ग्रेडियेंट प्रमेय: Difference between revisions
No edit summary |
m (11 revisions imported from alpha:ग्रेडियेंट_प्रमेय) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
{{Calculus|संवाहक }} | {{Calculus|संवाहक }} | ||
ग्रेडिएंट प्रमेय, जिसे [[लाइन इंटीग्रल|रेखा संपूर्ण]] के लिए गणना के मौलिक प्रमेय के रूप में भी जाना जाता है। ग्रेडिएंट प्रमेय का कहना है, कि [[रूढ़िवादी वेक्टर क्षेत्र|अनुपात सदिश क्षेत्र]] के माध्यम से संपूर्ण रेखा का मूल्यांकन वक्र के अंतिम बिंदुओं पर मूल अदिश क्षेत्र का मूल्यांकन करके प्राप्त किया जा सकता है। प्रमेय मात्र वास्तविक रेखा के अतिरिक्त किसी समतल या अंतराल (सामान्यतः ''n''-आयामी) में किसी भी वक्र के लिए कलन के मौलिक प्रमेय का सामान्यीकरण है। | '''ग्रेडिएंट प्रमेय''', जिसे [[लाइन इंटीग्रल|रेखा संपूर्ण]] के लिए गणना के मौलिक प्रमेय के रूप में भी जाना जाता है। ग्रेडिएंट प्रमेय का कहना है, कि [[रूढ़िवादी वेक्टर क्षेत्र|अनुपात सदिश क्षेत्र]] के माध्यम से संपूर्ण रेखा का मूल्यांकन वक्र के अंतिम बिंदुओं पर मूल अदिश क्षेत्र का मूल्यांकन करके प्राप्त किया जा सकता है। प्रमेय मात्र वास्तविक रेखा के अतिरिक्त किसी समतल या अंतराल (सामान्यतः ''n''-आयामी) में किसी भी वक्र के लिए कलन के मौलिक प्रमेय का सामान्यीकरण है। | ||
{{math|''φ'' : ''U'' ⊆ '''R'''<sup>''n''</sup> → '''R'''}} को एक अवकलनीय फलन के रूप में और {{mvar|γ}} को {{math|''U''}} में किसी सतत वक्र के रूप में, जो एक बिंदु {{math|'''p'''}} से प्रारंभ होता है और एक बिंदु {{math|'''q'''}} पर समाप्त होता है, तब<math display="block"> \int_{\gamma} \nabla\varphi(\mathbf{r})\cdot \mathrm{d}\mathbf{r} = \varphi\left(\mathbf{q}\right) - \varphi\left(\mathbf{p}\right)</math> | {{math|''φ'' : ''U'' ⊆ '''R'''<sup>''n''</sup> → '''R'''}} को एक अवकलनीय फलन के रूप में और {{mvar|γ}} को {{math|''U''}} में किसी सतत वक्र के रूप में, जो एक बिंदु {{math|'''p'''}} से प्रारंभ होता है और एक बिंदु {{math|'''q'''}} पर समाप्त होता है, तब<math display="block"> \int_{\gamma} \nabla\varphi(\mathbf{r})\cdot \mathrm{d}\mathbf{r} = \varphi\left(\mathbf{q}\right) - \varphi\left(\mathbf{p}\right)</math> | ||
Line 134: | Line 134: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 03/07/2023]] | [[Category:Created On 03/07/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 07:02, 8 October 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
ग्रेडिएंट प्रमेय, जिसे रेखा संपूर्ण के लिए गणना के मौलिक प्रमेय के रूप में भी जाना जाता है। ग्रेडिएंट प्रमेय का कहना है, कि अनुपात सदिश क्षेत्र के माध्यम से संपूर्ण रेखा का मूल्यांकन वक्र के अंतिम बिंदुओं पर मूल अदिश क्षेत्र का मूल्यांकन करके प्राप्त किया जा सकता है। प्रमेय मात्र वास्तविक रेखा के अतिरिक्त किसी समतल या अंतराल (सामान्यतः n-आयामी) में किसी भी वक्र के लिए कलन के मौलिक प्रमेय का सामान्यीकरण है।
φ : U ⊆ Rn → R को एक अवकलनीय फलन के रूप में और γ को U में किसी सतत वक्र के रूप में, जो एक बिंदु p से प्रारंभ होता है और एक बिंदु q पर समाप्त होता है, तब
ग्रेडिएंट प्रमेय का तात्पर्य है, कि ग्रेडिएंट क्षेत्र के माध्यम से रेखा संपूर्ण पथ स्वतंत्र हैं। भौतिकी में यह प्रमेय अनुपात प्रभाव को परिभाषित करने के विधियों में से एक है। φ को संभावित के रूप में रखने से ∇φ अनुपात क्षेत्र है। अनुपात प्रभावों के माध्यम से किया गया कार्य (भौतिकी) उद्देश्य के माध्यम से अपनाए गए पथ पर निर्भर नहीं करता है, प्रभाव मात्र अंतिम बिंदुओं पर निर्भर करता है, जैसा कि उपरोक्त समीकरण से पता चलता है।
ग्रेडिएंट प्रमेय का रोचक व्युत्क्रम भी है: किसी भी पथ-स्वतंत्र सदिश क्षेत्र को अदिश क्षेत्र के ग्रेडिएंट के रूप में व्यक्त किया जा सकता है। ग्रेडिएंट प्रमेय की समरूप ही इस परिवर्तन के स्पष्ट और व्यावहारिक गणित दोनों में अनेक आश्चर्यजनक परिणाम और अनुप्रयोग हैं।
प्रमाण
यदि φ पूर्णतया संवृत उपसमुच्चय U ⊆ Rn से R तक भिन्न कार्य है, और r अल्प विवृत अंतराल (गणित) [a, b] से U तक भिन्न कार्य है (ध्यान दें कि r अंतराल समापन बिंदु a और b पर भिन्न है। ऐसा करने के लिए, r को ऐसे अंतराल पर परिभाषित किया जाता है, जो इससे बृहत्तर होता है और इसमें [a, b] सम्मिलित होता है।), ततपश्चात् बहुभिन्न रूपी श्रृंखला नियम के माध्यम से समग्र फलन φ ∘ r [a, b] पर भिन्न होता है:-
अब मान लीजिए कि φ के कार्यक्षेत्र U में अंतिम बिंदु p और q के प्रति अवकलनीय वक्र γ सम्मिलित है। (यह p को q की दिशा में उन्मुख है)। यदि r [a, b] में t के लिए γ को प्राचलीकरण (ज्यामिति) करता है (अर्थात, r, t के फलन के रूप में γ को दर्शाता है), तब:-
उदाहरण
उदाहरण 1
मान लीजिए γ ⊂ R2 (5, 0) से (−4, 3) तक वामावर्त दिशा में उन्मुख गोलाकार वृत्तांश है। रेखा समाकलन की परिभाषा का उपयोग करते हुए:-
उदाहरण 2
अधिक सारगर्भित उदाहरण के लिए, मान लीजिए कि γ ⊂ Rn में अंतिम बिंदु p, q, है, जिसका अभिविन्यास p को q की ओर है। Rn में आपके लिए, |u| u के यूक्लिडियन मानदंड को निरूपित करें। यदि α ≥ 1 एक वास्तविक संख्या है, तब:-
यदि α < 1 है, तब अधिकांश स्थितियों में यह समानता अभी भी स्थिर रहेगी, किन्तु यदि γ मूल बिंदु से होकर निकलता है या परिवृत्त करता है तब सावधानी पूर्वक करना चाहिए, क्योंकि एकीकृत सदिश क्षेत्र |x|α − 1x उस स्थान पर परिभाषित होने में विफल रहेगा। चूंकि, स्थितियाँ α = −1 कुछ प्रथक है, इन स्थितियों में एकीकृत |x|−2x = ∇(log |x|) बन जाता है। जिससे कि अंतिम समानता log |q| − log |p| बन जाती है।
ध्यान दें कि यदि n = 1 है, तब यह उदाहरण एकल-चर गणना से परिचित घात नियम का अल्प सा संस्करण है।
उदाहरण 3
मान लीजिए कि त्रि-आयामी अंतराल में n बिंदु प्रभार व्यवस्थित हैं, और i बिंदु प्रभार में Qi प्रभार है और R3 में स्थिति pi पर स्थित है। हम R3 में बिंदु a से बिंदु b तक संचारण करते समय प्रभार q के एक कण पर किए गए कार्य (भौतिकी) की गणना करना चाहेंगे। कूलम्ब के नियम का उपयोग करके हम सहजता से यह निर्धारित कर सकते हैं कि स्थिति r पर कण पर प्रभाव कितना होगा:-
मान लीजिए γ ⊂ R3 − {p1, ..., pn, a से b तक इच्छानुसार अवकलनीय वक्र है। तब कण पर किया गया कार्य है:-
ग्रेडिएंट प्रमेय का व्युत्क्रम
ग्रेडिएंट प्रमेय बताता है कि यदि सदिश क्षेत्र F कुछ अदिश -मान फलन का ग्रेडिएंट है (अर्थात, यदि F अपरिवर्तनवादी सदिश क्षेत्र है), तब F पथ-स्वतंत्र सदिश क्षेत्र है (अर्थात, विभेदक वक्र पर F का अभिन्न अंग का अभिन्न अंग) मात्र अंतिम बिंदुओं पर निर्भर होते हैं)। इस प्रमेय का शक्तिशाली व्युत्क्रम है:
Theorem — प्रमेय - यदि F एक पथ-स्वतंत्र संवाहक क्षेत्र है, तो F कुछ आदिश-मान वाले फलन का प्रवणता है।
यह दिखाना सहज है कि सदिश क्षेत्र पथ-स्वतंत्र है यदि और मात्र उस अवधि मे जब उसके कार्यक्षेत्र में प्रत्येक विवृत परिपथ पर सदिश क्षेत्र का अभिन्न अंग शून्य होना चाहिए। इस प्रकार व्युत्क्रम को वैकल्पिक रूप से इस प्रकार कहा जा सकता है:- यदि F के अधिकार क्षेत्र में प्रत्येक विवृत परिपथ पर F का अभिन्न अंग शून्य है, तब F कुछ अदिश-मान वाले फलन का प्रवणता है।
व्युत्क्रम का प्रमाण
मान लीजिए U , Rn का संवृत पथ-सम्बद्ध हुआ उपसमुच्चय है, और F : U → Rn एक सतत और पथ-स्वतंत्र सदिश क्षेत्र है। U के कुछ अवयव a को ठीक करें और f : U → R को परिभाषित करें
के लिए (ऊपर इसकी पूरी परिभाषा देखें), v के संबंध में इसका दिशात्मक व्युत्पन्न है:-
व्युत्क्रम सिद्धांत का उदाहरण
इस व्युत्क्रम सिद्धांत की अधिकार को स्पष्ट करने के लिए, हम उदाहरण देते हैं जिसके महत्वपूर्ण भौतिकी परिणाम हैं। मौलिक विद्युत चुंबकत्व में, विद्युत प्रभाव एक पथ-स्वतंत्र प्रभाव है, अर्थात विद्युत क्षेत्र के अन्दर अपनी मूल स्थिति में पुनरागमन कण पर किया गया कार्य (भौतिकी) शून्य है (यह मानते हुए कि कोई परिवर्तित चुंबकीय क्षेत्र उपस्थित नहीं है)।
इसलिए, उपरोक्त प्रमेय का तात्पर्य है, कि विद्युत प्रभाव क्षेत्र (भौतिकी) Fe : S → R3 अनुपात है (इस स्थान पर S एवं R3 का अल्प संवृत, पथ-संबंध उपसमुच्चय है जिसमें प्रभार वितरण सम्मिलित है)। उपरोक्त प्रमाण के विचारों का पालन करते हुए, हम S में कुछ संदर्भ बिंदु a समुच्चय कर सकते हैं, और फलन Ue: S → R को परिभाषित कर सकते हैं:-
सामान्यीकरण
सदिश गणना के अनेक महत्वपूर्ण प्रमेय विभेदक रूप एकीकरण पर अंतर रूपों के एकीकरण के बारे में कथनों को सुरुचिपूर्ण रूप से सामान्यीकृत करते हैं। विभेदक रूप और बाह्य व्युत्पन्नों की भाषा में, ग्रेडिएंट प्रमेय यह बताता है, कि:-
कृपया इस कथन और सामान्यीकृत स्टोक्स प्रमेय के मध्य विचित्र समानता पर ध्यान दें। सामान्यीकृत स्टोक्स प्रमेय, जो कहता है कि कुछ उन्मुख विविध की सीमा (टोपोलॉजी) पर किसी भी सुगठित रूप से समर्थित अंतर रूप ω का अभिन्न अंग संपूर्ण Ω पर इसके बाह्य व्युत्पन्न dω के अभिन्न अंग के समरूप है, अर्थात:-
ग्रेडिएंट प्रमेय के व्युत्क्रम कथन में अनेक गुना अंतर रूपों के संदर्भ में शक्तिशाली सामान्यीकरण भी है। विशेष रूप से, मान लीजिए कि ω एक अनुबंध योग्य कार्यक्षेत्र पर परिभाषित रूप है, और किसी भी विवृत एकीकरण पर ω का अभिन्न अंग शून्य है। ततपश्चात् ψ का एक रूप उपस्थित होता है जैसे कि ω = dψ है। इस प्रकार, अनुबंध योग्य कार्यक्षेत्र पर, प्रत्येक विवृत रूप त्रुटिहीन होता है। इस परिणाम को पोंकारे लेम्मा के माध्यम से संक्षेपित किया गया है।
यह भी देखें
- क्षेत्र फलन
- अदिश क्षमता
- जॉर्डन वक्र प्रमेय
- किसी फलन का अंतर
- मौलिक यांत्रिकी
- अभिन्न रेखा § पथ स्वतंत्रता
- अपरिवर्तनवादी संवाहक क्षेत्र § पथ स्वतंत्रता
संदर्भ
- ↑ Williamson, Richard and Trotter, Hale. (2004). Multivariable Mathematics, Fourth Edition, p. 374. Pearson Education, Inc.
- ↑ Stewart, James (2015). "16.3 The Fundamental Theorem for Line Integrals". गणना (in English) (8th ed.). Cengage Learning. pp. 1127–1128. ISBN 978-1-285-74062-1.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedwt