 15:42, 12 September 2023

इरेज़ेबल प्रोग्रामेबल रीड-ओनली मेमोरी (EPROM) ड्यूल इन-लाइन पैकेज में एकीकृत परिपथ। इन पैकेजों में एक पारदर्शी विंडो होती है जो अंदर की डाई को प्रदर्शित करती है। चिप को पराबैंगनी प्रकाश में प्रकाशित करके मेमोरी को मिटाने के लिए विंडो का उपयोग किया जाता है।
EPROM मेमोरी माइक्रोचिप से एकीकृत परिपथ, मेमोरी ब्लॉक्स, सहायक सर्किट्री और फाइन सिल्वर तार जो एकीकृत परिपथ की डाई को पैकेजिंग के लेग्स से जोड़ते हैं, दिखाते हुए
पॉलीसिलिकॉन (गुलाबी), वेल्स (ग्रेश), और अधःस्तर (हरा) के नीचे प्लैनराइज्ड कॉपर इंटरकनेक्ट की चार परतों के माध्यम से एक एकीकृत सर्किट का आभासी विवरण।

एक एकीकृत परिपथ या अखंड एकीकृत परिपथ अर्धचालक पदार्थ (सामान्यतः सिलिकॉन) के एक छोटे समतलीय टुकड़े (या "चिप") पर विद्युतीय परिपथों का एक सुपरिभाषित समूह होता है, जिसे आईसी (IC), चिप या माइक्रोचिप भी कहा जाता है। एक छोटी-सी चिप में बड़ी संख्या में छोटे मॉस्फेट (धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर (MOSFET)) एकीकृत होते हैं। परिणामस्वरुप ऐसे परिपथ का निर्माण होता है जो असतत इलेक्ट्रॉनिक घटकों से निर्मित परिपथों की तुलना में छोटे, तेज और कम खर्चीले होते हैं। एकीकृत परिपथ की बनावट के लिए IC की बड़े पैमाने पर उत्पादन क्षमता, विश्वसनीयता और बिल्डिंग-ब्लॉक दृष्टिकोण ने असतत ट्रांजिस्टर का उपयोग वाले परिपथों के स्थान पर मानकीकृत IC को तीव्रता के साथ अपनाना सुनिश्चित किया है। अब लगभग सभी इलेक्ट्रॉनिक उपकरणों में IC उपयोग किया जाता है और इसने इलेक्ट्रॉनिक्स जगत में क्रांति ला दी है। कंप्यूटर, मोबाइल फोन और अन्य घरेलू उपकरण अब आधुनिक समाज की संरचना के अभिन्न अंग बन चुके हैं, जो आधुनिक कंप्यूटर प्रोसेसर और माइक्रोकंट्रोलर जैसे छोटे आकार और कम लागत के IC चिपों द्वारा संभव बनाया गया है।

धातु-ऑक्साइड-सिलिकॉन (मॉस) अर्धचालक उपकरणों के निर्माण में तकनीकी प्रगति द्वारा बहुत बड़े पैमाने पर एकीकरण को व्यावहारिक बनाया गया था। 1960 के दशक में इनकी उत्पत्ति के बाद से चिपों के आकार, गति और क्षमता में काफी प्रगति हुई है, जो एक ही आकार के चिपों पर अधिक से अधिक मॉस ट्रांजिस्टर फिट करने वाले तकनीकी विकास द्वारा संचालित है - एक आधुनिक चिप मानव नाखून के आकार जितने क्षेत्रफल में कई अरब मॉस ट्रांजिस्टर हो सकते हैं। साधारणतया मूर के नियम का पालन करते हुए इस प्रगति ने आजकल के कंप्यूटर की चिपों की क्षमता को 1970 के दशक के प्रारंभ के कंप्यूटर चिपों की क्षमता से लाखों गुना और उनकी गति से हजारों गुना अधिक कर दिया है।

लागत और प्रदर्शन, असतत परिपथ पर IC के दो मुख्य लाभ होते हैं। चिपों के उनके सभी घटकों के साथ एक समय में एक ट्रांजिस्टर के निर्माण के स्थान पर फोटोलिथोग्राफी द्वारा एक इकाई के रूप में मुद्रित होने के कारण इनकी लागत कम होती है। इसके साथ ही असतत सर्किट की तुलना में पैक किए गए IC बहुत कम सामग्री का उपयोग करते हैं। इनका प्रदर्शन उच्च होता है, क्योंकि IC के घटक शीघ्रता से स्विच करते हैं और ये छोटे आकार और सन्निनिकटता के कारण तुलनात्मक रूप से कम बिजली की खपत करते हैं। इनके चिपों के निर्माण और आवश्यक फोटोमास्क बनाने की उच्च लागत IC का मुख्य नुकसान है। इस उच्च प्रारंभिक लागत का अर्थ है कि केवल उच्च उत्पादन मात्रा की संभावना होने पर ही IC व्यावसायिक रूप से व्यवहार्य है।

शब्दावली

एक एकीकृत परिपथ को इस प्रकार किया गया है:[1]

एक ऐसा परिपथ, जिसमें कुछ या सभी परिपथ तत्व अविभाजित रूप से जुड़े होते हैं और विद्युत रूप से परस्पर संयोजित होते हैं, जिससे इसे निर्माण और व्यावसायिक उद्देश्यों की दृष्टि से अविभाज्य माना जा सके।

इस परिभाषा के साथ सम्बन्ध स्थापित करने वाले परिपथों का निर्माण पतली-फिल्म ट्रांजिस्टर, मोटी-फिल्म तकनीकों और हाइब्रिड एकीकृत परिपथ जैसी विभिन्न तकनीकों का उपयोग करके किया जा सकता है। हालांकि, सामान्य उपयोग में, मूल रूप से अखंड एकीकृत परिपथ के नाम से जाने जाने वाले एकल-खंड परिपथ निर्माण को एकीकृत परिपथ से संदर्भित किया जाता है, जिसका निर्माण प्रायः सिलिकॉन के एक टुकड़े पर किया जाता है।[2][3]

इतिहास

लोवे 3एनएफ (Loewe 3NF) निर्वात नली, एक आधुनिक IC जैसे उपकरण में कई घटकों के संयोजन का एक प्रारंभिक प्रयास था। IC के विपरीत, इसे कर से बचने के उद्देश्य से भी बनाया गया था, क्योंकि जर्मनी में, रेडियो संग्राहकों के पास एक प्रकार का कर होता था, जो एक रेडियो संग्राहक के नली धारकों की संख्या के आधार पर लगाया जाता था। इसने रेडियो संग्राहकों को एकल नली धारक रखने की अनुमति दी।

एक एकीकृत सर्किट की प्रारंभिक अवधारणा वर्ष 1949 में वापस आई, जब जर्मन अभियंता वर्नर जैकोबी[4] (सीमेंस एजी)[5] ने एक एकीकृत-परिपथ-जैसे अर्धचालक प्रवर्धक उपकरण[6] के लिए तीन चरण वाली प्रवर्धक व्यवस्था के एक सामान्य अधःस्तर पर पांच ट्रांजिस्टरों का प्रदर्शन करते हुए एक एकाधिकार (पेटेंट) दायर किया था। जैकोबी ने अपने पेटेंट के विशिष्ट औद्योगिक अनुप्रयोगों के रूप में छोटे और सस्ते श्रवण यंत्रों का प्रदर्शन किया। उनके पेटेंट के तत्काल व्यावसायिक उपयोग की सूचना नहीं प्राप्त हुई है।

जेफ्री डमर (1909-2002) इस अवधारणा के एक अन्य प्रारंभिक प्रस्तावक थे, जो ब्रिटिश रक्षा मंत्रालय के रॉयल रडार प्रतिष्ठान के लिए काम कर रहे एक रडार वैज्ञानिक थे। डमर ने 7 मई 1952 को वाशिंगटन, डी.सी. में एक संगोष्ठी में जनता के समक्ष गुणवत्तापूर्ण इलेक्ट्रॉनिक घटकों की प्रगति पर अपने विचार प्रस्तुत किये।[7] उन्होंने अपने विचारों को प्रचारित करने के लिए सार्वजनिक रूप से कई संगोष्ठियां दीं और वर्ष 1956 में इस तरह के एक परिपथ के निर्माण का प्रयास किया, जो कि असफल रहा। वर्ष 1953 और 1957 के बीच, सिडनी डार्लिंगटन और यासुओ तारुई (विद्युत्-तकनीकी प्रयोगशाला) ने समान चिप रचनाओं का प्रस्ताव रखा, जहाँ कई ट्रांजिस्टर एक सामान्य सक्रिय क्षेत्र साझा कर सकते थे, लेकिन उन्हें एक दूसरे से अलग करने के लिए वहां कोई विद्युत अलगाव नहीं था।[4]

अखण्ड एकीकृत परिपथ चिप को जीन होर्नी द्वारा प्लानर प्रक्रिया और कर्ट लेहोवेक द्वारा p-n संधि के आविष्कारों द्वारा सक्षम किया गया था। होर्नी का आविष्कार मोहम्मद एम. अटाला के सतह निष्क्रियता पर कार्य के साथ-साथ फुलर और डिट्ज़ेनबर्गर के बोरॉन और फास्फोरस की अशुद्धियों के सिलिकॉन में प्रसार के कार्य, कार्ल फ्रॉश और लिंकन डेरिक के सतह संरक्षण पर कार्य और चिह-तांग साह के ऑक्साइड द्वारा मास्किंग प्रसार पर कार्य के आधार पर हुआ था।[8]

प्रथम एकीकृत परिपथ

रॉबर्ट नॉयस ने वर्ष 1959 में पहले अखंड एकीकृत परिपथ का आविष्कार किया था। जिसमें चिप को सिलिकॉन से बनाया गया था।

IC के लिए एक पूर्ववर्ती विचार, छोटे मृत्तिका अधःस्तर (तथाकथित माइक्रोमॉड्यूल) बनाना था,[9] जिसमें प्रत्येक अधःस्तर में एक छोटा सा घटक होता है। तब घटकों को एकीकृत और एक द्वि-आयामी या त्रि-आयामी सघन जाल में तारित किया जा सकता था। वर्ष 1957 में अत्यधिक आशाजनक लगने वाला यह विचार जैक किल्बी[9] द्वारा अमेरिकी सेना को प्रस्तावित किया गया था और इसने वर्ष 1951 की परियोजना टिंकरटॉय के समान अल्पकालिक माइक्रोमॉड्यूल कार्यक्रम का नेतृत्व किया।।[9][10][11] हालांकि, जैसे-जैसे परियोजना गति प्राप्त कर रही थी, किल्बी एक नयी क्रांतिकारी रचना "एकीकृत परिपथ" के साथ प्रस्तुत हुए।

टेक्सास इंस्ट्रूमेंट्स द्वारा नव नियुक्त किल्बी ने जुलाई 1958 में एकीकृत सर्किट से संबंधित अपने प्रारंभिक विचारों को दर्ज करते हुए, 12 सितंबर 1958 को एक एकीकृत परिपथ के पहले संचालित उदाहरण को सफलतापूर्वक प्रदर्शित किया।[12] 6 फरवरी 1959 के अपने पेटेंट आवेदन में,[13] किल्बी ने अपने नए उपकरण को "अर्धचालक सामग्री का एक निकाय ... जिसमें इलेक्ट्रॉनिक परिपथ के सभी घटक पूरी तरह से एकीकृत हैं" के रूप में वर्णित किया।[14] अमेरिकी वायु सेना नए आविष्कार के लिए पहली उपभोक्ता थी।[15] किल्बी ने एकीकृत परिपथ के आविष्कार में अपनी भूमिका के लिए भौतिकी में वर्ष 2000 का नोबेल पुरस्कार जीता।[16] हालांकि, किल्बी का आविष्कार एक अखंड एकीकृत परिपथ चिप के स्थान पर एक हाइब्रिड एकीकृत परिपथ था।[17] किल्बी के IC में बाहरी तार संयोजन थे, जिससे बड़े पैमाने पर उत्पादन करना मुश्किल हो गया।[18]

फेयरचाइल्ड अर्धचालक में किल्बी और रॉबर्ट नॉयस ने 6 महीने बाद पहले सत्य अखंड एकीकृत परिपथ का आविष्कार किया।[19][18] यह एकीकृत परिपथ की एक नई किस्म थी, जो किल्बी के कार्यान्वयन से अधिक व्यावहारिक थी। नॉयस का रचना सिलिकॉन से, जबकि किल्बी की चिप जर्मेनियम से बनी थी। नॉयस के अखंड एकीकृत परिपथ ने सभी घटकों को सिलिकॉन की एक चिप पर रखा और उन्हें तांबे की रेखाओं से जोड़ा।[18] नॉयस का अखंड एकीकृत परिपथ प्लानर प्रक्रिया का उपयोग करके अर्धचालक उपकरण का एक निर्माण था, जिसे वर्ष 1959 के प्रारंभ में उनके सहयोगी जीन होर्नी ने विकसित किया था। आधुनिक IC चिपें किल्बी के हाइब्रिड IC के स्थान पर[17] नॉयस के अखंड एकीकृत परिपथ पर आधारित हैं।[19][18]

नासा का अपोलो कार्यक्रम वर्ष 1961 और 1965 के बीच एकीकृत परिपथों का सबसे बड़ा एकल उपभोक्ता था।[20]

टीटीएल एकीकृत परिपथ

ट्रांजिस्टर-ट्रांजिस्टर लॉजिक (टीटीएल/TTL) को जेम्स एल. बुई द्वारा 1960 के दशक के प्रारंभ में टीआरडब्ल्यू आईएनसी. में विकसित किया गया था। वर्ष 1970 से 1980 के दशक के दौरान ट्रांजिस्टर-ट्रांजिस्टर लॉजिक प्रमुख एकीकृत परिपथ तकनीक बन गया।[21]

दर्जनों टीटीएल एकीकृत परिपथ मिनीकंप्यूटर और मेनफ्रेम कंप्यूटर के प्रोसेसर के लिए निर्माण की एक मानक विधि थे। आईबीएम 360 मेनफ्रेम, पीडीपी-11 (PDP-11) मिनीकंप्यूटर और डेस्कटॉप डेटापॉइंट 2200 जैसे कंप्यूटर या तो टीटीएल या उससे भी तेज उत्सर्जक-युग्मित तर्क जैसे द्विध्रुवी एकीकृत परिपथों से बनाए गए थे।[22]

मॉस एकीकृत परिपथ

लगभग सभी आधुनिक IC चिप, मॉस्फेट (धातु-ऑक्साइड-सिलिकॉन फील्ड-इफेक्ट ट्रांजिस्टर) से निर्मित धातु-ऑक्साइड-अर्धचालक (मॉस) एकीकृत परिपथ होते हैं।[23] मोहम्मद एम. अटाला और डॉन कहंग द्वारा वर्ष 1959 में बेल प्रयोगशाला में अविष्कृत मॉस ट्रांजिस्टर के रूप में जाने जाने वाले मॉस्फेट[24] ने उच्च-घनत्व एकीकृत परिपथों के निर्माण को संभव बना दिया।[25] एक चिप पर ट्रांजिस्टर के पी-एन संधि अलगाव के लिए कई चरणों की आवश्यकता वाले द्विध्रुवी ट्रांजिस्टर के विपरीत, मॉस्फेट को ऐसे चरणों की आवश्यकता नहीं होती है, लेकिन इन्हें आसानी से एक दूसरे से अलग किया जा सकता है।[26] डॉन कहंग ने वर्ष 1961 में एकीकृत परिपथों के लिए इसके लाभ पर प्रकश डाला था।[27] आईईईई (IEEE) के मील के पत्थर की सूची में वर्ष 1958 में किल्बी द्वारा पहला एकीकृत परिपथ,[28] वर्ष 1959 में होर्नी की प्लानर प्रक्रिया और नॉयस का प्लानर IC, और 1959 में अटाला और कहंग द्वारा मॉस्फेट सम्मिलित हैं।[29]

फ्रेड हेमैन और स्टीवन हॉफस्टीन द्वारा वर्ष 1962 में आरसीए (RCA) में निर्मित 16-ट्रांजिस्टर चिप सबसे पहला प्रायोगिक मॉस एकीकृत परिपथ था।[30] जनरल माइक्रोइलेक्ट्रॉनिक ने बाद में वर्ष 1964 में रॉबर्ट नॉर्मन द्वारा विकसित पहला व्यावसायिक मॉस एकीकृत परिपथ,[31] 120-ट्रांजिस्टर शिफ्ट रजिस्टर[30] प्रस्तुत किया। मॉस चिप वर्ष 1964 तक द्विध्रुवीय चिपों की तुलना में उच्च ट्रांजिस्टर घनत्व और कम विनिर्माण लागत तक पहुंच गए थे। मॉस चिप मूर के नियम द्वारा अनुमानित दर से और अधिक जटिल हो गए, जिससे 1960 के दशक के अंत तक एक एकल मॉस चिप पर सैकड़ों ट्रांजिस्टर के साथ बड़े पैमाने पर एकीकरण (LSI) हो गया।[32]

बेल प्रयोगशाला में रॉबर्ट केर्विन, डोनाल्ड क्लेन और जॉन सरेस द्वारा वर्ष 1967 में स्व-संरेखित गेट (सिलिकॉन-गेट) मॉस्फेट के विकास के बाद,[33] सभी आधुनिक सीमॉस (CMOS) एकीकृत परिपथों का आधार पहला स्व-संरेखित गेटों के साथ सिलिकॉन-गेट मॉस एकीकृत परिपथ, वर्ष 1968 में फेडेरिको फागिन द्वारा फेयरचाइल्ड अर्धचालक में विकसित किया गया था।[34] गणना के लिए मॉस एलएसआई चिपों का अनुप्रयोग पहले माइक्रोप्रोसेसरों का आधार था, क्योंकि अभियंताओं ने यह पहचानना शुरू कर दिया था कि एक एकल मॉस एलएसआई चिप पर एक पूर्ण कंप्यूटर प्रोसेसर सम्मिलित हो सकता है। इसके कारण 1970 के दशक के प्रारंभ में माइक्रोप्रोसेसर और माइक्रोकंट्रोलर का आविष्कार हुआ।[32] मॉस एकीकृत परिपथ तकनीक ने 1970 के दशक के प्रारंभ में एक चिप पर 10,000 से अधिक ट्रांजिस्टर के बहुत बड़े पैमाने पर एकीकरण (VLSI) को सक्षम किया।[35]

सर्वप्रथम अन्तरिक्षीय और पॉकेट कैलकुलेटर जैसे मॉस-आधारित कंप्यूटर केवल उच्च घनत्व की आवश्यकता पर ही उचित होते थे। 1980 के दशक के प्रारंभ तक, 1970 डेटाप्वाइंट 2200 जैसे पूर्णतः टीटीएल (TTL) से निर्मित कंप्यूटर, वर्ष 1972 के इंटेल 8008 जैसे एकल-चिप मॉस माइक्रोप्रोसेसरों की तुलना में अधिक तेज और शक्तिशाली थे।[22]

IC प्रौद्योगिकी में मुख्य रूप से छोटी विशेषताओं और बड़े चिपों की प्रगति ने एक एकीकृत परिपथ में मॉस ट्रांजिस्टर की संख्या को हर दो साल में दोगुना करने की अनुमति दी है, जिसे मूर के नियम नामक एक प्रवृत्ति के नाम से जाना जाता है। मूर ने मूल रूप से कहा था कि यह दोगुना हो जाएगा, लेकिन उन्होंने हर साल के दावे को वर्ष 1975 में हर दो साल के दावे में बदल दिया।[36] इस बढ़ी हुई क्षमता का उपयोग लागत कम करने और कार्यक्षमता बढ़ाने के लिए किया गया है। सामान्य तौर पर, जैसे-जैसे सुविधा का आकार सिकुड़ता जाता है, IC के संचालन के लगभग हर पहलू में सुधार होता है। प्रति ट्रांजिस्टर लागत और प्रति ट्रांजिस्टर स्विचिंग बिजली की खपत कम हो जाती है, जबकि मेमोरी क्षमता और गति बढ़ जाती है, डेनार्ड स्केलिंग (एमओएसएफईटी स्केलिंग) द्वारा परिभाषित संबंधों के माध्यम से।[37] गति, क्षमता और बिजली की खपत का लाभ अंतिम उपयोगकर्ता तक के लिए स्पष्ट होने के कारण निर्माताओं में बारीक ज्यामिति का उपयोग करने के लिए उग्र प्रतिस्पर्धा होती है। इन वर्षों में ट्रांजिस्टर का आकार 1970 के दशक के प्रारंभ में कई दस माइक्रोन से घटकर प्रति यूनिट क्षेत्र में ट्रांजिस्टर में कई मिलियन गुना वृद्धि के साथ वर्ष 2017 में 10 नैनोमीटर हो गया है।[38] वर्ष 2016 तक विशिष्ट चिप का क्षेत्रफल कुछ वर्ग मिलीमीटर से लेकर 25 मिलियन ट्रांजिस्टर प्रति वर्ग मिमी के साथ लगभग 600 वर्ग मिमी तक होते हैं[36]

इंटरनेशनल टेक्नोलॉजी रोडमैप फॉर सेमीकंडक्टर्स (ITRS) द्वारा विशेषता के आकार में अपेक्षित सिकुड़न और संबंधित क्षेत्रों में आवश्यक प्रगति का अनुमान कई वर्षों में लगाया गया था। अंतिम आईटीआरएस वर्ष 2016 में जारी किया गया था, और इसे उपकरणों और प्रणालियों के लिए अंतर्राष्ट्रीय रोडमैप द्वारा प्रतिस्थापित किया जा रहा है।[37]

प्रारंभ में, IC मुख्य रूप से इलेक्ट्रॉनिक उपकरण थे। छोटे आकार और कम लागत के समान लाभ प्राप्त करने के प्रयास में IC की सफलता ने अन्य प्रौद्योगिकियों के एकीकरण को प्रेरित किया है। इन तकनीकों में यांत्रिक उपकरण, प्रकाशिकी और संवेदक सम्मिलित हैं।

  • आवेश-युग्मित उपकरण, और निकटता से संबंधित सक्रिय-पिक्सेल संवेदक, ऐसे चिप हैं जो प्रकाश के प्रति संवेदनशील होते हैं। उन्होंने बड़े पैमाने पर वैज्ञानिक, चिकित्सा और उपभोक्ता अनुप्रयोगों में फोटोग्राफिक झिल्ली (फिल्म) को प्रतिस्थापित कर दिया है। ये उपकरण अब हर साल सेलफोन, टैबलेट और डिजिटल कैमरों जैसे अनुप्रयोगों के लिए अरबों की संख्या में उत्पादित किए जाते हैं। IC के इस उप-क्षेत्र ने वर्ष 2009 में नोबेल पुरस्कार जीता।[38]
  • बिजली द्वारा संचालित बहुत छोटे यांत्रिक उपकरणों को चिपों पर एकीकृत किया जा सकता है, इस तकनीक को सूक्ष्म विद्युत् यांत्रिकी तंत्र के रूप में जाना जाता है। इन उपकरणों को 1980 के दशक के अंत में विकसित किया गया था[39] और इनका उपयोग विभिन्न प्रकार के वाणिज्यिक और सैन्य अनुप्रयोगों में किया जाता है। उदाहरणों में डीएलपी प्रोजेक्टर, इंकजेट प्रिंटर, और एक्सेलेरोमीटर और एमईएमएस गायरोस्कोप सम्मिलित हैं जिनका उपयोग ऑटोमोबाइल एयरबैग को तैनात करने के लिए किया जाता है।
  • 2000 के दशक की शुरुआत से, सिलिकॉन चिपों में प्रकाशिक कार्यक्षमता (optical computing) के एकीकरण को शैक्षणिक अनुसंधान और उद्योग दोनों में सक्रिय रूप से आगे बढ़ाया गया है, जिसके परिणामस्वरूप अधिमिश्रक, संसूचक और अनुमार्गण जैसे प्रकाशिक उपकरणों के संयोजन वाले सिलिकॉन आधारित एकीकृत प्रकाशिक संप्रेसी-अभिग्राही का सीमॉस आधारित इलेक्ट्रॉनिक्स के साथ सफल व्यावसायीकरण हुआ है।[40] प्रकाश का उपयोग करने वाले फोटोनिक एकीकृत परिपथों को भी भौतिकी के उभरते हुए क्षेत्र का उपयोग करके विकसित किया जा रहा है, जो फोटोनिक्स के रूप में जाने जाते हैं।
  • चिकित्सा प्रत्यारोपण या अन्य बायोइलेक्ट्रॉनिक उपकरणों में संवेदकों के अनुप्रयोग के लिए एकीकृत परिपथ भी विकसित किए जा रहे हैं।[41] ऐसे जीवजनित वातावरण में विशेष सीलिंग तकनीकों को प्रयुक्त किया जाना चाहिए जिससे प्रकाशित अर्धचालक पदार्थों के क्षरण या जैव-अवक्रमण से बचा जा सके।[42]

वर्ष 2018 तक, मॉस्फेट सभी ट्रांजिस्टरों में बहुसंख्यक हैं जो एक समतल द्वि-आयामी प्लानर प्रक्रिया में सिलिकॉन की एक चिप के एक तरफ एक परत में निर्मित होते हैं। शोधकर्ताओं ने कई आशाजनक विकल्पों के प्रोटोटाइप तैयार किए हैं, जैसे कि:

  • त्रि-आयामी एकीकृत परिपथ (3DIC) बनाने के लिए ट्रांजिस्टर की कई परतों को एकत्रित करने के लिए विभिन्न दृष्टिकोण, जैसे कि थ्रू-सिलिकॉन वाया, "अखंड 3डी",[43] एकत्रित तार बंधन,[44] और अन्य तरीके।
  • अन्य सामग्रियों से निर्मित ट्रांजिस्टर: ग्रेफीन ट्रांजिस्टर, मोलिब्डेनाइट ट्रांजिस्टर, कार्बन नैनोट्यूब फील्ड-इफेक्ट ट्रांजिस्टर, गैलियम नाइट्राइड ट्रांजिस्टर, ट्रांजिस्टर जैसे नैनोवायर इलेक्ट्रॉनिक उपकरण, ऑर्गेनिक फील्ड-इफेक्ट ट्रांजिस्टर आदि।
  • सिलिकॉन के एक छोटे से गोले की पूरी सतह पर ट्रांजिस्टर बनाना।[45][46]
  • अधःस्तर में संशोधन, सामान्यतः एक लचीले डिस्प्ले या अन्य लचीले इलेक्ट्रॉनिक्स के लिए "लचीला ट्रांजिस्टर" बनाने के लिए, संभवतः एक कंप्यूटर की ओर गमन को प्रेरित करता है।

जैसे कि कभी छोटे ट्रांजिस्टर का निर्माण करना अधिक कठिन हो जाता है, तो कंपनियां बहु-चिप मॉड्यूल, त्रि-आयामी एकीकृत परिपथ, पैकेज पर पैकेज, उच्च बैंडविड्थ (bandwidth) मेमोरी और थ्रू-सिलिकॉन वाया का उपयोग ट्रांजिस्टर के आकार को बिना कम किये प्रदर्शन को बढ़ाने और आकार को कम करने के लिए करती हैं। ऐसी तकनीकों को सामूहिक रूप से उन्नत पैकेजिंग के रूप में जाना जाता है।[47] उन्नत पैकेजिंग को मुख्य रूप से 2.5D और 3D पैकेजिंग में विभाजित किया गया है। 2.5D बहु-चिप मॉड्यूल जैसे दृष्टिकोणों का वर्णन करता है जबकि 3D उन दृष्टिकोणों का वर्णन करता है जहां एक तरह या किसी अन्य तरीके से डाई एकत्र हो जाते हैं, जैसे पैकेज पर पैकेज और उच्च बैंडविड्थ मेमोरी। सभी दृष्टिकोणों में एक पैकेज में 2 या अधिक डाई सम्मिलित किये जाते हैं।[48][49][50][51][52] वैकल्पिक रूप से, 3डी नैंड जैसे दृष्टिकोण एक ही डाई पर कई परतों को एकत्र कर देते हैं।

बनावट

एक जटिल एकीकृत परिपथ को बनाने और विकसित करने की लागत काफी अधिक होती है, जो कई दस मिलियन डॉलर में होती है।[53][54] अतः, एकीकृत परिपथ उत्पादों का केवल उच्च उत्पादन मात्रा के साथ उत्पादन ही आर्थिक दृष्टि से लाभकारी होता है, इसलिए उत्पादित इकाइयों की गैर-आवर्ती अभियांत्रिकी (एनआरई) लागत सामान्यतः लाखों में फैली हुई है।

आधुनिक अर्धचालक चिपों में अरबों की संख्या में घटक होते हैं, और हाथ से बनाये जाने के लिए बहुत जटिल होते हैं। सॉफ़्टवेयर उपकरण डिज़ाइनर की सहायता के लिए आवश्यक होते हैं। इलेक्ट्रॉनिक कंप्यूटर एडेड डिज़ाइन (ईकैड) के नाम से प्रचलित इलेक्ट्रॉनिक डिज़ाइन ऑटोमेशन (ईडीए)[55] एकीकृत परिपथ सहित इलेक्ट्रॉनिक तंत्र को बनाने के लिए सॉफ़्टवेयर टूल की एक श्रेणी है। ये उपकरण अभियंताओं द्वारा संपूर्ण अर्धचालक चिपों को डिजाइन और विश्लेषण करने के लिए उपयोग की जाने वाली एक निर्माण प्रक्रिया में एक साथ काम करते हैं।

प्रकार

दोहरी इन-लाइन पैकेज में A-टू-D परिवर्तक IC

एकीकृत परिपथ को सामान्यतः अनुरूप (एनालॉग) परिपथ[56], अंकीय (डिजिटल) परिपथ[57] और एक ही IC पर अनुरूप और अंकीय संकेतों से मिलकर बने मिश्रित-संकेत एकीकृत परिपथों[58] में वर्गीकृत किया जा सकता है, ।

अंकीय एकीकृत परिपथ में कुछ वर्ग मिलीमीटर में अरबों[36] तर्कद्वार, फ्लिप-फ्लॉप, बहुसंकेतक और अन्य परिपथ हो सकते हैं। इन परिपथों का छोटा आकार बोर्ड-स्तरीय एकीकरण की तुलना में उच्च गति, कम बिजली अपव्यय और कम विनिर्माण लागत की सुविधा प्रदान करता है। ये अंकीय IC (digital IC), सामान्यतः माइक्रोप्रोसेसर, डीएसपी (DSP) और माइक्रोकंट्रोलर, "एक" और "शून्य" संकेतों को संसाधित करने के लिए बूलियन बीजगणित का उपयोग करते हैं।

Intel 8742 द्वारा एक डाई, एक 8-बिट NMOS माइक्रोकंट्रोलर जिसमें 12 MHz पर चलने वाला CPU, 128 बाइट्स RAM, EPROM के 2048 बाइट्स और एक ही चिप में I/O सम्मिलित है।

माइक्रोप्रोसेसर या "कोर" सबसे उन्नत एकीकृत परिपथ हैं, जिनका उपयोग निजी कंप्यूटर, सेल-फोन, माइक्रोवेव ओवन आदि में किया जाता है। एक IC या चिप में कई कोर को एक साथ एकीकृत किया जा सकता है। अंकीय मेमोरी चिपों औरअनुप्रयोग-विशिष्ट एकीकृत सर्किट एकीकृत परिपथ के अन्य वर्गों के उदाहरण हैं।

प्रोग्राम करने योग्य तार्किक उपकरणों को 1980 के दशक में विकसित किया गया था। इन उपकरणों में ऐसे परिपथ होते हैं जिनके तार्किक कार्य और संयोजन को एकीकृत परिपथ निर्माता द्वारा तय किए जाने के स्थान पर उपयोगकर्ता द्वारा प्रोग्राम किया जा सकता है। यह एक चिप को तर्क द्वारों, योजकों और रजिस्टर जैसे विभिन्न एलएसआई-प्रकार के कार्यों को करने के लिए प्रोग्राम करने की सुविधा प्रदान करता है। प्रोग्राम-योग्यता विभिन्न प्रकार की होती है - ऐसे उपकरण जिन्हें केवल एक बार प्रोग्राम किया जा सकता है, ऐसे उपकरण जिन्हें मिटाकर पुनः UV प्रकाश का उपयोग करके से प्रोग्राम किया जा सकता है, ऐसे उपकरण जिन्हें फ्लैश मेमोरी का उपयोग करके (पुनः) प्रोग्राम किया जा सकता है, और फील्ड-प्रोग्रामेबल गेट एरेज़ जो संचालन के दौरान सहित किसी भी समय पर प्रोग्राम किया जा सकता है। 2016 तक के एफजीपीए (FPGA) कई दस लाख के समकक्ष गेट प्रयुक्त कर सकते हैं और 1 गीगाहर्ट्ज़ (GHz) तक की आवृत्ति पर काम कर सकते हैं।[59]

अनुरूप IC, संवेदक, सामर्थ्य प्रबंधक परिपथ, और परिचालन प्रवर्धक, जैसे निरंतर संकेतों को संसाधित करते हैं, और प्रवर्धन, सक्रिय निस्पंदन, विमॉडुलन और मिश्रण जैसे प्रक्रमों का संचालन करते हैं।

IC, अनुरूप-से-अंकीय परिवर्तक और अंकीय-से-अनुरूप परिवर्तक जैसे संचालनों को बनाने के लिए एक चिप पर साद्रश्य और अंकीय परिपथों को जोड़ सकते हैं। ऐसे मिश्रित संकेत परिपथ छोटे आकार और कम लागत की पेशकश करते हैं, लेकिन इन्हें संकेत हस्तक्षेप के लिए आवश्यक रूप से उत्तरदायी होना चाहिए। 1990 के दशक के उत्तरार्ध से पहले तक, माइक्रोप्रोसेसरों के समान ही कम लागत वाली सीमॉस प्रक्रियाओं में रेडियो का निर्माण नहीं किया जा सकता था। लेकिन वर्ष 1998 से आरएफ सीमॉस प्रक्रियाओं का उपयोग करके रेडियो चिपों को विकसित किया गया है। एथेरोस और अन्य कंपनियों द्वारा निर्मित 802.11 (वाई-फाई) चिप और इंटेल का डीईसीटी कॉर्डलेस फोन इसके उदाहरणों में सम्मिलित हैं ।[60]

आधुनिक इलेक्ट्रॉनिक घटक वितरक प्रायः एकीकृत परिपथों को उप-वर्गीकृत करते हैं:

  • अंकीय एकीकृत परिपथ को तार्किक एकीकृत परिपथ (जैसे माइक्रोप्रोसेसर और माइक्रोकंट्रोलर), मेमोरी चिप (जैसे मॉस मेमोरी और फ्लोटिंग-गेट मेमोरी), अंतर्प्रष्ठ एकीकृत परिपथ (स्तर परिवर्तक, अनुक्रमक / अनअनुक्रमक, आदि), सामर्थ्य प्रबंधक एकीकृत परिपथ और पप्रोग्रामयोग्य तार्किक उपकरणों के रूप में वर्गीकृत किया जाता है।
  • साद्रश्य एकीकृत परिपथ को रैखिक एकीकृत परिपथ और रेडियो आवृत्ति परिपथ (आरएफ परिपथ) के रूप में वर्गीकृत किया जाता है।
  • मिश्रित-संकेत एकीकृत परिपथ को डेटा अधिग्रहण एकीकृत परिपथ (ए/डी परिवर्तक, डी/ए परिवर्तक, अंकीय विभवमापी सहित), घडी या समय एकीकृत परिपथ, पारस्परिक परिवर्तित संधारित्र परिपथ और आरएफ सीमॉस परिपथ के रूप में वर्गीकृत किया जाता है।
  • त्रि-आयामी एकीकृत परिपथ को थ्रू-सिलिकॉन वाया (टीएसवी) एकीकृत परिपथ और Cu-Cu संयोजन एकीकृत परिपथ के माध्यम से वर्गीकृत किया गया है।

निर्माण

निर्माण

तीन धातु परतों के साथ एक छोटे मानक सेल का प्रतिपादन (ढांकता हुआ हटा दिया गया है)। रेत के रंग की संरचनाएं मेटल इंटरकनेक्ट होती हैं, जिसमें लंबवत खंभे सम्पर्कित होते हैं, सामान्यतः टंगस्टन के प्लग होते हैं। लाल रंग की संरचनाएं पॉलीसिलिकॉन गेट हैं, और तल पर ठोस क्रिस्टलीय सिलिकॉन बल्क है।
सीमॉस चिप (CMOS chip) की योजनाबद्ध संरचना, जैसा कि 2000 के दशक की शुरुआत में बनाया गया था। ग्राफिक LDD-MISFET को SOI अधःस्तर पर पांच धातुकरण परतों और फ्लिप-चिप बॉन्डिंग के लिए सोल्डर बंप के साथ दिखाता है। यह FEOL (फ्रंट-एंड ऑफ लाइन), BEOL (बैक-एंड ऑफ लाइन) और बैक-एंड प्रक्रिया के पहले भाग के लिए अनुभाग भी दिखाता है।

रासायनिक तत्वों की आवर्त सारणी के अर्धचालकों को एक ठोस-अवस्था वाली निर्वात नली के लिए सबसे संभावित सामग्री के रूप में पहचाना गया। 1940 और 1950 के दशक में कॉपर ऑक्साइड से शुरू होकर जर्मेनियम, फिर सिलिकॉन तक, सामग्री का व्यवस्थित रूप से अध्ययन किया गया था। आज, मोनोक्रिस्टलाइन सिलिकॉन एकीकृत परिपथ के लिए उपयोग किया जाने वाला मुख्य अधः स्तर है, हालांकि आवर्त सारणी के कुछ III-V यौगिकों जैसे गैलियम आर्सेनाइड का उपयोग एलईडी (LED), लेजर, सौर कोशिकाओं और उच्चतम गति वाले एकीकृत परिपथ जैसे विशेष अनुप्रयोगों के लिए किया जाता है। अर्धचालक सामग्री की क्रिस्टल संरचना में न्यूनतम दोषों के साथ क्रिस्टल बनाने के सही तरीकों में दशकों का समय लग गया।

अर्धचालक एकीकृत परिपथ एक समतलीय प्रक्रिया में गढ़े जाते हैं जिसमें तीन प्रमुख प्रक्रिया चरण सम्मिलित होते हैं - फोटोलिथोग्राफी, निक्षेप (जैसे रासायनिक वाष्प जमाव), और निक्षारण। प्रक्रिया के मुख्य चरण डोपिंग और सफाई द्वारा पूरक हैं। हाल ही के या उच्च-प्रदर्शन वाले एकीकृत परिपथ समतलीय वाले के स्थान पर बहु-द्वार फिनफेट या जीएएएफईटी (GAAFET) ट्रांजिस्टर का उपयोग कर सकते हैं, जो 22 एनएम नोड (इंटेल) या 16/14 एनएम नोड से शुरू होते हैं।[61]

अधिकांश अनुप्रयोगों में मोनो-क्रिस्टल सिलिकॉन वेफरों का या विशेष अनुप्रयोगों के लिए, गैलियम आर्सेनाइड जैसे अन्य अर्धचालकों का उपयोग किया जाता है। वेफर पूरी तरह से सिलिकॉन नहीं होना चाहिए। फोटोलिथोग्राफी का उपयोग अधःस्तर के विभिन्न क्षेत्रों को डोप किए जाने के लिए या उन पर जमा पॉलीसिलिकॉन, विसंवाहक या धातु (सामान्यतः एल्यूमीनियम या तांबा) ट्रैक प्राप्त करने के लिए किया जाता है। डोपेंट एक अर्धचालक को जानबूझकर उसके इलेक्ट्रॉनिक गुणों को संशोधित करने के लिए प्रस्तुत की गई अशुद्धियाँ हैं। डोपिंग एक अर्धचालक पदार्थ में डोपेंट जोड़ने की प्रक्रिया है।

  • एकीकृत परिपथ कई अतिव्यापी परतों से बने होते हैं, जिनमें से प्रत्येक को फोटोलिथोग्राफी द्वारा परिभाषित किया जाता है, और सामान्य रूप से विभिन्न रंगों में दिखाया जाता है। विसरण परतें उस स्थान को चिह्नित करती हैं जहां विभिन्न डोपेंट अधःस्तर में विसरित होते हैं;प्रत्यारोपण परतें यह परिभाषित करती हैं कि अतिरिक्त आयन कहाँ लगाए गए हैं; डोप्ड पॉलीसिलिकॉन या धात्विक परतें चालक को परिभाषित करती हैं, और वाया या संपर्क परतें संवाहक परतों के बीच संयोजन को परिभाषित करती हैं। इन परतों के एक विशिष्ट संयोजन से सभी घटकों का निर्माण किया जाता है।
  • एक स्व-संरेखित सीमॉस प्रक्रिया में एक ट्रांजिस्टर का निर्माण होता है जहां द्वार परत (पॉलीसिलिकॉन या धातु) एक विसरण परत को पार करती है।[62]: p.1 (see Fig. 1.1) 
  • संधारित संरचनाएँ, एक पारंपरिक विद्युत संधारित्र के समानांतर संवाहक प्लेटों की तरह, प्लेटों के बीच इन्सुलेट सामग्री के साथ, "प्लेटों" के क्षेत्र के अनुसार बनाई जाती हैं। एकीकृत परिपथ पर आकार की एक विस्तृत श्रृंखला वाले संधारित्र सामान्य होते हैं।
  • अलग-अलग लंबाई की घुमावदार वाली धारियों का उपयोग कभी-कभी ऑन-चिप प्रतिरोधक बनाने के लिए किया जाता है, हालांकि अधिकांश तार्किक परिपथ को किसी भी प्रतिरोधक की आवश्यकता नहीं होती है। प्रतिरोधक संरचना की लंबाई और चौड़ाई का अनुपात, इसकी तल प्रतिरोधकता के साथ मिलकर प्रतिरोध को निर्धारित करता है।
  • शायद ही कभी, आगमनात्मक संरचनाओं को छोटे ऑन-चिप कुंडल के रूप में बनाया जा सकता है, या परिभ्रमित्र द्वारा साइम्युलेट किया जा सकता है।

चूँकि सीमॉस उपकरण केवल तार्किक अवस्थाओं के बीच संक्रमण पर धारा खींचता है, सीमॉस उपकरण द्विध्रुवी जंक्शन ट्रांजिस्टर उपकरण की तुलना में बहुत कम धारा की खपत करते हैं।

रैंडम-एक्सेस मेमोरी (रैम) एकीकृत परिपथ का सबसे नियमित प्रकार है; इस प्रकार उच्चतम घनत्व वाले उपकरण मेमोरी हैं; लेकिन एक माइक्रोप्रोसेसर में भी चिप पर मेमोरी होती है। (पहली छवि के नीचे नियमित सरणी संरचना देखें।[which?]) हालांकि दशकों से सिकुड़ती चौड़ाई के साथ संरचनाएं जटिल हैं। ये परतें उपकरण की चौड़ाई की तुलना में बहुत पतली रहती हैं। सामग्री की परतें एक फोटोग्राफिक प्रक्रिया की तरह गढ़ी जाती हैं, हालांकि दृश्य स्पेक्ट्रम में प्रकाश तरंगों का उपयोग सामग्री की एक परत को "प्रकट" करने के लिए नहीं किया जा सकता है, क्योंकि वे सुविधाओं के लिए बहुत बड़े होते हैं। इस प्रकार प्रत्येक परत के लिए पैटर्न बनाने के लिए उच्च आवृत्तियों (सामान्यतः पराबैंगनी) के फोटॉन का उपयोग किया जाता है। प्रत्येक विशेषता के अत्यंत सूक्ष्म होने के कारण इलेक्ट्रॉन सूक्ष्मदर्शी, एक प्रक्रिया अभियंता के लिए आवश्यक उपकरण हैं जो एक निर्माण प्रक्रिया को दोषमार्जित कर सकते हैं।

वेफर परीक्षण या वेफर जांच के रूप में जानी जाने वाली प्रक्रिया में स्वचालित परीक्षण उपकरण (ATE) का उपयोग करके पैकेजिंग से पहले प्रत्येक उपकरण का परीक्षण किया जाता है। फिर वेफर को आयताकार खण्डों में काटा जाता है, जिनमें से प्रत्येक को डाई (die) कहा जाता है। फिर प्रत्येक अच्छी डाई को एल्यूमीनियम (या सोना) तार बंधन का उपयोग करके एक पैकेज में जोड़ा जाता है जो पैड के साथ थर्मोसोनिक रूप से बंधित होते हैं[63] , जो सामान्यतः डाई के किनारे के आसपास पाया जाता है। थर्मोसोनिक बंधन की शुरुआत सबसे पहले ए. कौकुलस ने की थी, जिन्होंने बाहरी दुनिया को ऐसे महत्वपूर्ण विद्युत संयोजनों को बनाने का एक विश्वसनीय साधन प्रदान किया। पैकेजिंग के बाद, वेफर जांच के दौरान उपयोग किए जाने वाले समान या समान ATE पर उपकरणों का अंतिम परीक्षण किया जाता है। इसमें औद्योगिक सीटी स्कैनिंग का भी उपयोग किया जा सकता है। इनकी परीक्षण लागत, कम लागत वाले उत्पादों पर निर्माण की लागत के 25% से अधिक हो सकती है, लेकिन कम उपज, बड़े या उच्च लागत वाले उपकरणों पर नगण्य भी हो सकती है।

एक निर्माण सुविधा (जिसे आमतौर पर सेमीकंडक्टर फैब के रूप में जाना जाता है) के निर्माण में वर्ष 2016 तक 8 बिलियन अमेरिकी डॉलर से अधिक की लागत आ सकती थी।[64] नए उत्पादों की बढ़ती जटिलता के कारण एक निर्माण सुविधा की लागत समय के साथ बढ़ती जाती है; इसे रॉक के नियम के रूप में जाना जाता है। ऐसी विशेषताएं निम्न हैं:

  • वेफर (इलेक्ट्रॉनिक्स) 300 मिमी व्यास तक (एक सामान्य डिशवेयर प्लेट से अधिक चौड़ा)।
  • Template:वर्ष 2016 तक, 14 एनएम ट्रांजिस्टर.[65][needs update]
  • कॉपर अंतर्संयोजित करता है जहां कॉपर वायरिंग अंतर्संयोजन के लिए एल्युमीनियम की जगह लेती है।
  • Low-κ परावैद्युत विसंवाहक।
  • विसंवाहक पर सिलिकॉन (SOI)।
  • आईबीएम द्वारा उपयोग की जाने वाली प्रक्रिया में तनावपूर्ण सिलिकॉन, स्ट्रेंड सिलिकॉन डाइरेक्टली ऑन इन्सुलेटर (एसएसडीओआई) के रूप में जाना जाता है।
  • बहु-द्वारता उपकरण जैसे त्रि-द्वार ट्रांजिस्टर।

एकीकृत परिपथ का निर्माण या तो एकीकृत उपकरण निर्माताओं (आइडीएम) का उपयोग करके घर में या फाउंड्री मॉडल का उपयोग करके किया जा सकता है। आईडीएम (IDM) ऊर्ध्वाधर रूप से एकीकृत ऐसी कंपनियाँ (जैसे इन्टेल और सैमसंग) हैं जो अपने स्वयं के एकीकृत परिपथ की रचना, निर्माण और बिक्री करती हैं, और प्रायः कल्पित कंपनियों को रचना या निर्माण सेवाएँ प्रदान कर सकती हैं। फाउंड्री मॉडल में, एनवीडिया जैसी कल्पित कंपनियां केवल IC को डिजाइन करती और बेचती हैं और सभी विनिर्माणों को टीएसएमसी (TSMC) जैसे शुद्ध प्ले फाउंड्री को आउटसोर्स करती हैं। ये फाउंड्री, IC डिजाइन सेवाएं प्रदान कर सकती हैं।

संवेष्टन (Packaging)

1977 में बनी सोवियत MSI nMOS तार्किक चिप, वर्ष 1970 में डिज़ाइन किए गए चार-चिप कैलकुलेटर सेट का हिस्सा है[66]

प्रारंभिक एकीकृत परिपथ मृत्तिका समतलीय संकुलों में पैक किए गए थे, जो कि कई वर्षों तक सेना द्वारा उनकी विश्वसनीयता और छोटे आकार के लिए उपयोग किया जाता रहा। वाणिज्यिक परिपथ संवेष्टन (packaging) तीव्र गति से दोहरी इन-लाइन पैकेज (डीआईपी) में प्रतिस्थापित हो गया, जिसमें पहले मृत्तिका (ceramic) में और बाद में प्लास्टिक में पैक किया जाने लगा, जिसे सामान्यतः क्रेसोल-फॉर्मेल्डिहाइड-नोवोलैक कहते हैं। 1980 के दशक में वीएलएसआई (VLSI) परिपथ की पिन संख्या डीआईपी संवेष्टन के लिए व्यावहारिक सीमा से अधिक हो गए, जिससे पिन ग्रिड एरे और लीडलेस चिप संवाहक (एलसीसी) पैकेज का उपयोग होने लगा। 1980 के दशक प्रारंभ में सतह आरूढ़ संवेष्टन का प्रदर्शन हुआ और जो कि 1980 के दशक के अंत में लोकप्रिय हो गई, जिसमें गल-विंग या जे-लीड के रूप में बनाई गई लीड के साथ बारीक लीड पिच का उपयोग किया गया, जैसा कि छोटे-आउटलाइन एकीकृत परिपथ (एसओIC) पैकेज द्वारा उदाहरण दिया गया था - एक वाहक जो एक समकक्ष डीआईपी की तुलना में लगभग 30-50% कम क्षेत्र का अधिग्रहण करता है और सामान्यतः 70% तक पतला होता है। इस पैकेज में "गल विंग" होते हैं, जो दो लंबी तरफ से फैला हुआ होता है और 0.050 इंच की लीड स्पेसिंग होती है।

1990 के दशक के उत्तरार्ध में, प्लास्टिक क्वाड फ्लैट पैक (पीक्यूएफपी) और पतले छोटे-आउटलाइन पैकेज (टीएसओपी) उच्च पिन संख्या उपकरणों के लिए सबसे ज्यादा प्रचलित हो गए, हालांकि पीजीए (PGA) पैकेज अभी भी उच्च-सिरे माइक्रोप्रोसेसरों के लिए उपयोग किए जाते हैं।

बॉल ग्रिड ऐरे (बीजीए) पैकेज 1970 के दशक से उपयोग के लिए उपस्थित है। अन्य प्रकार के पैकेजों की तुलना में बहुत अधिक पिन संख्या की सुविधा देने वाले फ्लिप-चिप बॉल ग्रिड ऐरे पैकेज 1990 के दशक में विकसित किए गए थे। एक एफसीबीजीए (FCBGA) पैकेज में डाई को उल्टा (फ़्लिप) लगाया जाता है और पैकेज बॉल्स को एक पैकेज अधःस्तर के माध्यम से जोड़ता है जो तारों के स्थान पर एक मुद्रित-परिपथ बोर्ड के समान होता है। एफसीबीजीए पैकेज डाई परिधि तक सीमित होने के स्थान पर इनपुट-आउटपुट संकेत (I/O क्षेत्र कहा जाता है) की एक सरणी को संपूर्ण डाई पर वितरित करने की अनुमति देता है। बीजीए (BGA) उपकरणों को एक समर्पित परिपथ की आवश्यकता नहीं होने का लाभ होता है, लेकिन उपकरण की विफलता के सम्बन्ध में इसे बदलना बहुत मुश्किल होता है।

इंटेल ने मोबाइल प्लेटफॉर्म के लिए वर्ष 2014 में जारी आखिरी पीजीए (PGA) परिपथ के साथ वर्ष 2004 के प्रारंभ में पीजीए (PGA) से लैंड ग्रिड ऐरे (LGA) और बीजीए (BGA) में प्रतिस्थापन किया । एएमडी (AMD) वर्ष 2018 तक मुख्यधारा के डेस्कटॉप प्रोसेसर पर पीजीए पैकेज[67] और मोबाइल प्रोसेसर पर बीजीए (BGA) पैकेज,[68] उपयोग करता है, और उच्च-सिरे डेस्कटॉप और सर्वर माइक्रोप्रोसेसर एलजीए (LGA) पैकेज का उपयोग करते हैं।[69]

डाई से निकलने वाले विद्युत संकेतों को डाई को पैकेज से विद्युत् रूप से जोड़ने वाले पदार्थ, पैकेज में प्रवाहकीय निशान (पथ) और मुद्रित परिपथ बोर्ड पर प्रवाहकीय निशान से पैकेज को जोड़ने वाली लीडों से होकर अवश्य ही गुजरना चाहिए। इन विद्युत संकेतों के मार्ग में उपयोग की जाने वाली सामग्रियों और संरचनाओं में एक ही डाई के विभिन्न हिस्सों की यात्रा करने वाले तत्वों की तुलना में बहुत भिन्न विद्युतीय गुण होते हैं। फलस्वरूप, उन्हें संकेतों के भ्रष्ट न होने के सुनिश्चितीकरण करने के लिए विशेष रचना तकनीकों और डाई तक ही सीमित संकेतों की तुलना में बहुत अधिक विद्युत शक्ति की आवश्यकता होती है।

जब एक पैकेज में कई डाई रखे जाते हैं, तो परिणामस्वरुप पैकेज में एक तंत्र प्राप्त होता है, जिसे संक्षिप्त रूप से एसआईपी (SiP) कहा जाता है। प्रायः मृत्तिका (ceramic) से बने एक छोटे अधःस्तर पर कई डाई को मिलाकर एक बहु-चिप मॉड्यूल बनाया जाता है। एक बड़े बहु-चिप मॉड्यूल और एक छोटे मुद्रित परिपथ बोर्ड के बीच का अंतर कभी-कभी अस्पष्ट होता है।

पैकेज्ड एकीकृत परिपथ सामान्यतः काफी बड़े होते हैं, जिनमें पहचान की सूचना सम्मिलित होती है। यह पहचानने के लिए कि चिप का निर्माण कब किया गया था, इसमें चार सामान्य खंड होते हैं - निर्माता का नाम या प्रतीक चिन्ह, भाग संख्या, एक भाग उत्पादन बैच संख्या और क्रम संख्या, और चार अंकों का दिनांक-कोड। अत्यधिक छोटे सतह-आरूढ़ प्रौद्योगिकी भागों में प्रायः एकीकृत परिपथ की विशेषताओं को खोजने के लिए निर्माता की खोज तालिका में उपयोग की जाने वाली संख्या ही होती है।

इसमें निर्माण की तारीख को सामान्यतः दो अंकों के वर्ष के रूप में दर्शाया जाता है, जिसके बाद दो अंकों का सप्ताह कोड होता है, जैसे कि कोड 8341 वाला एक भाग का निर्माण वर्ष 1983 के 41वें सप्ताह में या लगभग अक्टूबर, 1983 में किया गया था।

बौद्धिक संपदा

एक एकीकृत परिपथ की प्रत्येक परत की तस्वीर खींचकर और प्राप्त तस्वीरों के आधार पर इसके उत्पादन के लिए फोटोमास्क तैयार करने की संभावना रचना विन्यासों (layout designs) की सुरक्षा के लिए कानून बनाने का एक कारण है। वर्ष 1984 के संयुक्त राज्य अर्धचालक सुरक्षा कानून ने एकीकृत परिपथ का उत्पादन करने के लिए उपयोग किए जाने वाले फोटोमास्क के लिए बौद्धिक संपदा संरक्षण की स्थापना की।[70]

वर्ष 1989 में वाशिंगटन, डीसी में आयोजित एक राजनयिक सम्मेलन ने एकीकृत परिपथ के संबंध में बौद्धिक संपदा पर एक संधि को अपनाया,[71] जिसे वाशिंगटन संधि या आईपीIC संधि (IPIC Treaty) भी कहा जाता है। यह संधि वर्तमान में लागू नहीं है, परन्तु इसे आंशिक रूप से ट्रिप्स समझौते (TRIPS एग्रीमेंट) में एकीकृत किया गया था।[72]

एकीकृत परिपथ से जुड़े कई संयुक्त राज्य पेटेंट हैं, जिनमें जे.एस. किल्बी US3,138,743, US3,261,081, US3,434,015 और आर.एफ. स्टीवर्ट US3,138,747. द्वारा पेटेंट शामिल हैं |

IC रचना विन्यासों की रक्षा करने वाले राष्ट्रीय कानूनों को जापान,[73] यूरोपीय आर्थिक समुदाय (EC),[74] यूके, ऑस्ट्रेलिया और कोरिया सहित कई देशों में अपनाया गया है। यूके ने कॉपीराइट, डिजाइन और पेटेंट अधिनियम, 1988, c. 48, § 213 अधिनियमित किया, जिसका कॉपीराइट कानून प्रारंभ में स्थापित होने के बाद पूरी तरह से चिप स्थलाकृतियों की रक्षा करता है। ब्रिटिश लीलैंड मोटर कार्पोरेशन बनाम आर्मस्ट्रांग पेटेंट कंपनी देखें।

यूके के कॉपीराइट दृष्टिकोण की यूएस चिप उद्योग द्वारा अपर्याप्तता की आलोचना को इसके बाद के चिप अधिकारों के विकास में संक्षेपित किया गया है।[75]

ऑस्ट्रेलिया ने परिपथ रचना विन्यास अधिनियम 1989 को चिप संरक्षण के एक स्वजातिक रूप (sui generis form) में पारित किया।[citation needed] कोरिया ने अर्धचालक एकीकृत परिपथ के रचना विन्यास के संबंध में अधिनियम पारित किया।

पीढ़ियाँ

प्रौद्योगिकी के बड़े पैमाने ने सरल एकीकृत परिपथों के प्रारम्भिक दिनों में प्रत्येक चिप को केवल कुछ ट्रांजिस्टर तक सीमित कर दिया था, और एकीकरण की निम्न कोटि का अर्थ था कि रचना प्रक्रिया अपेक्षाकृत सरल थी। इसका उत्पादन भी आज के मानकों से काफी निम्न था। जैसे-जैसे धातु-ऑक्साइड-अर्धचालक (मॉस) तकनीक का विकास हुआ, तो लाखों और फिर अरबों मॉस ट्रांजिस्टरों को एक चिप पर रखा जा सकता था,[76] और इलेक्ट्रॉनिक रचना स्वचालन (ईडीए) के क्षेत्र को जन्म देते हुए अच्छी रचनाओं के लिए गहन योजना की आवश्यकता थी। असतत ट्रांजिस्टर जैसे कुछ एसएसआई (SSI) और एमएसआई (MSI) चिपों का उत्पादन आज भी बड़े पैमाने पर होता है, जो पुराने उपकरणों को बनाए रखने और केवल कुछ द्वारों की आवश्यकता वाले नए उपकरणों का निर्माण करने का कार्य करता है। उदाहरण के लिए, टीटीएल चिप की 7400 श्रृंखला एक वास्तविक मानक बनने के साथ उत्पादन में बनी हुई है।

संक्षिप्त रूप नाम वर्ष ट्रांजिस्टरों की संख्या [77] तर्क द्वारों की संख्या[78]
एसएसआई (SSI) छोटे पैमाने पर एकीकरण 1964 1 से 10 1 से 12
एमएसआई (MSI) मध्यम पैमाने पर एकीकरण 1968 10 से 500 13 से 99
एलएसआई (LSI) बड़े पैमाने पर एकीकरण 1971 500 से 20 000 100 से 9999
वीएलएसआई (VLSI) अधिक बड़े पैमाने पर एकीकरण 1980 20 000 से 1 000 000 10 000 से 99 999
यूएलएसआई (ULSI) अत्यधिक बड़े पैमाने पर एकीकरण 1984 1 000 000 और अधिक 100 000 और अधिक

छोटे पैमाने पर एकीकरण

पहले एकीकृत परिपथों में केवल कुछ ट्रांजिस्टर होते थे। कई दस ट्रांजिस्टर वाले प्रारंभिक अंकीय परिपथ में कुछ तर्क द्वार होते थे, और प्लेसी एसएल201 या फिलिप्स टीएए320 जैसे प्रारम्भिक रैखिक एकीकृत परिपथों में दो ट्रांजिस्टर थे। तब से एक एकीकृत परिपथ में ट्रांजिस्टर की संख्या में नाटकीय रूप से वृद्धि हुई है। सैद्धांतिक अवधारणा का वर्णन करते समय बड़े पैमाने पर एकीकरण (एलएसआई) शब्द का प्रयोग पहली बार आईबीएम वैज्ञानिक रॉल्फ लैंडौअर द्वारा किया गया था;[79] उस शब्द ने छोटे पैमाने के एकीकरण (एसएसआई), मध्यम पैमाने के एकीकरण (एमएसआई), बहुत बड़े पैमाने पर एकीकरण (वीएलएसआई) और अत्यधिक बड़े पैमाने पर एकीकरण (यूएलएसआई) को जन्म दिया। प्रारंभिक एकीकृत परिपथ छोटे पैमाने के एकीकरण (एसएसआई) थे।

प्रारंभिक अन्तरिक्षीय परियोजनाओं के लिए एसएसआई (SSI) परिपथ महत्वपूर्ण थे, और इन परियोजनाओं ने प्रौद्योगिकी के विकास को प्रेरित करने में सहायता प्रदान की। एलजीएम-30 मिनटमैन और अपोलो दोनों कार्यक्रमों को अपने जड़त्वीय मार्गदर्शन प्रणालियों के लिए हल्के अंकीय कंप्यूटरों की आवश्यकता थी। हालांकि अपोलो मार्गदर्शन कंप्यूटर ने एकीकृत-परिपथ प्रौद्योगिकी का नेतृत्व और प्रेरण किया,[80] जबकि मिनटमैन मिसाइल ने इसे बड़े पैमाने पर उत्पादन के लिए मजबूर किया। मिनटमैन मिसाइल कार्यक्रम और विभिन्न अन्य संयुक्त राज्य नौसेना कार्यक्रमों ने वर्ष 1962 में कुल $4 मिलियन एकीकृत परिपथ बाजार के लिए उत्तरदायी था, और नासा के बजट और संयुक्त राज्य अमेरिका के सैन्य बजट पर वर्ष 1968 तक संयुक्त राज्य सरकार का खर्च अभी भी $312 मिलियन के कुल उत्पादन के 37% था।

जब तक एकीकृत परिपथ कंपनियों को औद्योगिक बाजार और अंततः उपभोक्ता बाजार में प्रवेश करने की अनुमति देने के लिए लागत कम नहीं हुई, तब तक संयुक्त राज्य सरकार की मांग ने नवविकसित एकीकृत परिपथ बाजार का समर्थन किया। प्रति एकीकृत परिपथ का औसत मूल्य वर्ष 1962 में $50 से गिरकर वर्ष 1968 में $2.33 हो गया।[81] 1970 के दशक के अंत तक उपभोक्ता उत्पादों में एकीकृत परिपथ की पहुँच हो गई। फ़्रीक्वेंसी मॉड्यूलेशन इंटर-कैरियर साउंड प्रोसेसिंग दूरदर्शन अवशोषकों में एक विशिष्ट अनुप्रयोग था।

छोटे पैमाने पर एकीकरण (SSI) चिप, मॉस चिप का पहला अनुप्रयोग था।[82] वर्ष 1960 में मोहम्मद एम. अटाला के मॉस एकीकृत परिपथ चिप के प्रस्ताव के बाद,[83] बनाई जाने वाली सबसे पहली प्रायोगिक मॉस चिप 16-ट्रांजिस्टर चिप थी, जिसे वर्ष 1962 में आरसीए (RCA) में फ्रेड हेमैन और स्टीवन हॉफस्टीन द्वारा बनाया गया था।[30] मॉस एसएसआई चिपों का पहला व्यावहारिक अनुप्रयोग नासा के उपग्रहों के लिए था।[82]

मध्यम पैमाने पर एकीकरण (medium-scale integration)

एकीकृत परिपथों के विकास के अगले चरण में ऐसे उपकरण प्रस्तुत किए गए जिनमें प्रत्येक चिप पर सैकड़ों ट्रांजिस्टर होते हैं, जिन्हें मध्यम पैमाने पर एकीकरण (MSI) कहा जाता है।

मॉस्फेट स्केलिंग तकनीक ने उच्च-घनत्व वाले चिपों के निर्माण को संभव बना दिया है।[25] मॉस चिप वर्ष 1964 तक द्विध्रुवी जंक्शन ट्रांजिस्टर चिपों की तुलना में उच्च ट्रांजिस्टर घनत्व और कम विनिर्माण लागत तक पहुंच गए थे।[32]

फ्रैंक वानलास ने वर्ष 1964 में स्वयं द्वारा रचित एक एकल-चिप 16-बिट शिफ्ट रजिस्टर को प्रस्तुत किया, जिसमें एक चिप पर तत्कालीन-अविश्वसनीय 120 मॉस ट्रांजिस्टर थे।[82][84] उसी वर्ष जनरल माइक्रोइलेक्ट्रॉनिक ने पहला वाणिज्यिक मॉस एकीकृत परिपथ चिप प्रस्तुत किया, जिसमें 120 पी-चैनल मॉस ट्रांजिस्टर सम्मिलित था।[31] यह एक 20-बिट शिफ्ट रजिस्टर था, जिसे रॉबर्ट नॉर्मन[30] और फ्रैंक वानलास[85] द्वारा विकसित किया गया था। मूर के नियम द्वारा भविष्यवाणी की गई दर से MOS चिप और अधिक जटिल हो गए, जिससे 1960 के दशक के अंत तक एक चिप पर सैकड़ों मॉस्फेट के साथ चिपों का निर्माण होने लगा।[32]

बड़े पैमाने पर एकीकरण

समान मॉस्फेट स्केलिंग तकनीक और आर्थिक कारकों द्वारा संचालित अग्रिम विकास ने 1970 के दशक के मध्य तक "बड़े पैमाने पर एकीकरण" का नेतृत्व किया, जिसमें एक चिप पर हजारों ट्रांजिस्टर होते थे।[86]

एसएसआई (SSI), एमएसआई (MSI) और शुरुआती एलएसआई (LSI) और वीएलएसआई (VLSI) उपकरणों (जैसे कि 1970 के दशक के शुरुआती माइक्रोप्रोसेसरों) को संसाधित और निर्मित करने के लिए उपयोग किए जाने वाले मुखौटे (masks) प्रायः रूबीलिथ-टेप या इसी तरह का उपयोग मुख्यतः हाथ से बनाए जाते थे।[87] यह मेमोरी या प्रोसेसर जैसे बड़े या जटिल एकीकृत परिपथ के लिए प्रायः परिपथ विन्यास के प्रभारी विशेष रूप से किराए के पेशेवरों द्वारा किया जाता था, जिन्हें अभियंताओं की एक टीम की देखरेख में रखा जाता था, जो परिपथ रचनाकारों के साथ प्रत्येक मुखौटे की शुद्धता और पूर्णता का निरीक्षण और सत्यापन भी करते थे।

1K-बिट रैम, कैलकुलेटर चिप्स, और पहला माइक्रोप्रोसेसर जैसे एकीकृत परिपथों में 4,000 ट्रांजिस्टर होते थे , जो 1970 के दशक के प्रारंभ में मध्यम मात्रा में निर्मित होना प्रारंभ हुए थे। कंप्यूटर की मुख्य मेमोरी और दूसरी पीढ़ी के माइक्रोप्रोसेसरों के लिए लगभग 10,000 ट्रांजिस्टर वाले शुद्ध एलएसआई परिपथ का निर्माण वर्ष 1974 के आसपास प्रारंभ हो गया था।

बहुत बड़े पैमाने पर एकीकरण

Intel 80486DX2 माइक्रोप्रोसेसर डाई पर ऊपरी इंटरकनेक्ट परतें

"बहुत बड़े पैमाने पर एकीकरण (VLSI)" 1980 के दशक की शुरुआत में सैकड़ो-हजारों ट्रांजिस्टरों के साथ प्रारंभ हुआ एक विकास है, जिसमें वर्ष 2016 तक एक चिप में ट्रांजिस्टरों की संख्या दस बिलियन से अधिक पहुँच गई थी।

इस बढ़े हुए घनत्व को प्राप्त करने के लिए कई विकासों की आवश्यकता थी। निर्माता छोटे मॉस्फेट रचना विन्यास नियमों और स्वच्छ निर्माण सुविधाओं की ओर प्रतिस्थापित होते चले गए। इस प्रक्रिया में सुधार के मार्ग को अंतर्राष्ट्रीय प्रौद्योगिकी रोडमैप द्वारा अर्धचालकों (ITRS) के लिए संक्षेपित किया गया था, जो बाद में उपकरणों और प्रणालियों के लिए अंतर्राष्ट्रीय रोडमैप (IRDS) द्वारा विस्थापित किया गया था। इलेक्ट्रॉनिक रचना उपकरण में सुधार के कारण रचनाओं को उचित समय में समाप्त करना व्यावहारिक हो गया। अधिक ऊर्जा कुशल सीमॉस ने बिजली की खपत में निषेधात्मक वृद्धि से बचाने के लिए एनमॉस (NMOS) और पीमॉस (PMOS) का स्थान ले लिया। आधुनिक वीएलएसआई (VLSI) उपकरणों की जटिलता और घनत्व ने मुखौटे की जांच या हाथ से मूल रचना को असंभव बना दिया। अभियंता इसके स्थान पर सबसे कार्यात्मक सत्यापन कार्य करने के लिए ईडीए (EDA) उपकरण का उपयोग करते हैं।[88]

वर्ष 1986 में एक-मेगाबिट रैंडम-एक्सेस मेमोरी चिप प्रस्तुत किए गए, जिसमें एक मिलियन से अधिक ट्रांजिस्टर थे। माइक्रोप्रोसेसर चिपों ने वर्ष 1989 में मिलियन-ट्रांजिस्टर का और वर्ष 2005 में बिलियन-ट्रांजिस्टर का लक्ष्य प्राप्त किया।[89] यह प्रवृत्ति काफी हद तक 2007 में प्रस्तुत चिपों में दसियों अरबों मेमोरी ट्रांजिस्टर के साथ बिना अवरोध के जारी है।[90]

यूएलएसआई (ULSI), (WSI), एसओसी (SoC) और 3डी-IC (3D-IC)

यूएलएसआई (ULSI) शब्द, जिसका पूर्ण रूप "अत्यधिक बड़े पैमाने पर एकीकरण" है, को जटिलता के अग्रिम विकास को प्रतिबिंबित करने के लिए 1 मिलियन से अधिक ट्रांजिस्टर के चिपों के लिए प्रस्तावित किया गया था।[91]

वेफर-स्तर एकीकरण (WSI) बहुत बड़े एकीकृत परिपथों के निर्माण का एक साधन है जो एक एकल "सुपर-चिप" का उत्पादन करने के लिए पूरे सिलिकॉन वेफर का उपयोग करता है। डब्ल्यूएसआई (WSI), बड़े आकार और कम पैकेजिंग के संयोजन के माध्यम से कुछ प्रणालियों, विशेष रूप से बड़े पैमाने पर समानांतर सुपर कंप्यूटर, के लिए नाटकीय रूप से कम लागत का कारण बन सकता है। यह नाम "बड़े पैमाने पर एकीकरण" शब्द से लिया गया है, जो तब कला की वर्तमान स्थिति को प्रदर्शित करता था, जब डब्ल्यूएसआई (WSI) को विकसित किया जा रहा था।[92]

एक सिस्टम-ऑन-ए-चिप एक एकीकृत परिपथ होता है, जिसमें कंप्यूटर या अन्य सिस्टम के लिए आवश्यक सभी घटकों को एक चिप पर सम्मिलित किया जाता है। इस तरह के एक उपकरण का रचना जटिल और महंगी हो सकती है, और जबकि प्रदर्शन लाभ एक ही बार में सभी आवश्यक घटकों को एकीकृत करने से हो सकते हैं, लाइसेंस की लागत और एक-डाई मशीन विकसित करने की लागत अभी भी अलग-अलग उपकरणों से अधिक है। इन कमियों को कम विनिर्माण और एकत्रण लागत और बहुत कम बिजली बजट द्वारा उपयुक्त लाइसेंस के साथ ऑफसेट किया जाता है, क्योंकि घटकों के बीच सिग्नल ऑन-डाई रखे जाते हैं, जिसमें बहुत कम बिजली की आवश्यकता होती है (पैकेजिंग देखें)।[93] इसके अलावा, संकेत स्रोत और गंतव्य भौतिक रूप से डाई के करीब होते हैं, जो तारों की लंबाई, और इसलिए विलंबता, हस्तांतरण सामर्थ्य लागत और एक ही चिप पर मॉड्यूलों के बीच संचार से अपशिष्ट ऊष्मा को कम करते हैं। इसने तथाकथित नेटवर्क-ऑन-चिप (एनओसी) उपकरणों की खोज का नेतृत्व किया है, जो पारंपरिक बस निर्माणकला के विपरीत अंकीय संचार नेटवर्क के लिए सिस्टम-ऑन-चिप रचना पद्धति को प्रयुक्त करते हैं।

एक त्रि-आयामी एकीकृत परिपथ में सक्रिय इलेक्ट्रॉनिक घटकों की दो या दो से अधिक परतें होती हैं जो एक एकल परिपथ में लंबवत और क्षैतिज रूप से एकीकृत होती हैं। परतों के बीच संचार ऑन-डाई संकेतन का उपयोग करता है, इसलिए बिजली की खपत समकक्ष अन्य परिपथों की तुलना में बहुत कम होती है। छोटे ऊर्ध्वाधर तारों का विवेकपूर्ण उपयोग तेजी से संचालन के लिए समग्र तार की लंबाई को काफी हद तक कम कर सकता है।[94]

सिलिकॉन लेबलिंग और भित्तिचित्र

अधिकांश सिलिकॉन चिपों के एक कोने में एक क्रम संख्या होती है, जो उत्पादन के दौरान उनकी पहचान करने के काम आती है। कुछ निर्माता इसमें अपना प्रतीक चिन्ह लगा देते हैं। जब से IC का निर्माण हुआ है, कुछ चिप निर्माताओं ने गुप्त, गैर-कार्यात्मक छवियों या शब्दों के लिए सिलिकॉन सतह वाले क्षेत्र का उपयोग किया है। इन्हें कभी-कभी चिप कला, सिलिकॉन कला, सिलिकॉन भित्तिचित्र या सिलिकॉन डूडलिंग के रूप में जाना जाता है।

IC और IC परिवार

  • 555 टाइमर IC
  • परिचालन प्रवर्धक
  • 7400-श्रृंखला एकीकृत परिपथ
  • 4000-श्रृंखला एकीकृत परिपथ, 7400 श्रृंखला के लिए सीमॉस समकक्ष (यह भी देखें: HCMOS)
  • इंटेल 4004, जिसे सामान्यतः व्यावसायिक रूप से उपलब्ध पहला माइक्रोप्रोसेसर माना जाता है, जिसके कारण प्रसिद्ध 8080 सीपीयू (CPU) और फिर आईबीएम (IBM) के व्यक्तिगत कंप्यूटर 8088, 80286 और 486 आदिका विकास हुआ।
  • मॉस तकनीक 6502 और ज़ीलॉग Z80 माइक्रोप्रोसेसर, जिनका उपयोग 1980 के दशक की शुरुआत में कई घरेलू कंप्यूटरों में किया गया था
  • कंप्यूटर से संबंधित चिपों की मोटोरोला 6800 श्रृंखला, और इसके विकास के साथ 68000 और 88000 श्रृंखला (कुछ एप्पल कंप्यूटरों में और 1980 के दशक में कमोडोर अमीगा श्रृंखला में प्रयुक्त)
  • अनुरूप एकीकृत परिपथों की एलएम-श्रृंखला|

यह भी देखें

  • चिपसेट
  • चिप और विज्ञान अधिनियम
  • एकीकृत इंजेक्शन तर्क
  • आयन आरोपण
  • माइक्रोइलेक्ट्रॉनिक्स
  • अखंड माइक्रोवेव एकीकृत परिपथ
  • बहु-द्वार सीमॉस
  • सिलिकॉन-जर्मेनियम*
  • साउंड चिप
  • स्पाइस (SPICE)
  • चिप वाहक
  • डार्क सिलिकॉन
  • एकीकृत निष्क्रिय उपकरण
  • उच्च तापमान परिचालन जीवनकाल
  • एकीकृत परिपथ के लिए ऊष्मीय सिमुलेशन
  • एकीकृत परिपथों में ऊष्मा उत्पन्न करना

संदर्भ

  1. "Integrated circuit (IC)". JEDEC.
  2. Wylie, Andrew (2009). "The first monolithic integrated circuits". Retrieved 14 March 2011. Nowadays when people say 'integrated circuit' they usually mean a monolithic IC, where the entire circuit is constructed in a single piece of silicon.
  3. Horowitz, Paul; Hill, Winfield (1989). The Art of Electronics (2nd ed.). Cambridge University Press. p. 61. ISBN 978-0-521-37095-0. Integrated circuits, which have largely replaced circuits constructed from discrete transistors, are themselves merely arrays of transistors and other components built from a single chip of semiconductor material.
  4. 4.0 4.1 "Who Invented the IC?". @CHM Blog. Computer History Museum. 20 August 2014.
  5. "Integrated circuits help Invention". Integratedcircuithelp.com. Retrieved 2012-08-13.
  6. DE 833366  W. Jacobi/SIEMENS AG: "Halbleiterverstärker" priority filing on 14 April 1949, published on 15 May 1952.
  7. "The Hapless Tale of Geoffrey Dummer" Archived 11 May 2013 at the Wayback Machine (n.d.) (HTML), Electronic Product News, accessed 8 July 2008.
  8. Saxena, Arjum (2009). Invention of Integrated Circuits: Untold Important Facts. World Scientific. pp. 95–103.
  9. 9.0 9.1 9.2 Rostky, George. "Micromodules: the ultimate package". EE Times. Archived from the original on 2010-01-07. Retrieved 2018-04-23.
  10. "The RCA Micromodule". Vintage Computer Chip Collectibles, Memorabilia & Jewelry. Retrieved 2018-04-23.
  11. Dummer, G.W.A.; Robertson, J. Mackenzie (2014-05-16). American Microelectronics Data Annual 1964–65. Elsevier. pp. 392–397, 405–406. ISBN 978-1-4831-8549-1.
  12. The Chip that Jack Built, (c. 2008), (HTML), Texas Instruments, Retrieved 29 May 2008.
  13. Kilby, Jack S. "Miniaturized Electronic Circuits", U.S. Patent 3,138,743, filed 6 February 1959, issued 23 June 1964.
  14. Winston, Brian (1998). Media Technology and Society: A History: From the Telegraph to the Internet. Routledge. p. 221. ISBN 978-0-415-14230-4.
  15. "Texas Instruments – 1961 First IC-based computer". Ti.com. Retrieved 2012-08-13.
  16. "The Nobel Prize in Physics 2000", nobelprize.org (10 October 2000)
  17. 17.0 17.1 Saxena, Arjun N. (2009). Invention of Integrated Circuits: Untold Important Facts. World Scientific. p. 140. ISBN 9789812814456.
  18. 18.0 18.1 18.2 18.3 "Integrated circuits". NASA. Retrieved 13 August 2019.
  19. 19.0 19.1 "1959: Practical Monolithic Integrated Circuit Concept Patented". Computer History Museum. Retrieved 13 August 2019.
  20. Hall, Eldon C. (1996). "Journey to the Moon: The History of the Apollo Guidance Computer". American Institute of Aeronautics and Astronautics. pp. 18–19. ISBN 9781563471858
  21. "Computer Pioneers – James L. Buie". IEEE Computer Society. Retrieved 25 May 2020.
  22. 22.0 22.1 केन शिरिफ। टेक्सास इंस्ट्रूमेंट्स टीएमएक्स 1795: (लगभग) पहले, भूल गए माइक्रोप्रोसेसर। 2015.
  23. Kuo, Yue (1 January 2013). "Thin Film Transistor Technology—Past, Present, and Future" (PDF). The Electrochemical Society Interface. 22 (1): 55–61. Bibcode:2013ECSIn..22a..55K. doi:10.1149/2.F06131if.
  24. "1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated". Computer History Museum.
  25. 25.0 25.1 Laws, David (4 December 2013). "Who Invented the Transistor?". Computer History Museum.
  26. Bassett, Ross Knox (2002). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. pp. 53–4. ISBN 978-0-8018-6809-2.
  27. Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. pp. 22–25. ISBN 9780801886393.
  28. "Milestones:First Semiconductor Integrated Circuit (IC), 1958". IEEE Global History Network. IEEE. Retrieved 3 August 2011.
  29. "Milestones:List of IEEE Milestones – Engineering and Technology History Wiki". ethw.org. 9 December 2020.
  30. 30.0 30.1 30.2 30.3 "Tortoise of Transistors Wins the Race – CHM Revolution". Computer History Museum. Retrieved 22 July 2019.
  31. 31.0 31.1 "1964 – First Commercial MOS IC Introduced". Computer History Museum.
  32. 32.0 32.1 32.2 32.3 Shirriff, Ken (30 August 2016). "The Surprising Story of the First Microprocessors". IEEE Spectrum. Institute of Electrical and Electronics Engineers. 53 (9): 48–54. doi:10.1109/MSPEC.2016.7551353. S2CID 32003640.
  33. "1968: Silicon Gate Technology Developed for ICs". Computer History Museum. Retrieved 22 July 2019.
  34. "1968: Silicon Gate Technology Developed for ICs". The Silicon Engine. Computer History Museum. Retrieved 13 October 2019.
  35. Hittinger, William C. (1973). "Metal–Oxide–Semiconductor Technology". Scientific American. 229 (2): 48–59. Bibcode:1973SciAm.229b..48H. doi:10.1038/scientificamerican0873-48. JSTOR 24923169.
  36. 36.0 36.1 "Inside Pascal: NVIDIA's Newest Computing Platform". 2016-04-05.. 15,300,000,000 transistors in 610 mm2.
  37. "International Roadmap for Devices and Systems" (PDF). IEEE. 2016.
  38. The Nobel Prize in Physics 2009, Nobel Foundation, 2009-10-06, retrieved 2009-10-06.
  39. Fujita, H. (1997). A decade of MEMS and its future. Tenth Annual International Workshop on Micro Electro Mechanical Systems. doi:10.1109/MEMSYS.1997.581729.
  40. Narasimha, A.; et al. (2008). "A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 µm CMOS silicon-on-insulator technology". Proceedings of the Optical Fiber Communication Conference (OFC): OMK7.
  41. Birkholz, M.; Mai, A.; Wenger, C.; Meliani, C.; Scholz, R. (2016). "Technology modules from micro- and nano-electronics for the life sciences". WIREs Nanomed. Nanobiotech. 8 (3): 355–377. doi:10.1002/wnan.1367. PMID 26391194.
  42. Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John (2011). "Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors". Sensors. 11 (5): 4943–4971. Bibcode:2011Senso..11.4943G. doi:10.3390/s110504943. PMC 3231360. PMID 22163884.
  43. Or-Bach, Zvi (December 23, 2013). "Why SOI is the Future Technology of Semiconductors". semimd.com Archived 29 November 2014 at the Wayback Machine. 2013.
  44. "Samsung’s Eight-Stack Flash Shows up in Apple’s iPhone 4". sst.semiconductor-digest.com. September 13, 2010.
  45. Yamatake Corporation (2002). "Spherical semiconductor radio temperature sensor". Nature Interface. 7: 58–59. Archived from the original on 7 January 2009.
  46. Takeda, Nobuo, MEMS applications of Ball Semiconductor Technology (PDF), archived from the original (PDF) on 2015-01-01
  47. "Advanced Packaging".
  48. "2.5D". Semiconductor Engineering.
  49. "3D ICs". Semiconductor Engineering.
  50. Wikichip (2018) Chiplet. wikichip.org cites IEDM 2017, Dr. Lisa Su accessdate=2019-05-26
  51. "To Keep Pace With Moore's Law, Chipmakers Turn to 'Chiplets'". Wired. 11 June 2018.
  52. Schodt, Christopher (April 16, 2019) Upscaled: This is the year of the CPU ‘chiplet’. End Gadget
  53. LaPedus, Mark (16 April 2015). "FinFET Rollout Slower Than Expected". Semiconductor Engineering.
  54. Basu, Joydeep (2019-10-09). "From Design to Tape-out in SCL 180 nm CMOS Integrated Circuit Fabrication Technology". IETE Journal of Education. 60 (2): 51–64. arXiv:1908.10674. doi:10.1080/09747338.2019.1657787. S2CID 201657819.
  55. "About the EDA Industry". Electronic Design Automation Consortium. Archived from the original on 2 August 2015. Retrieved 29 July 2015.
  56. Gray, Paul R.; Hurst, Paul J.; Lewis, Stephen H.; Meyer, Robert G. (2009). Analysis and Design of Analog Integrated Circuits. Wiley. ISBN 978-0-470-24599-6.
  57. Rabaey, Jan M.; Chandrakasan, Anantha; Nikolic, Borivoje (2003). Digital Integrated Circuits (2nd ed.). Pearson. ISBN 978-0-13-090996-1.
  58. Baker, Jacob (2008). CMOS: Mixed-Signal Circuit Design. Wiley. ISBN 978-0-470-29026-2.
  59. "Stratix 10 Device Overview" (PDF). Altera. 12 December 2015.
  60. Nathawad, L.; Zargari, M.; Samavati, H.; Mehta, S.; Kheirkhaki, A.; Chen, P.; Gong, K.; Vakili-Amini, B.; Hwang, J.; Chen, M.; Terrovitis, M.; Kaczynski, B.; Limotyrakis, S.; Mack, M.; Gan, H.; Lee, M.; Abdollahi-Alibeik, B.; Baytekin, B.; Onodera, K.; Mendis, S.; Chang, A.; Jen, S.; Su, D.; Wooley, B. "20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN" (PDF). IEEE Entity Web Hosting. IEEE. Retrieved 22 October 2016.
  61. Hsu, Chi-Ping (January 17, 2013). 16nm/14nm FinFETs: Enabling The New Electronics Frontier. Electronic Design
  62. Mead, Carver A.; Conway, Lynn (1980) Introduction to VLSI Systems Reading, Mass.: Addison-Wesley: ISBN 2-201-04358-0
  63. "Hot Work Ultrasonic Bonding – A Method Of Facilitating Metal Flow By Restoration Processes", Proc. 20th IEEE Electronic Components Conf. Washington, D.C., May 1970, pp. 549–556.]
  64. Chafkin, Max; King, Ian (9 June 2016). "How Intel Makes a Chip". Bloomburg Businessweek.
  65. Lapedus, Mark (21 May 2015). "10 nm Fab Watch". Semiconductor Engineering.
  66. "145 series ICs (in Russian)". Retrieved 22 April 2012.
  67. Moammer, Khalid (2016-09-16). "AMD Zen CPU & AM4 Socket Pictured, Launching February 2017 – PGA Design With 1331 Pins Confirmed". Wccftech. Retrieved 2018-05-20.
  68. "Ryzen 5 2500U – AMD – WikiChip". wikichip.org. Retrieved 2018-05-20.
  69. Ung, Gordon Mah (May 30, 2017). "AMD's 'TR4' Threadripper CPU socket is gigantic". PCWorld. Retrieved 2018-05-20.
  70. "Federal Statutory Protection for Mask Works" (PDF). United States Copyright Office. United States Copyright Office. Retrieved 22 October 2016.
  71. "Washington Treaty on Intellectual Property in Respect of Integrated Circuits". www.wipo.int.
  72. On 1 January 1995, the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPs) (Annex 1C to the World Trade Organization (WTO) Agreement), went into force. Part II, section 6 of TRIPs protects semiconductor chip products and was the basis for Presidential Proclamation No. 6780, 23 March 1995, under SCPA § 902(a)(2), extending protection to all present and future WTO members.
  73. Japan was the first country to enact its own version of the SCPA, the Japanese "Act Concerning the Circuit Layout of a Semiconductor Integrated Circuit" of 1985.
  74. In 1986 the EC promulgated a directive requiring its members to adopt national legislation for the protection of semiconductor topographies. Council Directive 1987/54/EEC of 16 December 1986 on the Legal Protection of Topographies of Semiconductor Products, art. 1(1)(b), 1987 O.J. (L 24) 36.
  75. Stern, Richard (1985). "MicroLaw". IEEE Micro. 5 (4): 90–92. doi:10.1109/MM.1985.304489.
  76. Peter Clarke, Intel enters billion-transistor processor era, EE Times, 14 October 2005 Archived 10 May 2013 at the Wayback Machine
  77. Dalmau, M. Les Microprocesseurs. IUT de Bayonne
  78. Bulletin de la Société fribourgeoise des sciences naturelles, Volumes 62 à 63 (in français). 1973.
  79. Safir, Ruben (March 2015). "System on Chip – Integrated Circuits". NYLXS Journal. ISBN 9781312995512.
  80. Mindell, David A. (2008). Digital Apollo: Human and Machine in Spaceflight. The MIT Press. ISBN 978-0-262-13497-2.
  81. Ginzberg, Eli (1976). Economic impact of large public programs: the NASA Experience. Olympus Publishing Company. p. 57. ISBN 978-0-913420-68-3.
  82. 82.0 82.1 82.2 Johnstone, Bob (1999). We were burning: Japanese entrepreneurs and the forging of the electronic age. Basic Books. pp. 47–48. ISBN 978-0-465-09118-8.
  83. Moskowitz, Sanford L. (2016). Advanced Materials Innovation: Managing Global Technology in the 21st century. John Wiley & Sons. pp. 165–167. ISBN 9780470508923.
  84. Boysel, Lee (2007-10-12). "Making Your First Million (and other tips for aspiring entrepreneurs)". U. Mich. EECS Presentation / ECE Recordings.
  85. Kilby, J. S. (2007). "Miniaturized electronic circuits [US Patent No. 3,138, 743]". IEEE Solid-State Circuits Society Newsletter. 12 (2): 44–54. doi:10.1109/N-SSC.2007.4785580.
  86. Hittinger, William C. (1973). "Metal-Oxide-Semiconductor Technology". Scientific American. 229 (2): 48–59. Bibcode:1973SciAm.229b..48H. doi:10.1038/scientificamerican0873-48. JSTOR 24923169.
  87. Kanellos, Michael (January 16, 2002). "Intel's Accidental Revolution". CNET.
  88. O'Donnell, C.F. (1968). "Engineering for systems using large scale integration" (PDF). Afips 1968: 870. doi:10.1109/AFIPS.1968.93.
  89. Clarke, Peter (14 October 2005). "Intel enters billion-transistor processor era". EETimes.com. Retrieved May 23, 2022.
  90. "Samsung First to Mass Produce 16Gb NAND Flash Memory". phys.org. April 30, 2007. Retrieved May 23, 2022.
  91. Meindl, J.D. (1984). "Ultra-large scale integration". IEEE Transactions on Electron Devices. 31 (11): 1555–1561. Bibcode:1984ITED...31.1555M. doi:10.1109/T-ED.1984.21752. S2CID 19237178.
  92. Shanefield, Daniel (1985). "Wafer scale integration". google.com/patents. Retrieved 21 September 2014.
  93. Klaas, Jeff (2000). "System-on-a-chip". google.com/patents. Retrieved 21 September 2014.
  94. Topol, A.W.; Tulipe, D.C.La; Shi, L; et., al (2006). "Three-dimensional integrated circuits". IBM Journal of Research and Development. 50 (4.5): 491–506. doi:10.1147/rd.504.0491. S2CID 18432328.

अग्रिम पठन


बाहरी संबंध