ग्रेडियेंट प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 99: Line 99:
{{main|विद्युत स्थितिज ऊर्जा}}
{{main|विद्युत स्थितिज ऊर्जा}}


इस व्युत्क्रम सिद्धांत की शक्ति को स्पष्ट करने के लिए, हम एक उदाहरण देते हैं जिसके महत्वपूर्ण भौतिकी परिणाम हैं। [[शास्त्रीय विद्युत चुंबकत्व]] में, [[विद्युत बल|विद्युत प्रभाव]] एक पथ-स्वतंत्र प्रभाव है; यानी, एक कण पर किया गया कार्य (भौतिकी) जो [[विद्युत क्षेत्र]] के भीतर अपनी मूल स्थिति में लौट आया है, शून्य है (यह मानते हुए कि कोई बदलता [[चुंबकीय क्षेत्र]] मौजूद नहीं है)।
इस व्युत्क्रम सिद्धांत की अधिकार को स्पष्ट करने के लिए, हम एक उदाहरण देते हैं जिसके महत्वपूर्ण भौतिकी परिणाम हैं। [[शास्त्रीय विद्युत चुंबकत्व]] में, [[विद्युत बल|विद्युत प्रभाव]] एक पथ-स्वतंत्र प्रभाव है, यानी एक [[विद्युत क्षेत्र]] के भीतर अपनी मूल स्थिति में पुनरागमन  कण पर किया गया कार्य (भौतिकी) शून्य है (यह मानते हुए कि कोई परिवर्तित  [[चुंबकीय क्षेत्र]] मौजूद नहीं है)।


इसलिए, उपरोक्त प्रमेय का तात्पर्य है कि विद्युत [[बल क्षेत्र (भौतिकी)|प्रभाव क्षेत्र (भौतिकी)]] {{math|'''F'''<sub>''e''</sub> : ''S'' → '''R'''<sup>3</sup>}} अनुपात  है (इस स्थान पर )। {{mvar|S}} कुछ संवृत सेट है, कनेक्टेड स्पेस#पाथ कनेक्टिविटी|पाथ-कनेक्टेड सबसेट {{math|'''R'''<sup>3</sup>}} जिसमें विद्युत प्रभार वितरण शामिल है)। उपरोक्त प्रमाण के विचारों का अनुसरण करते हुए, हम कुछ संदर्भ बिंदु निर्धारित कर सकते हैं {{math|'''a'''}} में {{mvar|S}}, और एक फ़ंक्शन परिभाषित करें {{math|''U<sub>e</sub>'': ''S'' → '''R'''}} के माध्यम से
इसलिए, उपरोक्त प्रमेय का तात्पर्य है कि विद्युत [[बल क्षेत्र (भौतिकी)|प्रभाव क्षेत्र (भौतिकी)]] {{math|'''F'''<sub>''e''</sub> : ''S'' → '''R'''<sup>3</sup>}} अनुपात  है (इस स्थान पर {{mvar|S}} एवं  {{math|'''R'''<sup>3</sup>}} का अल्प संवृत, पथ-संबंध उपसमुच्चय है जिसमें प्रभार वितरण शामिल है)। उपरोक्त प्रमाण के विचारों का पालन करते हुए, हम {{mvar|S}} में कुछ संदर्भ बिंदु {{math|'''a'''}} सेट कर सकते हैं, और एक फ़ंक्शन {{math|''U<sub>e</sub>'': ''S'' → '''R'''}} को परिभाषित कर सकते हैं 


<math display="block"> U_e(\mathbf{r}) :=  -\int_{\gamma[\mathbf{a},\mathbf{r}]} \mathbf{F}_e(\mathbf{u}) \cdot \mathrm{d}\mathbf{u} </math>
<math display="block"> U_e(\mathbf{r}) :=  -\int_{\gamma[\mathbf{a},\mathbf{r}]} \mathbf{F}_e(\mathbf{u}) \cdot \mathrm{d}\mathbf{u} </math>
उपरोक्त प्रमाण का उपयोग करते हुए, हम जानते हैं {{math|''U''<sub>''e''</sub>}} अच्छी तरह से परिभाषित और भिन्न है, और {{math|1='''F'''<sub>''e''</sub> = −∇''U<sub>e</sub>''}} (इस सूत्र से हम अनुपात  प्रभावों के माध्यम से किए गए कार्य की गणना के लिए प्रसिद्ध सूत्र को सहजता से प्राप्त करने के लिए ग्रेडिएंट प्रमेय का उपयोग कर सकते हैं: {{math|1=''W'' = −Δ''U''}}). यह फ़ंक्शन {{math|''U''<sub>''e''</sub>}} को अक्सर प्रभारों की प्रणाली की विद्युत स्थितिज ऊर्जा के रूप में जाना जाता है {{mvar|S}} (संभाव्यता के शून्य के संदर्भ में {{math|'''a'''}}). अनेक मामलों में, कार्यक्षेत्र {{mvar|S}} को [[बंधा हुआ सेट]] और संदर्भ बिंदु माना जाता है {{math|'''a'''}} को अनंत माना जाता है, जिसे सीमित तकनीकों का उपयोग करके Rigour#Mathematical कठोरता बनाया जा सकता है। यह फ़ंक्शन {{math|''U''<sub>''e''</sub>}} अनेक भौतिक प्रणालियों के विश्लेषण में उपयोग किया जाने वाला एक अनिवार्य उपकरण है।
उपरोक्त प्रमाण का उपयोग करते हुए, हम जानते हैं कि  {{math|''U''<sub>''e''</sub>}} स्पष्ट रूप  से परिभाषित और भिन्न है, और '''F'''<sub>''e''</sub> = −∇''U<sub>e</sub>'' (इस सूत्र से हम अनुपात  प्रभावों {{math|1=''W'' = −Δ''U''}}) के माध्यम से किए गए कार्य की गणना के लिए प्रसिद्ध सूत्र को सहजता से प्राप्त करने के लिए ग्रेडिएंट प्रमेय का उपयोग कर सकते हैं। इस फ़ंक्शन {{math|''U''<sub>''e''</sub>}} को अक्सर {{mvar|S}} में  प्रभारों की प्रणाली की विद्युत संभावित ऊर्जा के रूप में जाना जाता है (शून्य-क्षमता  {{math|'''a'''}} के संदर्भ में)अनेक मामलों में, कार्यक्षेत्र {{mvar|S}} को को  [[बंधा हुआ सेट|असीमित सेट]] माना जाता है और संदर्भ बिंदु {{math|'''a'''}} को "अनंत" माना जाता है, जिसे सीमित तकनीकों का उपयोग करके दृढ़ बनाया जा सकता है। यह फ़ंक्शन {{math|''U''<sub>''e''</sub>}} अनेक भौतिक प्रणालियों के विश्लेषण में उपयोग किया जाने वाला एक अनिवार्य उपकरण है।


==सामान्यीकरण==
==सामान्यीकरण==
{{main|Stokes' theorem|Closed and exact differential forms}}
{{main|स्टोक्स प्रमेय|विवृत और सटीक विभेदक रूप}}


संवाहक  गणना के अनेक  महत्वपूर्ण प्रमेय डिफरेंशियल फॉर्म#इंटीग्रेशन ऑन [[विभेदक अनेक गुना]] के बारे में बयानों को सुरुचिपूर्ण ढंग से सामान्यीकृत करते हैं। [[विभेदक रूप]]ों और बाह्य व्युत्पन्नों की भाषा में, ग्रेडिएंट प्रमेय यह बताता है
संवाहक  गणना के अनेक  महत्वपूर्ण प्रमेय [[विभेदक अनेक गुना|विभेदक रूप एकीकरण]] पर अंतर रूपों के एकीकरण के बारे में कथनों को सुरुचिपूर्ण रूप  से सामान्यीकृत करते हैं। [[विभेदक रूप]] और बाह्य व्युत्पन्नों की भाषा में, ग्रेडिएंट प्रमेय यह बताता है।


<math display="block"> \int_{\partial \gamma} \phi = \int_{\gamma} \mathrm{d}\phi</math>
<math display="block"> \int_{\partial \gamma} \phi = \int_{\gamma} \mathrm{d}\phi</math>
किसी भी विभेदक रूप के लिए|0-रूप, {{mvar|ϕ}}, कुछ भिन्न वक्र पर परिभाषित {{math|''γ'' ⊂ '''R'''<sup>''n''</sup>}} (इस स्थान पर  का अभिन्न अंग है {{math|''ϕ''}} की सीमा के पार {{mvar|γ}} का मूल्यांकन समझा जाता है {{math|''ϕ''}} γ के अंतिम बिंदु पर)।
किसी भी 0-रूप के लिए, {{mvar|ϕ}} कुछ भिन्न वक्र {{math|''γ'' ⊂ '''R'''<sup>''n''</sup>}} पर परिभाषित किया गया है (इस स्थान पर  {{mvar|γ}}  की सीमा पर  {{math|''ϕ''}} के अभिन्न अंग को  {{mvar|γ}} के अंतिम बिंदुओं पर  {{math|''ϕ''}} के मूल्यांकन के रूप में समझा जाता है)।


इस कथन और सामान्यीकृत स्टोक्स प्रमेय के बीच हड़ताली समानता पर ध्यान दें। सामान्यीकृत स्टोक्स प्रमेय, जो कहता है कि किसी भी [[कॉम्पैक्ट समर्थन]] अंतर रूप का अभिन्न अंग {{mvar|ω}} कुछ ओरिएंटेशन (संवाहक  स्पेस) की [[सीमा (टोपोलॉजी)]] पर अनेक  गुना {{math|Ω}} इसके बाहरी व्युत्पन्न के अभिन्न अंग के सामान है {{math|d''ω''}} संपूर्ण के उपर्युक्त {{math|Ω}}, अर्थात।,
इस कथन और सामान्यीकृत स्टोक्स प्रमेय के बीच विचित्र समानता पर ध्यान दें। सामान्यीकृत स्टोक्स प्रमेय, जो कहता है कि कुछ उन्मुख  विविध  की  [[सीमा (टोपोलॉजी)]] पर किसी भी   [[कॉम्पैक्ट समर्थन|सुगठित रूप से समर्थित]] अंतर रूप   {{mvar|ω}} का अभिन्न अंग संपूर्ण {{math|Ω}} पर इसके बाह्य व्युत्पन्न {{math|d''ω''}} के अभिन्न अंग के समरूप है, अर्थात:


<math display="block">\int_{\partial \Omega}\omega=\int_{\Omega}\mathrm{d}\omega</math>
<math display="block">\int_{\partial \Omega}\omega=\int_{\Omega}\mathrm{d}\omega</math>

Revision as of 00:16, 10 July 2023

ग्रेडिएंट प्रमेय, जिसे रेखा संपूर्ण के लिए गणना के मौलिक प्रमेय के रूप में भी जाना जाता है, ग्रेडिएंट प्रमेय का कहना है कि अनुपात संवाहक क्षेत्र के माध्यम से एक संपूर्ण रेखा का मूल्यांकन वक्र के अंतिम बिंदुओं पर मूल अदिश क्षेत्र का मूल्यांकन करके किया जा सकता है। प्रमेय मात्र वास्तविक रेखा के बजाय किसी समतल या अंतराल (आम तौर पर एन-आयामी) में किसी भी वक्र के लिए कलन के मौलिक प्रमेय का सामान्यीकरण है।

φ : URnR को एक अवकलनीय फलन के रूप में और γ को U में किसी सतत वक्र के रूप में, जो एक बिंदु p से शुरू होता है और एक बिंदु q पर समाप्त होता है, तब

कहाँ φ एवं φ के ग्रेडिएंट संवाहक क्षेत्र को दिखाता है

ग्रेडिएंट प्रमेय का तात्पर्य है कि ग्रेडिएंट क्षेत्र के माध्यम से रेखा संपूर्ण पथ स्वतंत्र हैं। भौतिकी में यह प्रमेय एक अनुपात प्रभाव को परिभाषित करने के तरीकों में से एक है। φ को संभावित के रूप में रखने से ∇φ एक अनुपात क्षेत्र है। अनुपात प्रभावों के माध्यम से किया गया कार्य (भौतिकी) उद्देश्य के माध्यम से अपनाए गए पथ पर निर्भर नहीं करता है, प्रभाव्कि केवल अंतिम बिंदुओं पर निर्भर करता है, जैसा कि उपरोक्त समीकरण से पता चलता है।

ग्रेडिएंट प्रमेय का एक दिलचस्प व्युत्क्रम भी है: किसी भी पथ-स्वतंत्र संवाहक क्षेत्र को अदिश क्षेत्र के ग्रेडिएंट के रूप में व्यक्त किया जा सकता है। ग्रेडिएंट प्रमेय की तरह ही इस परिवर्तन के स्पष्ट और व्यावहारिक गणित दोनों में अनेक आश्चर्यजनक परिणाम और अनुप्रयोग हैं।

प्रमाण

यदि φ पूर्णतया संवृत उपसमुच्चय URn से R तक एक भिन्न कार्य है, और r अल्प विवृत अंतराल (गणित) [a, b] से U तक एक भिन्न कार्य है (ध्यान दें कि r अंतराल समापन बिंदु a और b पर भिन्न है। ऐसा करने के लिए, r को एक ऐसे अंतराल पर परिभाषित किया जाता है, जो इससे बृहत्तर होता है और इसमें [a, b] शामिल होता है।), ततपश्चात् बहुभिन्न रूपी श्रृंखला नियम के माध्यम से समग्र फ़ंक्शन φ ∘ r [a, b] पर भिन्न होता है:

[a, b] में समस्त t के लिए यहां सामान्य आंतरिक परिणाम को दर्शाया गया है।

अब मान लीजिए कि φ के कार्यक्षेत्र U में अंतिम बिंदु p और q के साथ अवकलनीय वक्र γ शामिल है। (यह p को q की दिशा में उन्मुख है)। यदि r [a, b] में t के लिए γ को प्राचलीकरण (ज्यामिति) करता है (यानी, r, t के एक फलन के रूप में γ को दर्शाता है), तब

जहाँ एक रेखा समाकलन की परिभाषा का उपयोग प्रथम समानता में किया जाता है, उपरोक्त समीकरण का उपयोग द्वितीय समानता में किया जाता है, और गणना के द्वितीय मौलिक प्रमेय के भाग का उपयोग तृतीय समानता में किया जाता है।[1]


यद्यपि ग्रेडिएंट प्रमेय (जिसे रेखा संपूर्ण के लिए गणना का मौलिक प्रमेय भी कहा जाता है) को अब तक एक विभेदक (इसलिए सहज दिखता है) वक्र के लिए सिद्ध किया गया है, प्रमेय एक खंड अनुसार सहज वक्र के लिए भी सिद्ध किया गया है क्योंकि यह वक्र जुड़कर बना है एकाधिक अवकलनीय वक्र इसलिए इस वक्र का प्रमाण प्रति अवकलनीय वक्र घटक के प्रमाण के माध्यम से बनाया जाता है।[2]

उदाहरण

उदाहरण 1

मान लीजिए γR2 (5, 0) से (−4, 3) तक वामावर्त दिशा में उन्मुख गोलाकार चाप है। एक रेखा समाकलन की परिभाषा का उपयोग करते हुए

इस परिणाम को फ़ंक्शन पर ध्यान देकर और अधिक सरलता से प्राप्त किया जा सकता है ढाल है , तो ग्रेडियेंट प्रमेय के माध्यम से : इस परिणाम को और अधिक सरलता से यह देखकर प्राप्त किया जा सकता है कि फ़ंक्शन में प्रवणता है, इसलिए ग्रेडिएंट प्रमेय के माध्यम से:


उदाहरण 2

अधिक सारगर्भित उदाहरण के लिए, मान लीजिए कि γRn में अंतिम बिंदु p, q, है, जिसका अभिविन्यास p को q की ओर है। Rn में आपके लिए, |u| u के यूक्लिडियन मानदंड को निरूपित करें। यदि α ≥ 1 एक वास्तविक संख्या है, तो

यहां अंतिम समानता ग्रेडिएंट प्रमेय के के माध्यम से होती है क्योंकि फ़ंक्शन f(x) = |x|α+1 एवं Rn पर अवकलनीय है यदि α ≥ 1 है।

यदि α < 1 है तो अधिकांश मामलों में यह समानता अभी भी स्थिर रहेगी, लेकिन यदि γ मूल बिंदु से होकर गुजरता है या परिवृत्त करता है तो सावधानी बरतनी चाहिए, क्योंकि एकीकृत संवाहक क्षेत्र |x|α − 1x वहां परिभाषित होने में विफल रहेगा। हालाँकि, मामला α = −1 कुछ प्रथक है, इस मामले में एकीकृत बन जाता है |x|−2x = ∇(log |x|) जिससे कि अंतिम समानता log |q| − log |p| बन जाती है।

ध्यान दें कि यदि n = 1 है, तो यह उदाहरण एकल-चर गणना से परिचित घात नियम का एक छोटा सा संस्करण है।

उदाहरण 3

मान लीजिए कि त्रि-आयामी अंतराल में n बिंदु प्रभार व्यवस्थित हैं और i बिंदु प्रभार में Qi प्रभार है और R3 में स्थिति pi पर स्थित है। हम R3 में बिंदु a से बिंदु b तक संचारण करते समय प्रभार q के एक कण पर किए गए कार्य (भौतिकी) की गणना करना चाहेंगे। कूलम्ब के नियम का उपयोग करके हम सहजता से यह निर्धारित कर सकते हैं कि स्थिति r पर कण पर प्रभाव कितना होगा

इस स्थान पर |u| R3 और k = 1/(4πε0) में संवाहक u के यूक्लिडियन मानदंड को दर्शाता है जिस स्थान पर ε0 निर्वात पारगम्यता है।

मान लीजिए γR3 − {p1, ..., pn, a से b तक एक मनमाना अवकलनीय वक्र है। तब कण पर किया गया कार्य है

अब प्रत्येक i के लिए प्रत्यक्ष गणना यह दर्शाती है

इस प्रकार, उपर्युक्त से निरंतर रखते हुए और ग्रेडिएंट प्रमेय का उपयोग करते हुए,

यह संपूर्ण हो गया है। निःसंदेह, हम विद्युत क्षमता या विद्युत संभावित ऊर्जा (परिचित सूत्रों W = −ΔU = −qΔV के साथ) की शक्तिशाली भाषा (परिचित सूत्रों के साथ) का उपयोग करके इस गणना को सहजता से पूरा कर सकते थे। हालाँकि, हमने अभी तक संभावित या स्थितिज ऊर्जा को परिभाषित नहीं किया है, क्योंकि ग्रेडिएंट प्रमेय के व्युत्क्रम को यह साबित करने की आवश्यकता है कि ये कुशलता पूर्वक से परिभाषित, भिन्न कार्य हैं और ये सूत्र मान्य हैं ( उदाहरण के लिए नीचे देखें)।। इस प्रकार, हमने मात्र कूलम्ब के नियम, कार्य की परिभाषा और ग्रेडिएंट प्रमेय का उपयोग करके इस समस्या को हल किया है।

ग्रेडिएंट प्रमेय का व्युत्क्रम

ग्रेडिएंट प्रमेय बताता है कि यदि संवाहक क्षेत्र F कुछ अदिश -मान फ़ंक्शन का ग्रेडिएंट है (यानी, यदि F अपरिवर्तनवादी संवाहक क्षेत्र है), तो F एक पथ-स्वतंत्र संवाहक क्षेत्र है (यानी, विभेदक वक्र पर F का अभिन्न अंग का अभिन्न अंग) मात्र अंतिम बिंदुओं पर निर्भर होते हैं)। इस प्रमेय का एक शक्तिशाली व्युत्क्रम है:

Theorem — प्रमेय - यदि F एक पथ-स्वतंत्र संवाहक क्षेत्र है, तो F कुछ आदिश-मान वाले फलन का प्रवणता है।

यह दिखाना सहज है कि एक संवाहक क्षेत्र पथ-स्वतंत्र है यदि और मात्र तभी जब उसके कार्यक्षेत्र में प्रत्येक विवृत परिपथ पर संवाहक क्षेत्र का अभिन्न अंग शून्य हो। इस प्रकार व्युत्क्रम को वैकल्पिक रूप से इस प्रकार कहा जा सकता है: यदि F के अधिकार क्षेत्र में प्रत्येक विवृत परिपथ पर F का अभिन्न अंग शून्य है, तो F कुछ अदिश-मान वाले फ़ंक्शन का प्रवणता है।

व्युत्क्रम का प्रमाण

मान लीजिए U , Rn का एक संवृत पथ-सम्बद्ध हुआ उपसमुच्चय है, और F : URn एक सतत और पथ-स्वतंत्र संवाहक क्षेत्र है। U के कुछ अवयव a को ठीक करें और f : UR को परिभाषित करें

इस स्थान पर γ[a, x] एवं U में कोई (विभेदनीय) वक्र है जो a से शुरू होता है और x.पर समाप्त होता है। हम जानते हैं कि F स्पष्ट परिभाषित है, क्योंकि F पथ-स्वतंत्र है।


मान लीजिए कि Rn में v कोई शून्येतर सदिश नहीं है। दिशात्मक व्युत्पन्न की परिभाषा के अनुसार,

अंतिम सीमा के भीतर अभिन्न की गणना करने के लिए, हमें γ[x, x + tv] को प्राचलीकरण (ज्यामिति) करना होगा। चूँकि F पथ-स्वतंत्र है, U संवृत है, और t शून्य के समीप हो रहा है, हम मान सकते हैं कि यह पथ एक सीधी रेखा है, और इसे 0 < s < t. के लिए u(s) = x + sv के रूप में प्राचलीकरण करें। अब, चूँकि u'(s) = v सीमा बन जाती है
जिस स्थान पर प्रथम समानता इस तथ्य के साथ व्युत्पन्न की परिभाषा से है कि अभिन्न t = 0 पर 0 के सामान है, और दूसरी समानता कलन के पहले मौलिक प्रमेय से है। इस प्रकार हमारे पास vf, के लिए एक सूत्र है, (दिशात्मक व्युत्पन्न का प्रतिनिधित्व करने के तरीकों में से एक) जहां v मनमाना है;

के लिए (ऊपर इसकी पूरी परिभाषा देखें), v के संबंध में इसका दिशात्मक व्युत्पन्न है

एक अदिश फलन f के ग्रेडिएंट की परिभाषा के अनुसार, f, , इस प्रकार हमें एक अदिश-मान फलन f प्राप्त हुआ है जिसका ग्रेडिएंट पथ-स्वतंत्र संवाहक क्षेत्र F है (यानी, F एक अनुपात संवाहक क्षेत्र है।), जैसा कि वांछित है।[3]

व्युत्क्रम सिद्धांत का उदाहरण

इस व्युत्क्रम सिद्धांत की अधिकार को स्पष्ट करने के लिए, हम एक उदाहरण देते हैं जिसके महत्वपूर्ण भौतिकी परिणाम हैं। शास्त्रीय विद्युत चुंबकत्व में, विद्युत प्रभाव एक पथ-स्वतंत्र प्रभाव है, यानी एक विद्युत क्षेत्र के भीतर अपनी मूल स्थिति में पुनरागमन कण पर किया गया कार्य (भौतिकी) शून्य है (यह मानते हुए कि कोई परिवर्तित चुंबकीय क्षेत्र मौजूद नहीं है)।

इसलिए, उपरोक्त प्रमेय का तात्पर्य है कि विद्युत प्रभाव क्षेत्र (भौतिकी) Fe : SR3 अनुपात है (इस स्थान पर S एवं R3 का अल्प संवृत, पथ-संबंध उपसमुच्चय है जिसमें प्रभार वितरण शामिल है)। उपरोक्त प्रमाण के विचारों का पालन करते हुए, हम S में कुछ संदर्भ बिंदु a सेट कर सकते हैं, और एक फ़ंक्शन Ue: SR को परिभाषित कर सकते हैं

उपरोक्त प्रमाण का उपयोग करते हुए, हम जानते हैं कि Ue स्पष्ट रूप से परिभाषित और भिन्न है, और Fe = −∇Ue (इस सूत्र से हम अनुपात प्रभावों W = −ΔU) के माध्यम से किए गए कार्य की गणना के लिए प्रसिद्ध सूत्र को सहजता से प्राप्त करने के लिए ग्रेडिएंट प्रमेय का उपयोग कर सकते हैं। इस फ़ंक्शन Ue को अक्सर S में प्रभारों की प्रणाली की विद्युत संभावित ऊर्जा के रूप में जाना जाता है (शून्य-क्षमता a के संदर्भ में)। अनेक मामलों में, कार्यक्षेत्र S को को असीमित सेट माना जाता है और संदर्भ बिंदु a को "अनंत" माना जाता है, जिसे सीमित तकनीकों का उपयोग करके दृढ़ बनाया जा सकता है। यह फ़ंक्शन Ue अनेक भौतिक प्रणालियों के विश्लेषण में उपयोग किया जाने वाला एक अनिवार्य उपकरण है।

सामान्यीकरण

संवाहक गणना के अनेक महत्वपूर्ण प्रमेय विभेदक रूप एकीकरण पर अंतर रूपों के एकीकरण के बारे में कथनों को सुरुचिपूर्ण रूप से सामान्यीकृत करते हैं। विभेदक रूप और बाह्य व्युत्पन्नों की भाषा में, ग्रेडिएंट प्रमेय यह बताता है।

किसी भी 0-रूप के लिए, ϕ कुछ भिन्न वक्र γRn पर परिभाषित किया गया है (इस स्थान पर γ की सीमा पर ϕ के अभिन्न अंग को γ के अंतिम बिंदुओं पर ϕ के मूल्यांकन के रूप में समझा जाता है)।

इस कथन और सामान्यीकृत स्टोक्स प्रमेय के बीच विचित्र समानता पर ध्यान दें। सामान्यीकृत स्टोक्स प्रमेय, जो कहता है कि कुछ उन्मुख विविध की सीमा (टोपोलॉजी) पर किसी भी सुगठित रूप से समर्थित अंतर रूप ω का अभिन्न अंग संपूर्ण Ω पर इसके बाह्य व्युत्पन्न dω के अभिन्न अंग के समरूप है, अर्थात:

यह शक्तिशाली कथन एक-आयामी मैनिफोल्ड्स पर परिभाषित 1-रूपों से लेकर मनमाने आयामों के मैनिफोल्ड्स पर परिभाषित विभेदक रूपों तक ग्रेडिएंट प्रमेय का सामान्यीकरण है।

ग्रेडिएंट प्रमेय के व्युत्क्रम कथन में अनेक गुना अंतर रूपों के संदर्भ में एक शक्तिशाली सामान्यीकरण भी है। विशेष रूप से, मान लीजिए ω एक संविदात्मक स्थान पर परिभाषित एक रूप है, और का अभिन्न अंग है ω किसी भी विवृत मैनिफोल्ड पर शून्य है। ततपश्चात् एक रूप मौजूद है ψ ऐसा है कि ω = dψ. इस प्रकार, एक अनुबंध योग्य कार्यक्षेत्र पर, प्रत्येक विवृत और सटीक अंतर रूप फॉर्म विवृत और सटीक अंतर रूप होता है। इस परिणाम को विवृत और सटीक अंतर रूपों#पोंकारे लेम्मा|पोंकारे लेम्मा के माध्यम से संक्षेपित किया गया है।

यह भी देखें

संदर्भ

  1. Williamson, Richard and Trotter, Hale. (2004). Multivariable Mathematics, Fourth Edition, p. 374. Pearson Education, Inc.
  2. Stewart, James (2015). "16.3 The Fundamental Theorem for Line Integrals". गणना (in English) (8th ed.). Cengage Learning. pp. 1127–1128. ISBN 978-1-285-74062-1.
  3. Cite error: Invalid <ref> tag; no text was provided for refs named wt