गोलाकार ज्यामिति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 3: Line 3:
{{Short description|Geometry of the surface of a sphere}}
{{Short description|Geometry of the surface of a sphere}}
[[Image:Triangles (spherical geometry).jpg|thumb|right|300px|गोलाकार त्रिभुज के कोणों का योग 180° के बराबर नहीं होता है। गोला घुमावदार सतह है, किन्तु स्थानीय रूप से फ्लैट (प्लानर) यूक्लिडियन ज्यामिति के नियम अच्छे सन्निकटन हैं। पृथ्वी के फलक पर छोटे त्रिभुज में, कोणों का योग केवल 180 डिग्री से थोड़ा अधिक होता है।]]
[[Image:Triangles (spherical geometry).jpg|thumb|right|300px|गोलाकार त्रिभुज के कोणों का योग 180° के बराबर नहीं होता है। गोला घुमावदार सतह है, किन्तु स्थानीय रूप से फ्लैट (प्लानर) यूक्लिडियन ज्यामिति के नियम अच्छे सन्निकटन हैं। पृथ्वी के फलक पर छोटे त्रिभुज में, कोणों का योग केवल 180 डिग्री से थोड़ा अधिक होता है।]]
[[file:Spherical_triangle_3d.png|thumb|right|300px|उस पर गोलाकार त्रिकोण वाला गोला।]]गोलाकार [[ ज्यामिति |ज्यामिति]] गोले की द्वि-[[ आयाम ]]सतह की ज्यामिति है। इस संदर्भ में शब्द गोला केवल 2-आयामी सतह को संदर्भित करता है और गेंद या ठोस क्षेत्र जैसे अन्य शब्द सतह के लिए इसके 3-आयामी आतंरिक के साथ उपयोग किए जाते हैं।
[[file:Spherical_triangle_3d.png|thumb|right|300px|उस पर गोलाकार त्रिकोण वाला गोला।]]'''गोलाकार [[ज्यामिति]]''' गोले की द्वि-[[ आयाम ]]सतह की ज्यामिति है। इस संदर्भ में शब्द गोला केवल 2-आयामी सतह को संदर्भित करता है और गेंद या ठोस क्षेत्र जैसे अन्य शब्द सतह के लिए इसके 3-आयामी आतंरिक के साथ उपयोग किए जाते हैं।


[[ पथ प्रदर्शन | पथ प्रदर्शन]] और [[ खगोल |खगोल]] विज्ञान के लिए अपने व्यावहारिक अनुप्रयोगों के लिए लंबे समय से पढाई किया गया, गोलाकार ज्यामिति यूक्लिडियन विमान ज्यामिति से कई समानताएं और संबंध रखती है, और महत्वपूर्ण अंतर। गोले का अधिकांश भाग 3-आयामी यूक्लिडियन ज्यामिति (अधिकांशतः ठोस ज्यामिति कहा जाता है) के भाग के रूप में अध्ययन किया गया है, सतह को परिवेशी 3-डी अंतरिक्ष के अंदर रखा गया माना जाता है। इसका विश्लेषण आंतरिक तरीकों से भी किया जा सकता है जो केवल सतह को ही सम्मिलित करता है, और क्षेत्र के बाहर या अंदर किसी भी आसपास के स्थान को संदर्भित नहीं करता है, या यहां तक ​​​​कि अस्तित्व को भी नहीं मानता है।
[[ पथ प्रदर्शन |पथ प्रदर्शन]] और [[ खगोल |खगोल]] विज्ञान के लिए अपने व्यावहारिक अनुप्रयोगों के लिए लंबे समय से पढाई किया गया, गोलाकार ज्यामिति यूक्लिडियन विमान ज्यामिति से कई समानताएं और संबंध रखती है, और महत्वपूर्ण अंतर गोले का अधिकांश भाग 3-आयामी यूक्लिडियन ज्यामिति (अधिकांशतः ठोस ज्यामिति कहा जाता है) के भाग के रूप में अध्ययन किया गया है, सतह को परिवेशी 3-डी अंतरिक्ष के अंदर रखा गया माना जाता है। इसका विश्लेषण आंतरिक तरीकों से भी किया जा सकता है जो केवल सतह को ही सम्मिलित करता है, और क्षेत्र के बाहर या अंदर किसी भी आसपास के स्थान को संदर्भित नहीं करता है, या यहां तक ​​​​कि अस्तित्व को भी नहीं मानता है।


क्योंकि गोला और तल ज्यामितीय रूप से भिन्न होते हैं, (आंतरिक) गोलाकार ज्यामिति में [[ गैर-यूक्लिडियन ज्यामिति |गैर-यूक्लिडियन ज्यामिति]] की कुछ विशेषताएं होती हैं और कभी-कभी इसे होने के रूप में वर्णित किया जाता है। चूंकि, गोलाकार ज्यामिति को पूर्ण रूप से गैर-यूक्लिडियन ज्यामिति नहीं माना गया था, जो प्राचीन समस्या को हल करने के लिए पर्याप्त था कि क्या समांतर अनुरेखण विमान ज्यामिति के बाकी यूक्लिड के परिकल्पित का तार्किक परिणाम है। इसके अतिरिक्त [[ अतिशयोक्तिपूर्ण ज्यामिति |अतिशयोक्तिपूर्ण ज्यामिति]] में समाधान पाया गया।
क्योंकि गोला और तल ज्यामितीय रूप से भिन्न होते हैं, (आंतरिक) गोलाकार ज्यामिति में [[ गैर-यूक्लिडियन ज्यामिति |गैर-यूक्लिडियन ज्यामिति]] की कुछ विशेषताएं होती हैं और कभी-कभी इसे होने के रूप में वर्णित किया जाता है। चूंकि, गोलाकार ज्यामिति को पूर्ण रूप से गैर-यूक्लिडियन ज्यामिति नहीं माना गया था, जो प्राचीन समस्या को हल करने के लिए पर्याप्त था कि क्या समांतर अनुरेखण विमान ज्यामिति के बाकी यूक्लिड के परिकल्पित का तार्किक परिणाम है। इसके अतिरिक्त [[ अतिशयोक्तिपूर्ण ज्यामिति |अतिशयोक्तिपूर्ण ज्यामिति]] में समाधान पाया गया है।


== सिंहावलोकन ==
== सिंहावलोकन ==
[[ यूक्लिडियन ज्यामिति | यूक्लिडियन ज्यामिति]] | समतल (यूक्लिडियन) ज्यामिति में, मूल अवधारणाएँ [[ बिंदु (ज्यामिति) |बिंदु (ज्यामिति)]] और (सीधी) [[ रेखा (गणित) |रेखा (गणित)]] हैं। गोलाकार ज्यामिति में, मूल अवधारणाएँ बिंदु और वृहत वृत्त हैं। चूंकि, [[ अण्डाकार ज्यामिति |अण्डाकार ज्यामिति]] में समतलीय रेखाओं के विपरीत, समतल पर दो बड़े वृत्त दो प्रतिलोम-संबंधी बिंदुओं में प्रतिच्छेद करते हैं।
[[ यूक्लिडियन ज्यामिति | यूक्लिडियन ज्यामिति]] | समतल (यूक्लिडियन) ज्यामिति में, मूल अवधारणाएँ [[ बिंदु (ज्यामिति) |बिंदु (ज्यामिति)]] और (सीधी) [[ रेखा (गणित) |रेखा (गणित)]] हैं। गोलाकार ज्यामिति में, मूल अवधारणाएँ बिंदु और वृहत वृत्त हैं। चूंकि, [[ अण्डाकार ज्यामिति |अण्डाकार ज्यामिति]] में समतलीय रेखाओं के विपरीत, समतल पर दो बड़े वृत्त दो प्रतिलोम-संबंधी बिंदुओं में प्रतिच्छेद करते हैं।


बाहरी 3-आयामी चित्र में, बड़ा वृत्त केंद्र के माध्यम से किसी भी विमान के साथ गोले का प्रतिच्छेदन है। आंतरिक दृष्टि[[ कोण | कोण]] में, बड़ा वृत्त [[ geodesic |geodesic]] है; इसके किन्हीं दो बिंदुओं के बीच का सबसे छोटा रास्ता, बशर्ते वे अधिक करीब हों। या, विमान ज्यामिति के यूक्लिड के स्वयंसिद्धों के अनुरूप (भी आंतरिक) स्वयंसिद्ध दृष्टिकोण में, महान वृत्त केवल अपरिभाषित शब्द है, साथ में बड़े वृत्तों और भी-अपरिभाषित बिंदुओं के बीच बुनियादी संबंधों को निर्धारित करता है। यह बिंदु और रेखा को अपरिभाषित प्राचीन धारणाओं के रूप में मानने और उनके संबंधों को स्वयंसिद्ध करने की यूक्लिड की विधि के समान है।
बाहरी 3-आयामी चित्र में, बड़ा वृत्त केंद्र के माध्यम से किसी भी विमान के साथ गोले का प्रतिच्छेदन है। आंतरिक दृष्टि[[ कोण | कोण]] में, बड़ा वृत्त [[ geodesic |जियोडेसिक]] है; इसके किन्हीं दो बिंदुओं के बीच का सबसे छोटा रास्ता, बशर्ते वे अधिक करीब हों या, विमान ज्यामिति के यूक्लिड के स्वयंसिद्धों के अनुरूप (भी आंतरिक) स्वयंसिद्ध दृष्टिकोण में, महान वृत्त केवल अपरिभाषित शब्द है, साथ में बड़े वृत्तों और भी-अपरिभाषित बिंदुओं के बीच बुनियादी संबंधों को निर्धारित करता है। यह बिंदु और रेखा को अपरिभाषित प्राचीन धारणाओं के रूप में मानने और उनके संबंधों को स्वयंसिद्ध करने की यूक्लिड की विधि के समान है।


बड़े वृत्त कई तरह से गोलीय ज्यामिति में वही तार्किक भूमिका निभाते हैं जो यूक्लिडियन ज्यामिति में पंक्तियां, उदाहरण के लिए, (गोलाकार) त्रिभुजों की भुजाओं के रूप में होती हैं। यह समानता से अधिक है; गोलाकार और समतल ज्यामिति और अन्य सभी को ज्यामिति की छाता के नीचे एकीकृत किया जा सकता है रिमेंनियन ज्यामिति, जहाँ रेखाओं को सबसे छोटे पथ (जियोडेसिक्स) के रूप में परिभाषित किया जाता है। बिंदुओं की ज्यामिति के बारे में कई कथन और ऐसी रेखाएँ उन सभी ज्यामितियों में समान रूप से सत्य हैं, बशर्ते कि रेखाएँ उस तरह से परिभाषित हों, और सिद्धांत को उच्च आयामों तक आसानी से बढ़ाया जा सकता है। फिर भी, क्योंकि इसके अनुप्रयोग और शिक्षाशास्त्र ठोस ज्यामिति से बंधे हैं, और क्योंकि सामान्यीकरण समतल में रेखाओं के कुछ महत्वपूर्ण गुणों को खो देता है, गोलाकार ज्यामिति सामान्यतः गोले पर किसी भी चीज़ को संदर्भित करने के लिए शब्द रेखा का उपयोग नहीं करती है। यदि ठोस ज्यामिति के भाग के रूप में विकसित किया जाता है, तो आसपास के अंतरिक्ष में बिन्दु, सीधी रेखाओं और विमानों (यूक्लिडियन अर्थ में) का उपयोग किया जाता है।
बड़े वृत्त कई तरह से गोलीय ज्यामिति में वही तार्किक भूमिका निभाते हैं जो यूक्लिडियन ज्यामिति में पंक्तियां, उदाहरण के लिए, (गोलाकार) त्रिभुजों की भुजाओं के रूप में होती हैं। यह समानता से अधिक है; गोलाकार और समतल ज्यामिति और अन्य सभी को ज्यामिति की छाता के नीचे एकीकृत किया जा सकता है रिमेंनियन ज्यामिति, जहाँ रेखाओं को सबसे छोटे पथ (जियोडेसिक्स) के रूप में परिभाषित किया जाता है। बिंदुओं की ज्यामिति के बारे में कई कथन और ऐसी रेखाएँ उन सभी ज्यामितियों में समान रूप से सत्य हैं, बशर्ते कि रेखाएँ उस तरह से परिभाषित हों, और सिद्धांत को उच्च आयामों तक आसानी से बढ़ाया जा सकता है। फिर भी, क्योंकि इसके अनुप्रयोग और शिक्षाशास्त्र ठोस ज्यामिति से बंधे हैं, और क्योंकि सामान्यीकरण समतल में रेखाओं के कुछ महत्वपूर्ण गुणों को खो देता है, गोलाकार ज्यामिति सामान्यतः गोले पर किसी भी चीज़ को संदर्भित करने के लिए शब्द रेखा का उपयोग नहीं करती है। यदि ठोस ज्यामिति के भाग के रूप में विकसित किया जाता है, तो आसपास के अंतरिक्ष में बिन्दु, सीधी रेखाओं और विमानों (यूक्लिडियन अर्थ में) का उपयोग किया जाता है।
Line 21: Line 21:
गोलाकार ज्यामिति दीर्घ वृत्ताकार ज्यामिति से निकटता से संबंधित है।
गोलाकार ज्यामिति दीर्घ वृत्ताकार ज्यामिति से निकटता से संबंधित है।


गोले से संबंधित महत्वपूर्ण ज्यामिति वास्तविक प्रक्षेपी तल की है; यह गोले पर [[ एंटीपोडल बिंदु |एंटीपोडल बिंदु]] (विपरीत बिंदुओं के जोड़े) की पहचान करके प्राप्त किया जाता है। स्थानीय रूप से, प्रक्षेपी तल में गोलाकार ज्यामिति के सभी गुण होते हैं, किन्तु इसके अलग-अलग वैश्विक गुण होते हैं। विशेष रूप से, यह [[ उन्मुखता |उन्मुखता]] है | गैर-उन्मुख, या तरफा, और गोले के विपरीत इसे 3-आयामी अंतरिक्ष में सतह के रूप में खुद चालाकी किए बिना नहीं खींचा जा सकता है।
गोले से संबंधित महत्वपूर्ण ज्यामिति वास्तविक प्रक्षेपी तल की है; यह गोले पर [[ एंटीपोडल बिंदु |एंटीपोडल बिंदु]] (विपरीत बिंदुओं के जोड़े) की पहचान करके प्राप्त किया जाता है। स्थानीय रूप से, प्रक्षेपी तल में गोलाकार ज्यामिति के सभी गुण होते हैं, किन्तु इसके अलग-अलग वैश्विक गुण होते हैं। विशेष रूप से, यह [[ उन्मुखता |उन्मुखता]] है| गैर-उन्मुख, या तरफा, और गोले के विपरीत इसे 3-आयामी अंतरिक्ष में सतह के रूप में खुद किए बिना नहीं खींचा जा सकता है।


गोलाकार ज्यामिति की अवधारणाओं को भी गोलाकार पर लागू किया जा सकता है, चूंकि कुछ सूत्रों पर मामूली संशोधनों को लागू किया जाना चाहिए।
गोलाकार ज्यामिति की अवधारणाओं को भी गोलाकार पर लागू किया जा सकता है, चूंकि कुछ सूत्रों पर मामूली संशोधनों को लागू किया जाना चाहिए।
Line 33: Line 33:
पुरातनता का सबसे पहला गणितीय कार्य जो हमारे समय तक आता है, वह है ऑन रोटेटिंग स्फीयर (Περὶ κινουμένης σφαίρας, पेरी किनौमेनस स्पैरास) पिटेन के ऑटोलिसस द्वारा, जो चौथी शताब्दी ईसा पूर्व के अंत में रहते थे।<ref>{{cite book|last1=Rosenfeld|first1=B.A|title=गैर-यूक्लिडियन ज्यामिति का इतिहास: एक ज्यामितीय स्थान की अवधारणा का विकास|date=1988|publisher=Springer-Verlag|location=New York|isbn=0-387-96458-4|page=2}}</ref>
पुरातनता का सबसे पहला गणितीय कार्य जो हमारे समय तक आता है, वह है ऑन रोटेटिंग स्फीयर (Περὶ κινουμένης σφαίρας, पेरी किनौमेनस स्पैरास) पिटेन के ऑटोलिसस द्वारा, जो चौथी शताब्दी ईसा पूर्व के अंत में रहते थे।<ref>{{cite book|last1=Rosenfeld|first1=B.A|title=गैर-यूक्लिडियन ज्यामिति का इतिहास: एक ज्यामितीय स्थान की अवधारणा का विकास|date=1988|publisher=Springer-Verlag|location=New York|isbn=0-387-96458-4|page=2}}</ref>


[[ गोलाकार | गोलाकार]] त्रिकोणमिति का अध्ययन प्रारंभिक [[ ग्रीक गणित |ग्रीक गणित]] जैसे [[ बिथिनिया के थियोडोसियस |बिथिनिया के थियोडोसियस]] , यूनानी खगोलशास्त्री और गणितज्ञ द्वारा किया गया था, जिन्होंने गोले की ज्यामिति पर पुस्तक स्पैरिक्स लिखी थी।<ref>{{cite web|url=http://www.encyclopedia.com/doc/1G2-2830904281.html|title=बिथिनिया के थियोडोसियस - बिथिनिया के थियोडोसियस की शब्दकोश परिभाषा|work=[[HighBeam Research]]|access-date=25 March 2015}}</ref> और [[ अलेक्जेंड्रिया के मेनेलॉस |अलेक्जेंड्रिया के मेनेलॉस]] , जिन्होंने स्फेरिका नामक गोलाकार त्रिकोणमिति पर पुस्तक लिखी और मेनेलॉस प्रमेय विकसित की।<ref>{{MacTutor|id=Menelaus|title=Menelaus of Alexandria}}</ref><ref>{{cite web|url=http://www.encyclopedia.com/topic/Menelaus_of_Alexandria.aspx#1|title=अलेक्जेंड्रिया के मेनेलॉस तथ्य, जानकारी, तस्वीरें|work=[[HighBeam Research]]|access-date=25 March 2015}}</ref>
[[ गोलाकार |गोलाकार]] त्रिकोणमिति का अध्ययन प्रारंभिक [[ ग्रीक गणित |ग्रीक गणित]] जैसे [[ बिथिनिया के थियोडोसियस |बिथिनिया के थियोडोसियस]], यूनानी खगोलशास्त्री और गणितज्ञ द्वारा किया गया था, जिन्होंने गोले की ज्यामिति पर पुस्तक स्पैरिक्स लिखी थी,<ref>{{cite web|url=http://www.encyclopedia.com/doc/1G2-2830904281.html|title=बिथिनिया के थियोडोसियस - बिथिनिया के थियोडोसियस की शब्दकोश परिभाषा|work=[[HighBeam Research]]|access-date=25 March 2015}}</ref> और [[ अलेक्जेंड्रिया के मेनेलॉस |अलेक्जेंड्रिया के मेनेलॉस]], जिन्होंने स्फेरिका नामक गोलाकार त्रिकोणमिति पर पुस्तक लिखी और मेनेलॉस प्रमेय विकसित की है।<ref>{{MacTutor|id=Menelaus|title=Menelaus of Alexandria}}</ref><ref>{{cite web|url=http://www.encyclopedia.com/topic/Menelaus_of_Alexandria.aspx#1|title=अलेक्जेंड्रिया के मेनेलॉस तथ्य, जानकारी, तस्वीरें|work=[[HighBeam Research]]|access-date=25 March 2015}}</ref>
 
 


=== इस्लामिक दुनिया ===
=== इस्लामिक दुनिया ===
{{See also|मध्यकालीन इस्लाम में गणित}}
{{See also|मध्यकालीन इस्लाम में गणित}}


इस्लामी गणितज्ञ अल-जयानी द्वारा लिखित द बुक ऑफ़ अननोन आर्क्स ऑफ़ ए स्फीयर गोलाकार त्रिकोणमिति पर पहला ग्रंथ माना जाता है। पुस्तक में दाएं हाथ के सूत्र हैं त्रिकोण, ज्या के सामान्य कानून, और ध्रुवीय त्रिकोण के माध्यम से गोलाकार त्रिकोण का समाधान।<ref>[http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Al-Jayyani.html School of Mathematical and Computational Sciences University of St Andrews]</ref>
इस्लामी गणितज्ञ अल-जयानी द्वारा लिखित द बुक ऑफ़ अननोन आर्क्स ऑफ़ ए स्फीयर गोलाकार त्रिकोणमिति पर पहला ग्रंथ माना जाता है। पुस्तक में दाएं हाथ के सूत्र हैं त्रिकोण, ज्या के सामान्य कानून, और ध्रुवीय त्रिकोण के माध्यम से गोलाकार त्रिकोण का समाधान है।<ref>[http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Al-Jayyani.html School of Mathematical and Computational Sciences University of St Andrews]</ref>


1463 के आसपास लिखी गई [[ रेजीओमोंटानस |रेजीओमोंटानस]] की किताब ऑन ट्रायंगल्स, यूरोप में पहली शुद्ध त्रिकोणमितीय कृति है। चूंकि, [[ जेरोम कार्डानो |जेरोम कार्डानो]] ने सदी बाद उल्लेख किया कि गोलाकार त्रिकोणमिति पर इसकी अधिकांश सामग्री बारहवीं शताब्दी के अल-अंडालस विद्वान [[ जाबिर इब्न अफला |जाबिर इब्न अफला]] के काम से ली गई थी।<ref>{{Cite web |url=http://press.princeton.edu/chapters/i8583.html |title=विक्टर जे. काट्ज़-प्रिंसटन यूनिवर्सिटी प्रेस|access-date=2009-03-01 |archive-date=2016-10-01 |archive-url=https://web.archive.org/web/20161001214903/http://press.princeton.edu/chapters/i8583.html |url-status=dead }}</ref>
1463 के आसपास लिखी गई [[ रेजीओमोंटानस |रेजीओमोंटानस]] की किताब ऑन ट्रायंगल्स, यूरोप में पहली शुद्ध त्रिकोणमितीय कृति है। चूंकि, [[ जेरोम कार्डानो |जेरोम कार्डानो]] ने सदी बाद उल्लेख किया कि गोलाकार त्रिकोणमिति पर इसकी अधिकांश सामग्री बारहवीं शताब्दी के अल-अंडालस विद्वान [[ जाबिर इब्न अफला |जाबिर इब्न अफला]] के काम से ली गई थी।<ref>{{Cite web |url=http://press.princeton.edu/chapters/i8583.html |title=विक्टर जे. काट्ज़-प्रिंसटन यूनिवर्सिटी प्रेस|access-date=2009-03-01 |archive-date=2016-10-01 |archive-url=https://web.archive.org/web/20161001214903/http://press.princeton.edu/chapters/i8583.html |url-status=dead }}</ref>


===यूलर का कार्य===
===यूलर का कार्य===
[[ लियोनहार्ड यूलर | लियोनहार्ड यूलर]] ने गोलीय ज्यामिति पर महत्वपूर्ण संस्मरणों की श्रृंखला प्रकाशित की:
[[ लियोनहार्ड यूलर | लियोनहार्ड यूलर]] ने गोलीय ज्यामिति पर महत्वपूर्ण संस्मरणों की श्रृंखला प्रकाशित की:
* एल. यूलर, प्रिंसिपल्स डे ला ट्रिगोनोमेट्री स्फेरिक टायर्स डे ला मेथोड डेस प्लस ग्रैंड्स एट डेस प्लस पेटिट्स, मेमोइरेस डे ल'एकेडेमी डेस साइंसेज डे बर्लिन 9 (1753), 1755, पी। 233–257; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम। 27, पृ. 277–308।
* एल. यूलर, प्रिंसिपल्स डे ला ट्रिगोनोमेट्री स्फेरिक टायर्स डे ला मेथोड डेस प्लस ग्रैंड्स एट डेस प्लस पेटिट्स, मेमोइरेस डे ल'एकेडेमी डेस साइंसेज डे बर्लिन 9 (1753), 1755, पी 233–257; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 27, पृ. 277–308।
* एल. यूलर, एलिमेंट्स डे ला ट्रिगोनोमेट्री स्फेरोइडिक टायर्स डे ला मेथोड डेस प्लस ग्रैंड्स एट डेस प्लस पेटिट्स, मेमोइरेस डे ल'एकेडेमी डेस साइंसेज डे बर्लिन 9 (1754), 1755, पी। 258–293; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम। 27, पृ. 309–339।
* एल. यूलर, एलिमेंट्स डे ला ट्रिगोनोमेट्री स्फेरोइडिक टायर्स डे ला मेथोड डेस प्लस ग्रैंड्स एट डेस प्लस पेटिट्स, मेमोइरेस डे ल'एकेडेमी डेस साइंसेज डे बर्लिन 9 (1754), 1755, पी 258–293; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 27, पृ. 309–339।
* एल. यूलर, ऑन द रेक्टिफिएबल कर्व इन द स्फेरिकल सरफेस, नोवी कमेंटारी एकेडेमिया साइंटियारम पेट्रोपोलिटने 15, 1771, पीपी। 195-216; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 28, पीपी। 142–160।
* एल. यूलर, ऑन द रेक्टिफिएबल कर्व इन द स्फेरिकल सरफेस, नोवी कमेंटारी एकेडेमिया साइंटियारम पेट्रोपोलिटने 15, 1771, पीपी 195-216; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 28, पीपी 142–160।
* एल. यूलर, डी मेंसुरा एंगुलोरम सॉलिडोरम, एक्टा एकेडमीई साइंटियारम इम्पीरियलिस पेट्रोपोलिटिना 2, 1781, पी। 31-54; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम। 26, पृ. 204–223।
* एल. यूलर, डी मेंसुरा एंगुलोरम सॉलिडोरम, एक्टा एकेडमीई साइंटियारम इम्पीरियलिस पेट्रोपोलिटिना 2, 1781, पी 31-54; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 26, पृ. 204–223।
* एल. यूलर, द कंस्ट्रक्शन ऑफ़ द प्रॉब्लम ऑफ़ ए असेट पप्पी अलेक्जेंड्रिनी, एक्टा एकेडेमिया साइंटियारम इम्पीरियलिस पेट्रोपोलिटिना 4, 1783, पी। 91–96; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम। 26, पृ. 237–242।
* एल. यूलर, द कंस्ट्रक्शन ऑफ़ द प्रॉब्लम ऑफ़ ए असेट पप्पी अलेक्जेंड्रिनी, एक्टा एकेडेमिया साइंटियारम इम्पीरियलिस पेट्रोपोलिटिना 4, 1783, पी 91–96; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 26, पृ. 237–242।
* एल. यूलर, जियोमेट्रिका एट स्पैरिका क्वैडम, मेमोइरेस डे ल'एकेडेमी डेस साइंसेज डी सेंट-पीटर्सबर्ग 5, 1815, पी। 96–114; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम। 26, पृ. 344–358।
* एल. यूलर, जियोमेट्रिका एट स्पैरिका क्वैडम, मेमोइरेस डे ल'एकेडेमी डेस साइंसेज डी सेंट-पीटर्सबर्ग 5, 1815, पी 96–114; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 26, पृ. 344–358।
* एल. यूलर, यूनिवर्सल गोलाकार त्रिकोणमिति, संक्षेप में और स्पष्ट रूप से पहले सिद्धांतों से प्राप्त, एक्टा अकादमी साइंटियारम इम्पीरियलिस पेट्रोपोलिटिना 3, 1782, पी। 72-86; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम। 26, पृ. 224–236।
* एल. यूलर, यूनिवर्सल गोलाकार त्रिकोणमिति, संक्षेप में और स्पष्ट रूप से पहले सिद्धांतों से प्राप्त, एक्टा अकादमी साइंटियारम इम्पीरियलिस पेट्रोपोलिटिना 3, 1782, पी 72-86; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 26, पृ. 224–236।
* एल. यूलर, गोलाकार त्रिकोणों के क्षेत्र पर विभिन्न अटकलें, नोवा एक्टा अकादमी साइंटियारम इंपीरियलिस पेट्रोपोलिटिना 10, 1797, पी। 47–62; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम। 29, पृ. 253–266।
* एल. यूलर, गोलाकार त्रिकोणों के क्षेत्र पर विभिन्न अटकलें, नोवा एक्टा अकादमी साइंटियारम इंपीरियलिस पेट्रोपोलिटिना 10, 1797, पी 47–62; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 29, पृ. 253–266।


== गुण ==
== गुण ==
Line 76: Line 72:
==यूक्लिड की अभिधारणाओं से संबंध==
==यूक्लिड की अभिधारणाओं से संबंध==


यदि रेखा को बड़े वृत्त के रूप में लिया जाता है, तो गोलीय ज्यामिति यूक्लिड की दो अभिधारणाओं का पालन करती है: दूसरी अभिधारणा (सीधी रेखा में परिमित सीधी रेखा को [विस्तार] करना) और चौथी अभिधारणा (कि सभी समकोण दूसरे के बराबर होते हैं) ). चूंकि, यह अन्य तीन का उल्लंघन करता है। पहले अभिधारणा के विपरीत (कि किन्हीं दो बिंदुओं के बीच, उनसे जुड़ने वाला अद्वितीय रेखा खंड है), किन्हीं भी दो बिंदुओं के बीच कोई अद्वितीय सबसे छोटा मार्ग नहीं है (एंटीपोडल बिंदु जैसे गोलाकार ग्लोब पर उत्तर और दक्षिण ध्रुव प्रति उदाहरण हैं) तीसरी अभिधारणा के विपरीत, गोले में इच्छानुसार से बड़ी त्रिज्या के वृत्त नहीं होते हैं; और समानांतर अभिधारणा|पांचवीं (समानांतर) अभिधारणा के विपरीत, ऐसा कोई बिंदु नहीं है जिसके माध्यम से रेखा खींची जा सकती है जो किसी रेखा को कभी नहीं काटती है।<ref>[[Timothy Gowers|Gowers, Timothy]], ''Mathematics: A Very Short Introduction'', Oxford University Press, 2002: pp. 94 and 98.</ref>  
यदि रेखा को बड़े वृत्त के रूप में लिया जाता है, तो गोलीय ज्यामिति यूक्लिड की दो अभिधारणाओं का पालन करती है: दूसरी अभिधारणा (सीधी रेखा में परिमित सीधी रेखा को [विस्तार] करना) और चौथी अभिधारणा (कि सभी समकोण दूसरे के बराबर होते हैं) ). चूंकि, यह अन्य तीन का उल्लंघन करता है। पहले अभिधारणा के विपरीत (कि किन्हीं दो बिंदुओं के बीच, उनसे जुड़ने वाला अद्वितीय रेखा खंड है), किन्हीं भी दो बिंदुओं के बीच कोई अद्वितीय सबसे छोटा मार्ग नहीं है (एंटीपोडल बिंदु जैसे गोलाकार ग्लोब पर उत्तर और दक्षिण ध्रुव प्रति उदाहरण हैं) तीसरी अभिधारणा के विपरीत, गोले में इच्छानुसार से बड़ी त्रिज्या के वृत्त नहीं होते हैं; और समानांतर अभिधारणा पांचवीं (समानांतर) अभिधारणा के विपरीत, ऐसा कोई बिंदु नहीं है जिसके माध्यम से रेखा खींची जा सकती है जो किसी रेखा को कभी नहीं काटती है।<ref>[[Timothy Gowers|Gowers, Timothy]], ''Mathematics: A Very Short Introduction'', Oxford University Press, 2002: pp. 94 and 98.</ref>  


एक कथन जो समांतर अभिधारणा के समतुल्य है, वह यह है कि एक त्रिभुज का अस्तित्व है जिसके कोणों का जोड़ 180° होता है। चूँकि गोलीय ज्यामिति समानांतर अभिधारणा का उल्लंघन करती है, गोले की सतह पर ऐसा कोई त्रिभुज उपस्थितनहीं है। एक गोले पर त्रिभुज के कोणों का योग होता है 180°(1 + 4f), जहाँ f गोले की सतह का अंश है जो त्रिभुज से घिरा है। f के किसी भी धनात्मक मान के लिए, यह 180° से अधिक है।  
एक कथन जो समांतर अभिधारणा के समतुल्य है, वह यह है कि एक त्रिभुज का अस्तित्व है जिसके कोणों का जोड़ 180° होता है। चूँकि गोलीय ज्यामिति समानांतर अभिधारणा का उल्लंघन करती है, गोले की सतह पर ऐसा कोई त्रिभुज उपस्थितनहीं है। एक गोले पर त्रिभुज के कोणों का योग होता है 180°(1 + 4f), जहाँ f गोले की सतह का अंश है जो त्रिभुज से घिरा है। f के किसी भी धनात्मक मान के लिए, यह 180° से अधिक है।  


==== यह भी देखें ====
==== यह भी देखें ====
* [[ गोलाकार खगोल विज्ञान | गोलाकार खगोल विज्ञान]]
* [[ गोलाकार खगोल विज्ञान |गोलाकार खगोल विज्ञान]]
* गोलाकार शंकु
* गोलाकार शंकु
* [[ गोलाकार दूरी | गोलाकार दूरी]]
* [[ गोलाकार दूरी |गोलाकार दूरी]]
* गोलाकार बहुफलक
* गोलाकार बहुफलक
* [[ आधा पक्ष सूत्र | आधा पक्ष सूत्र]]
* [[ आधा पक्ष सूत्र |आधा पक्ष सूत्र]]
* लेनर्ट क्षेत्र
* लेनर्ट क्षेत्र
* [[ मैं मुड़ा | छंद]]
* [[ मैं मुड़ा | छंद]]
Line 101: Line 97:


==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
{{Commons category| Spherical geometry}}
* [http://math.rice.edu/~pcmi/sphere/ The Geometry of the Sphere] {{Webarchive|url=https://web.archive.org/web/20110621044840/http://math.rice.edu/~pcmi/sphere/ |date=2011-06-21 }} [[Rice University]]
* [http://math.rice.edu/~pcmi/sphere/ The Geometry of the Sphere] {{Webarchive|url=https://web.archive.org/web/20110621044840/http://math.rice.edu/~pcmi/sphere/ |date=2011-06-21 }} [[Rice University]]
* {{mathworld|urlname=SphericalGeometry|title=Spherical Geometry}}
* {{mathworld|urlname=SphericalGeometry|title=Spherical Geometry}}
Line 107: Line 102:
*[https://sourceforge.net/projects/sphaerica/ Sphaerica - geometry software for constructing on the sphere ]
*[https://sourceforge.net/projects/sphaerica/ Sphaerica - geometry software for constructing on the sphere ]


{{Geometry-footer}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Created On 27/12/2022]]
[[Category:Created On 27/12/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]

Latest revision as of 12:23, 2 November 2023

गोलाकार त्रिभुज के कोणों का योग 180° के बराबर नहीं होता है। गोला घुमावदार सतह है, किन्तु स्थानीय रूप से फ्लैट (प्लानर) यूक्लिडियन ज्यामिति के नियम अच्छे सन्निकटन हैं। पृथ्वी के फलक पर छोटे त्रिभुज में, कोणों का योग केवल 180 डिग्री से थोड़ा अधिक होता है।
उस पर गोलाकार त्रिकोण वाला गोला।

गोलाकार ज्यामिति गोले की द्वि-आयाम सतह की ज्यामिति है। इस संदर्भ में शब्द गोला केवल 2-आयामी सतह को संदर्भित करता है और गेंद या ठोस क्षेत्र जैसे अन्य शब्द सतह के लिए इसके 3-आयामी आतंरिक के साथ उपयोग किए जाते हैं।

पथ प्रदर्शन और खगोल विज्ञान के लिए अपने व्यावहारिक अनुप्रयोगों के लिए लंबे समय से पढाई किया गया, गोलाकार ज्यामिति यूक्लिडियन विमान ज्यामिति से कई समानताएं और संबंध रखती है, और महत्वपूर्ण अंतर गोले का अधिकांश भाग 3-आयामी यूक्लिडियन ज्यामिति (अधिकांशतः ठोस ज्यामिति कहा जाता है) के भाग के रूप में अध्ययन किया गया है, सतह को परिवेशी 3-डी अंतरिक्ष के अंदर रखा गया माना जाता है। इसका विश्लेषण आंतरिक तरीकों से भी किया जा सकता है जो केवल सतह को ही सम्मिलित करता है, और क्षेत्र के बाहर या अंदर किसी भी आसपास के स्थान को संदर्भित नहीं करता है, या यहां तक ​​​​कि अस्तित्व को भी नहीं मानता है।

क्योंकि गोला और तल ज्यामितीय रूप से भिन्न होते हैं, (आंतरिक) गोलाकार ज्यामिति में गैर-यूक्लिडियन ज्यामिति की कुछ विशेषताएं होती हैं और कभी-कभी इसे होने के रूप में वर्णित किया जाता है। चूंकि, गोलाकार ज्यामिति को पूर्ण रूप से गैर-यूक्लिडियन ज्यामिति नहीं माना गया था, जो प्राचीन समस्या को हल करने के लिए पर्याप्त था कि क्या समांतर अनुरेखण विमान ज्यामिति के बाकी यूक्लिड के परिकल्पित का तार्किक परिणाम है। इसके अतिरिक्त अतिशयोक्तिपूर्ण ज्यामिति में समाधान पाया गया है।

सिंहावलोकन

यूक्लिडियन ज्यामिति | समतल (यूक्लिडियन) ज्यामिति में, मूल अवधारणाएँ बिंदु (ज्यामिति) और (सीधी) रेखा (गणित) हैं। गोलाकार ज्यामिति में, मूल अवधारणाएँ बिंदु और वृहत वृत्त हैं। चूंकि, अण्डाकार ज्यामिति में समतलीय रेखाओं के विपरीत, समतल पर दो बड़े वृत्त दो प्रतिलोम-संबंधी बिंदुओं में प्रतिच्छेद करते हैं।

बाहरी 3-आयामी चित्र में, बड़ा वृत्त केंद्र के माध्यम से किसी भी विमान के साथ गोले का प्रतिच्छेदन है। आंतरिक दृष्टि कोण में, बड़ा वृत्त जियोडेसिक है; इसके किन्हीं दो बिंदुओं के बीच का सबसे छोटा रास्ता, बशर्ते वे अधिक करीब हों या, विमान ज्यामिति के यूक्लिड के स्वयंसिद्धों के अनुरूप (भी आंतरिक) स्वयंसिद्ध दृष्टिकोण में, महान वृत्त केवल अपरिभाषित शब्द है, साथ में बड़े वृत्तों और भी-अपरिभाषित बिंदुओं के बीच बुनियादी संबंधों को निर्धारित करता है। यह बिंदु और रेखा को अपरिभाषित प्राचीन धारणाओं के रूप में मानने और उनके संबंधों को स्वयंसिद्ध करने की यूक्लिड की विधि के समान है।

बड़े वृत्त कई तरह से गोलीय ज्यामिति में वही तार्किक भूमिका निभाते हैं जो यूक्लिडियन ज्यामिति में पंक्तियां, उदाहरण के लिए, (गोलाकार) त्रिभुजों की भुजाओं के रूप में होती हैं। यह समानता से अधिक है; गोलाकार और समतल ज्यामिति और अन्य सभी को ज्यामिति की छाता के नीचे एकीकृत किया जा सकता है रिमेंनियन ज्यामिति, जहाँ रेखाओं को सबसे छोटे पथ (जियोडेसिक्स) के रूप में परिभाषित किया जाता है। बिंदुओं की ज्यामिति के बारे में कई कथन और ऐसी रेखाएँ उन सभी ज्यामितियों में समान रूप से सत्य हैं, बशर्ते कि रेखाएँ उस तरह से परिभाषित हों, और सिद्धांत को उच्च आयामों तक आसानी से बढ़ाया जा सकता है। फिर भी, क्योंकि इसके अनुप्रयोग और शिक्षाशास्त्र ठोस ज्यामिति से बंधे हैं, और क्योंकि सामान्यीकरण समतल में रेखाओं के कुछ महत्वपूर्ण गुणों को खो देता है, गोलाकार ज्यामिति सामान्यतः गोले पर किसी भी चीज़ को संदर्भित करने के लिए शब्द रेखा का उपयोग नहीं करती है। यदि ठोस ज्यामिति के भाग के रूप में विकसित किया जाता है, तो आसपास के अंतरिक्ष में बिन्दु, सीधी रेखाओं और विमानों (यूक्लिडियन अर्थ में) का उपयोग किया जाता है।

गोलाकार ज्यामिति में, कोणों को बड़े वृत्तों के बीच परिभाषित किया जाता है, जिसके परिणामस्वरूप गोलाकार त्रिकोण मिति होती है जो कई स्थितियों में सामान्य त्रिकोणमिति से विभिन्न होती है; उदाहरण के लिए, गोलाकार त्रिभुज के आंतरिक कोणों का योग 180 डिग्री से अधिक होता है।

समान ज्यामिति से संबंध

गोलाकार ज्यामिति दीर्घ वृत्ताकार ज्यामिति से निकटता से संबंधित है।

गोले से संबंधित महत्वपूर्ण ज्यामिति वास्तविक प्रक्षेपी तल की है; यह गोले पर एंटीपोडल बिंदु (विपरीत बिंदुओं के जोड़े) की पहचान करके प्राप्त किया जाता है। स्थानीय रूप से, प्रक्षेपी तल में गोलाकार ज्यामिति के सभी गुण होते हैं, किन्तु इसके अलग-अलग वैश्विक गुण होते हैं। विशेष रूप से, यह उन्मुखता है| गैर-उन्मुख, या तरफा, और गोले के विपरीत इसे 3-आयामी अंतरिक्ष में सतह के रूप में खुद किए बिना नहीं खींचा जा सकता है।

गोलाकार ज्यामिति की अवधारणाओं को भी गोलाकार पर लागू किया जा सकता है, चूंकि कुछ सूत्रों पर मामूली संशोधनों को लागू किया जाना चाहिए।

उच्च-आयामी गोलाकार ज्यामिति उपस्थित हैं; अण्डाकार ज्यामिति देखें।

इतिहास

ग्रीक पुरातनता

पुरातनता का सबसे पहला गणितीय कार्य जो हमारे समय तक आता है, वह है ऑन रोटेटिंग स्फीयर (Περὶ κινουμένης σφαίρας, पेरी किनौमेनस स्पैरास) पिटेन के ऑटोलिसस द्वारा, जो चौथी शताब्दी ईसा पूर्व के अंत में रहते थे।[1]

गोलाकार त्रिकोणमिति का अध्ययन प्रारंभिक ग्रीक गणित जैसे बिथिनिया के थियोडोसियस, यूनानी खगोलशास्त्री और गणितज्ञ द्वारा किया गया था, जिन्होंने गोले की ज्यामिति पर पुस्तक स्पैरिक्स लिखी थी,[2] और अलेक्जेंड्रिया के मेनेलॉस, जिन्होंने स्फेरिका नामक गोलाकार त्रिकोणमिति पर पुस्तक लिखी और मेनेलॉस प्रमेय विकसित की है।[3][4]

इस्लामिक दुनिया

इस्लामी गणितज्ञ अल-जयानी द्वारा लिखित द बुक ऑफ़ अननोन आर्क्स ऑफ़ ए स्फीयर गोलाकार त्रिकोणमिति पर पहला ग्रंथ माना जाता है। पुस्तक में दाएं हाथ के सूत्र हैं त्रिकोण, ज्या के सामान्य कानून, और ध्रुवीय त्रिकोण के माध्यम से गोलाकार त्रिकोण का समाधान है।[5]

1463 के आसपास लिखी गई रेजीओमोंटानस की किताब ऑन ट्रायंगल्स, यूरोप में पहली शुद्ध त्रिकोणमितीय कृति है। चूंकि, जेरोम कार्डानो ने सदी बाद उल्लेख किया कि गोलाकार त्रिकोणमिति पर इसकी अधिकांश सामग्री बारहवीं शताब्दी के अल-अंडालस विद्वान जाबिर इब्न अफला के काम से ली गई थी।[6]

यूलर का कार्य

लियोनहार्ड यूलर ने गोलीय ज्यामिति पर महत्वपूर्ण संस्मरणों की श्रृंखला प्रकाशित की:

  • एल. यूलर, प्रिंसिपल्स डे ला ट्रिगोनोमेट्री स्फेरिक टायर्स डे ला मेथोड डेस प्लस ग्रैंड्स एट डेस प्लस पेटिट्स, मेमोइरेस डे ल'एकेडेमी डेस साइंसेज डे बर्लिन 9 (1753), 1755, पी 233–257; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 27, पृ. 277–308।
  • एल. यूलर, एलिमेंट्स डे ला ट्रिगोनोमेट्री स्फेरोइडिक टायर्स डे ला मेथोड डेस प्लस ग्रैंड्स एट डेस प्लस पेटिट्स, मेमोइरेस डे ल'एकेडेमी डेस साइंसेज डे बर्लिन 9 (1754), 1755, पी 258–293; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 27, पृ. 309–339।
  • एल. यूलर, ऑन द रेक्टिफिएबल कर्व इन द स्फेरिकल सरफेस, नोवी कमेंटारी एकेडेमिया साइंटियारम पेट्रोपोलिटने 15, 1771, पीपी 195-216; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 28, पीपी 142–160।
  • एल. यूलर, डी मेंसुरा एंगुलोरम सॉलिडोरम, एक्टा एकेडमीई साइंटियारम इम्पीरियलिस पेट्रोपोलिटिना 2, 1781, पी 31-54; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 26, पृ. 204–223।
  • एल. यूलर, द कंस्ट्रक्शन ऑफ़ द प्रॉब्लम ऑफ़ ए असेट पप्पी अलेक्जेंड्रिनी, एक्टा एकेडेमिया साइंटियारम इम्पीरियलिस पेट्रोपोलिटिना 4, 1783, पी 91–96; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 26, पृ. 237–242।
  • एल. यूलर, जियोमेट्रिका एट स्पैरिका क्वैडम, मेमोइरेस डे ल'एकेडेमी डेस साइंसेज डी सेंट-पीटर्सबर्ग 5, 1815, पी 96–114; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 26, पृ. 344–358।
  • एल. यूलर, यूनिवर्सल गोलाकार त्रिकोणमिति, संक्षेप में और स्पष्ट रूप से पहले सिद्धांतों से प्राप्त, एक्टा अकादमी साइंटियारम इम्पीरियलिस पेट्रोपोलिटिना 3, 1782, पी 72-86; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 26, पृ. 224–236।
  • एल. यूलर, गोलाकार त्रिकोणों के क्षेत्र पर विभिन्न अटकलें, नोवा एक्टा अकादमी साइंटियारम इंपीरियलिस पेट्रोपोलिटिना 10, 1797, पी 47–62; ओपेरा ओम्निया, सीरीज 1, वॉल्यूम 29, पृ. 253–266।

गुण

गोलाकार ज्यामिति में निम्नलिखित गुण होते हैं:[7]

  • कोई भी दो बड़े वृत्त दो बिल्कुल विपरीत बिंदुओं पर प्रतिच्छेद करते हैं, जिन्हें प्रतिव्यासांत बिंदु कहा जाता है।
  • कोई भी दो बिंदु जो एंटीपोडल बिंदु नहीं हैं, अद्वितीय महान वृत्त का निर्धारण करते हैं।
  • कोण माप की प्राकृतिक इकाई (एक क्रांति पर आधारित), लंबाई की प्राकृतिक इकाई (एक बड़े वृत्त की परिधि पर आधारित) और क्षेत्रफल की प्राकृतिक इकाई (गोले के क्षेत्रफल पर आधारित) होती है।
  • प्रत्येक बड़ा वृत्त प्रतिव्यास बिंदुओं की जोड़ी से जुड़ा होता है, जिसे इसके ध्रुव कहा जाता है जो इसके लंबवत बड़े वृत्तों के सेट के सामान्य चौराहे हैं। इससे पता चलता है कि गोले की सतह पर दूरी माप के संबंध में बड़ा वृत्त वृत्त है: केंद्र से विशिष्ट दूरी पर सभी बिंदुओं का स्थान।
  • प्रत्येक बिंदु अद्वितीय महान वृत्त से जुड़ा होता है, जिसे बिंदु का ध्रुवीय वृत्त कहा जाता है, जो कि गोले के केंद्र के माध्यम से समतल पर बड़ा वृत्त होता है और दिए गए बिंदु के माध्यम से गोले के व्यास के लंबवत होता है।

जैसा कि बिंदुओं की जोड़ी द्वारा निर्धारित दो चाप हैं, जो एंटीपोडल नहीं हैं, महान चक्र पर वे निर्धारित करते हैं, तीन गैर-समरेख बिंदु अद्वितीय त्रिकोण का निर्धारण नहीं करते हैं। चूँकि, यदि हम केवल उन त्रिभुजों पर विचार करें जिनकी भुजाएँ बड़े वृत्तों के लघु चाप हैं, तो हमारे पास निम्नलिखित गुण हैं:

  • त्रिभुज के कोणों का योग 180° से अधिक और 540° से कम होता है।
  • एक त्रिभुज का क्षेत्रफल उसके 180° से अधिक के कोण योग के आधिक्य के समानुपाती होता है।
  • समान कोणों के योग वाले दो त्रिभुज क्षेत्रफल में बराबर होते हैं।
  • त्रिभुजों के क्षेत्रफल के लिए ऊपरी सीमा होती है।
  • दो प्रतिबिंबों की रचना (उत्पाद) को उनके अक्षों के प्रतिच्छेदन बिंदुओं में से किसी के बारे में रोटेशन के रूप में माना जा सकता है।
  • दो त्रिभुज अनुकूल होते हैं यदि और केवल यदि वे इस तरह के प्रतिबिंबों के परिमित उत्पाद के अनुरूप हों।
  • समान कोण वाले दो त्रिभुजअनुकूल होते हैं (अर्थात् सभी समरूप त्रिभुजअनुकूल होते हैं)।

यूक्लिड की अभिधारणाओं से संबंध

यदि रेखा को बड़े वृत्त के रूप में लिया जाता है, तो गोलीय ज्यामिति यूक्लिड की दो अभिधारणाओं का पालन करती है: दूसरी अभिधारणा (सीधी रेखा में परिमित सीधी रेखा को [विस्तार] करना) और चौथी अभिधारणा (कि सभी समकोण दूसरे के बराबर होते हैं) ). चूंकि, यह अन्य तीन का उल्लंघन करता है। पहले अभिधारणा के विपरीत (कि किन्हीं दो बिंदुओं के बीच, उनसे जुड़ने वाला अद्वितीय रेखा खंड है), किन्हीं भी दो बिंदुओं के बीच कोई अद्वितीय सबसे छोटा मार्ग नहीं है (एंटीपोडल बिंदु जैसे गोलाकार ग्लोब पर उत्तर और दक्षिण ध्रुव प्रति उदाहरण हैं) तीसरी अभिधारणा के विपरीत, गोले में इच्छानुसार से बड़ी त्रिज्या के वृत्त नहीं होते हैं; और समानांतर अभिधारणा पांचवीं (समानांतर) अभिधारणा के विपरीत, ऐसा कोई बिंदु नहीं है जिसके माध्यम से रेखा खींची जा सकती है जो किसी रेखा को कभी नहीं काटती है।[8]

एक कथन जो समांतर अभिधारणा के समतुल्य है, वह यह है कि एक त्रिभुज का अस्तित्व है जिसके कोणों का जोड़ 180° होता है। चूँकि गोलीय ज्यामिति समानांतर अभिधारणा का उल्लंघन करती है, गोले की सतह पर ऐसा कोई त्रिभुज उपस्थितनहीं है। एक गोले पर त्रिभुज के कोणों का योग होता है 180°(1 + 4f), जहाँ f गोले की सतह का अंश है जो त्रिभुज से घिरा है। f के किसी भी धनात्मक मान के लिए, यह 180° से अधिक है।

यह भी देखें

टिप्पणियाँ

  1. Rosenfeld, B.A (1988). गैर-यूक्लिडियन ज्यामिति का इतिहास: एक ज्यामितीय स्थान की अवधारणा का विकास. New York: Springer-Verlag. p. 2. ISBN 0-387-96458-4.
  2. "बिथिनिया के थियोडोसियस - बिथिनिया के थियोडोसियस की शब्दकोश परिभाषा". HighBeam Research. Retrieved 25 March 2015.
  3. O'Connor, John J.; Robertson, Edmund F., "Menelaus of Alexandria", MacTutor History of Mathematics archive, University of St Andrews
  4. "अलेक्जेंड्रिया के मेनेलॉस तथ्य, जानकारी, तस्वीरें". HighBeam Research. Retrieved 25 March 2015.
  5. School of Mathematical and Computational Sciences University of St Andrews
  6. "विक्टर जे. काट्ज़-प्रिंसटन यूनिवर्सिटी प्रेस". Archived from the original on 2016-10-01. Retrieved 2009-03-01.
  7. Merserve, pp. 281-282
  8. Gowers, Timothy, Mathematics: A Very Short Introduction, Oxford University Press, 2002: pp. 94 and 98.


संदर्भ


बाहरी कड़ियाँ