अण्डाकार ज्यामिति: Difference between revisions
No edit summary |
No edit summary |
||
(17 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Non-Euclidean geometry}} | {{Short description|Non-Euclidean geometry}} | ||
{{General geometry |branches}} | {{General geometry |branches}} | ||
अण्डाकार [[ ज्यामिति ]] एक ज्यामिति का उदाहरण है जिसमें यूक्लिड की | '''अण्डाकार [[ज्यामिति]]''' एक ज्यामिति का उदाहरण है जिसमें यूक्लिड की समानांतर अभिधारणा धारण नहीं करती है। इसके अतिरिक्त, [[ गोलाकार ज्यामिति |गोलाकार ज्यामिति]] की तरह, कोई समानांतर रेखाएँ नहीं हैं क्योंकि किन्हीं भी दो रेखाओं को एक दूसरे को प्रतिच्छेद करना चाहिए। चूंकि, गोलाकार ज्यामिति के विपरीत, दो रेखाओं को सामान्यतः एक बिंदु (दो के अतिरिक्त) पर प्रतिच्छेद करने के लिए माना जाता है। इस कारण से, इस लेख में वर्णित अण्डाकार ज्यामिति को कभी-कभी ''एकल अण्डाकार ज्यामिति'' कहा जाता है जबकि गोलाकार ज्यामिति को कभी-कभी ''डबल अण्डाकार ज्यामिति'' कहा जाता है। | ||
उन्नीसवीं शताब्दी में इस ज्यामिति की उपस्थिति ने सामान्यतः गैर-यूक्लिडियन ज्यामिति के विकास को प्रेरित किया, जिसमें | उन्नीसवीं शताब्दी में इस ज्यामिति की उपस्थिति ने सामान्यतः गैर-यूक्लिडियन ज्यामिति के विकास को प्रेरित किया, जिसमें अतिशयोक्तिपूर्ण ज्यामिति भी सम्मिलित थी। | ||
अण्डाकार ज्यामिति में विभिन्न प्रकार के गुण होते हैं जो मौलिक यूक्लिडियन समतल ज्यामिति से भिन्न होते हैं। उदाहरण के लिए, किसी त्रिभुज के आंतरिक [[ कोण | कोणों]] का योग हमेशा 180° से अधिक होता है। | अण्डाकार ज्यामिति में विभिन्न प्रकार के गुण होते हैं जो मौलिक यूक्लिडियन समतल ज्यामिति से भिन्न होते हैं। उदाहरण के लिए, किसी त्रिभुज के आंतरिक [[ कोण |कोणों]] का योग हमेशा 180° से अधिक होता है। | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
अण्डाकार ज्यामिति में, दी गई रेखा के लंबवत दो रेखाएँ प्रतिच्छेद करती हैं। वास्तविक में, एक ओर के सभी लंब एक ही बिंदु पर प्रतिच्छेद करते हैं जिसे उस रेखा का निरपेक्ष ध्रुव कहा जाता है। दूसरी ओर के लंब भी एक बिंदु पर प्रतिच्छेद करते हैं। चूंकि, गोलीय ज्यामिति के विपरीत, दोनों ओर ध्रुव समान होते हैं। ऐसा इसलिए है क्योंकि अण्डाकार ज्यामिति में कोई एंटीपोडल बिंदु नहीं होते हैं। उदाहरण के लिए, यह हमारे ज्यामिति में "बिंदुओं" को वास्तविक में एक गोले पर विपरीत बिंदुओं के जोड़े बनाकर हाइपरस्फेरिकल मॉडल (नीचे वर्णित) में प्राप्त किया जाता है। ऐसा करने का कारण यह है कि यह अण्डाकार ज्यामिति को इस स्वयंसिद्ध को संतुष्ट करने की अनुमति देता है कि किन्हीं दो बिंदुओं से निकलने वाली | अण्डाकार ज्यामिति में, दी गई रेखा के लंबवत दो रेखाएँ प्रतिच्छेद करती हैं। वास्तविक में, एक ओर के सभी लंब एक ही बिंदु पर प्रतिच्छेद करते हैं जिसे उस रेखा का निरपेक्ष ध्रुव कहा जाता है। दूसरी ओर के लंब भी एक बिंदु पर प्रतिच्छेद करते हैं। चूंकि, गोलीय ज्यामिति के विपरीत, दोनों ओर ध्रुव समान होते हैं। ऐसा इसलिए है क्योंकि अण्डाकार ज्यामिति में कोई एंटीपोडल बिंदु नहीं होते हैं। उदाहरण के लिए, यह हमारे ज्यामिति में "बिंदुओं" को वास्तविक में एक गोले पर विपरीत बिंदुओं के जोड़े बनाकर हाइपरस्फेरिकल मॉडल (नीचे वर्णित) में प्राप्त किया जाता है। ऐसा करने का कारण यह है कि यह अण्डाकार ज्यामिति को इस स्वयंसिद्ध को संतुष्ट करने की अनुमति देता है कि किन्हीं दो बिंदुओं से निकलने वाली अद्वितीय रेखा है। | ||
प्रत्येक बिंदु | प्रत्येक बिंदु पूर्ण ध्रुवीय रेखा के समान होता है जिसका यह पूर्ण ध्रुव है। इस ध्रुवीय रेखा पर कोई भी बिंदु ध्रुव के साथ निरपेक्ष संयुग्मी युग्म बनाता है। बिंदुओं का ऐसा युग्म लंबकोणीय होता है, और उनके बीच की दूरी चतुर्थांश होती है।<ref name=DS>[[Duncan Sommerville]] (1914) ''The Elements of Non-Euclidean Geometry'', chapter 3 Elliptic geometry, pp 88 to 122, [[George Bell & Sons]]</ref>{{rp|89}} | ||
बिंदुओं की | बिंदुओं की जोड़ी के बीच की दूरी उनके पूर्ण ध्रुवों के बीच के कोण के समानुपाती होती है।<ref name="DS" />{{rp|101}}जैसा कि एचएसएम कॉक्सेटर द्वारा समझाया गया है: | ||
: अण्डाकार नाम संभवतः भ्रामक है। यह | : अण्डाकार नाम संभवतः भ्रामक है। यह दीर्घवृत्त नामक वक्र के साथ कोई सीधा संबंध नहीं दर्शाता है, लेकिन केवल दूरगामी सादृश्य है। केंद्रीय शंकु को दीर्घवृत्त या अतिपरवलय कहा जाता है क्योंकि इसमें कोई स्पर्शोन्मुख या दो स्पर्शोन्मुख नहीं होते हैं। अनुरूप रूप से, गैर-यूक्लिडियन समतल को अण्डाकार या अतिशयोक्तिपूर्ण कहा जाता है क्योंकि इसकी प्रत्येक [[ रेखा (ज्यामिति) |रेखा (ज्यामिति)]] में अनंत पर कोई बिंदु या अनंत पर दो बिंदु नहीं होते हैं।<ref>Coxeter 1969 94</ref> | ||
Line 19: | Line 19: | ||
=== अण्डाकार समतल === | === अण्डाकार समतल === | ||
दीर्घ[[ वृत्त ]] तल | दीर्घ[[ वृत्त | वृत्त]] तल [[ मीट्रिक (गणित) |मीट्रिक (गणित)]] के साथ प्रदान किया गया वास्तविक प्रक्षेपी तल है: [[ केपलर |केपलर]] और [[ डाउनलोड |डाउनलोड]] ने [[ ग्नोमोनिक प्रक्षेपण |ग्नोमोनिक प्रक्षेपण]] का उपयोग समतल σ को स्फेयर स्पर्शरेखा पर बिंदुओं से संबंधित करने के लिए किया। O के गोलार्ध के केंद्र के साथ, σ में एक बिंदु P रेखा OP निर्धारित करता है जो गोलार्ध को काटती है, और कोई भी रेखा L ⊂ σ समतल OL निर्धारित करती है जो गोलार्ध को बड़े वृत्त के आधे हिस्से में काटती है। गोलार्द्ध O के माध्यम से कोई समतल से घिरा है और σ के समानांतर है। σ की कोई साधारण रेखा इस तल से मेल नहीं खाती; इसके अतिरिक्त अनंत पर रेखा σ से जोड़ दी जाती है। चूंकि σ के इस विस्तार में कोई भी रेखाओ के माध्यम से समतल के समान है, और चूंकि इस तरह के समतलों की कोई भी जोड़ी O के माध्यम से एक रेखा में प्रतिच्छेद करती है, इसलिए यह निष्कर्ष निकाला जा सकता है कि विस्तार में रेखाओं की कोई भी जोड़ी प्रतिच्छेद करती है: प्रतिच्छेद का बिंदु जहां समतल स्थित है प्रतिच्छेदन σ या रेखा से अनंत पर मिलता है। इस प्रकार प्रक्षेपी ज्यामिति का स्वयंसिद्ध, जिसके लिए समतल में रेखाओं के सभी युग्मों को प्रतिच्छेद करने की आवश्यकता होती है, की पुष्टि की जाती है।<ref>[[H. S. M. Coxeter]] (1965) Introduction to Geometry, page 92</ref> | ||
P और Q को σ में दिया गया है, उनके बीच 'अण्डाकार दूरी' कोण POQ का माप है, जिसे सामान्यतः रेडियन में लिया जाता है। [[ आर्थर केली | आर्थर केली]] ने अण्डाकार ज्यामिति के अध्ययन की प्रारंभ तब की जब उन्होंने "ऑन द डेफिनिशन ऑफ डिस्टेंस" लिखा।<ref>{{Citation | last1=Cayley | first1=Arthur | author1-link=Arthur Cayley | title= A sixth memoir upon quantics | jstor=108690 | year=1859 | journal=[[Philosophical Transactions of the Royal Society of London]] | issn=0080-4614 | volume=149 | pages=61–90 | doi=10.1098/rstl.1859.0004| url=https://zenodo.org/record/1432432 | doi-access=free }}</ref>{{rp|82}} ज्यामिति में अमूर्तता में इस उद्यम के बाद [[ फेलिक्स क्लेन | फेलिक्स क्लेन]] और [[ बर्नहार्ड रीमैन | बर्नहार्ड रीमैन]] ने [[ गैर-यूक्लिडियन ज्यामिति | गैर-यूक्लिडियन ज्यामिति]] और रीमैनियन ज्यामिति का नेतृत्व किया। | P और Q को σ में दिया गया है, उनके बीच 'अण्डाकार दूरी' कोण POQ का माप है, जिसे सामान्यतः रेडियन में लिया जाता है। [[ आर्थर केली |आर्थर केली]] ने अण्डाकार ज्यामिति के अध्ययन की प्रारंभ तब की जब उन्होंने "ऑन द डेफिनिशन ऑफ डिस्टेंस" लिखा।<ref>{{Citation | last1=Cayley | first1=Arthur | author1-link=Arthur Cayley | title= A sixth memoir upon quantics | jstor=108690 | year=1859 | journal=[[Philosophical Transactions of the Royal Society of London]] | issn=0080-4614 | volume=149 | pages=61–90 | doi=10.1098/rstl.1859.0004| url=https://zenodo.org/record/1432432 | doi-access=free }}</ref>{{rp|82}} ज्यामिति में अमूर्तता में इस उद्यम के बाद [[ फेलिक्स क्लेन |फेलिक्स क्लेन]] और [[ बर्नहार्ड रीमैन |बर्नहार्ड रीमैन]] ने [[ गैर-यूक्लिडियन ज्यामिति |गैर-यूक्लिडियन ज्यामिति]] और रीमैनियन ज्यामिति का नेतृत्व किया। | ||
=== यूक्लिडियन ज्यामिति के साथ तुलना === | === यूक्लिडियन ज्यामिति के साथ तुलना === | ||
{{comparison_of_geometries.svg}} | {{comparison_of_geometries.svg}} | ||
यूक्लिडियन ज्यामिति में, | यूक्लिडियन ज्यामिति में, आकृति को अनिश्चित काल तक बढ़ाया या घटाया जा सकता है, और परिणामी आंकड़े समान होते हैं, अर्थात, उनके समान कोण और समान आंतरिक अनुपात होते हैं। अण्डाकार ज्यामिति में, ऐसा नहीं है। उदाहरण के लिए, गोलाकार मॉडल में हम देख सकते हैं कि किन्हीं भी दो बिंदुओं के बीच की दूरी गोले की परिधि के आधे से भी कम होनी चाहिए (क्योंकि एंटीपोडल बिंदुओं की पहचान की जाती है)। इसलिए रेखा खंड को अनिश्चित काल तक बढ़ाया नहीं जा सकता है। जिस स्थान पर वह निवास करता है, उसके ज्यामितीय गुणों को मापने वाला जियोमीटर से माप के माध्यम से यह पता लगाया जा सकता है कि निश्चित दूरी का पैमाना है जो स्पेस का गुण है। इससे बहुत छोटे पैमाने पर, स्पेस लगभग सपाट है, ज्यामिति लगभग यूक्लिडियन है, और आंकड़े लगभग समान रहते हुए ऊपर और नीचे बढ़ाए जा सकते हैं। | ||
यूक्लिडियन ज्यामिति का | यूक्लिडियन ज्यामिति का बड़ा भाग सीधे अण्डाकार ज्यामिति पर ले जाता है। उदाहरण के लिए, यूक्लिड की पहली और चौथी अवधारणा, कि किन्हीं दो बिंदुओं के बीच अद्वितीय रेखा होती है और यह कि सभी समकोण समान होते हैं, अण्डाकार ज्यामिति में धारण करते हैं। अभिधारणा 3, कि कोई किसी भी दिए गए केंद्र और त्रिज्या के साथ वृत्त का निर्माण कर सकता है, विफल रहता है यदि किसी त्रिज्या को किसी वास्तविक संख्या के रूप में लिया जाता है, लेकिन यदि इसे किसी दिए गए रेखा खंड की लंबाई के रूप में लिया जाता है तो यह धारण करता है। इसलिए यूक्लिडियन ज्यामिति में कोई भी परिणाम जो इन तीन अभिधारणाओं से अनुसरण करता है, अण्डाकार ज्यामिति में धारण करेगा, जैसे कि तत्वों की पुस्तक I से प्रस्ताव 1, जिसमें कहा गया है कि किसी भी रेखा खंड को दिए जाने पर, एक समबाहु त्रिभुज का निर्माण इसके आधार के रूप में खंड के साथ किया जा सकता है। | ||
अण्डाकार ज्यामिति भी यूक्लिडियन ज्यामिति की तरह होती है, जिसमें | अण्डाकार ज्यामिति भी यूक्लिडियन ज्यामिति की तरह होती है, जिसमें स्पेस निरंतर, सजातीय, आइसोट्रोपिक और बिना सीमाओं के होता है। इसोट्रोपी की गारंटी चौथी अभिधारणा द्वारा दी जाती है, कि सभी समकोण बराबर होते हैं। समरूपता के उदाहरण के लिए, ध्यान दें कि यूक्लिड के प्रस्ताव I.1 का अर्थ है कि समान समबाहु त्रिभुज किसी भी स्थान पर बनाया जा सकता है, न कि केवल उन स्थानों में जो किसी तरह से विशेष हैं। सीमाओं की कमी दूसरी अभिधारणा, एक रेखा खंड की विस्तारशीलता से उत्पन्न होती है। | ||
यूक्लिडियन ज्यामिति से | यूक्लिडियन ज्यामिति से अण्डाकार ज्यामिति के अलग होने का विधि यह है कि त्रिभुज के आंतरिक कोणों का योग 180 डिग्री से अधिक होता है। गोलाकार मॉडल में, उदाहरण के लिए, त्रिभुज का निर्माण उन स्थानों पर शीर्षों के साथ किया जा सकता है जहां तीन धनात्मक कार्तीय समन्वय अक्ष गोले को काटते हैं, और इसके तीनों आंतरिक कोण 90 डिग्री हैं, जो 270 डिग्री के बराबर हैं। पर्याप्त रूप से छोटे त्रिभुजों के लिए, 180 डिग्री से अधिक के आधिक्य को इच्छानुकूल रूप से छोटा किया जा सकता है। | ||
[[ पाइथागोरस प्रमेय ]] अण्डाकार ज्यामिति में विफल रहता है। ऊपर वर्णित 90°–90°–90° त्रिभुज में, तीनों भुजाओं की लंबाई समान होती है, और फलस्वरूप | [[ पाइथागोरस प्रमेय | पाइथागोरस प्रमेय]] अण्डाकार ज्यामिति में विफल रहता है। ऊपर वर्णित 90°–90°–90° त्रिभुज में, तीनों भुजाओं की लंबाई समान होती है, और फलस्वरूप <math>a^2+b^2=c^2</math> संतुष्ट नहीं होती हैं. पायथागॉरियन परिणाम छोटे त्रिकोणों की सीमा में पुनर्प्राप्त किया जाता है। | ||
एक वृत्त की परिधि का उसके क्षेत्रफल से अनुपात यूक्लिडियन ज्यामिति की तुलना में छोटा होता है। | एक वृत्त की परिधि का उसके क्षेत्रफल से अनुपात यूक्लिडियन ज्यामिति की तुलना में छोटा होता है। सामान्यतः, क्षेत्र और मात्रा रैखिक आयामों की दूसरी और तीसरी शक्तियों के रूप में स्केल नहीं करते हैं। | ||
== अण्डाकार स्थान ( | == अण्डाकार स्थान (त्रि-आयामी स्थिति)== | ||
नोट: यह खंड विशेष रूप से | नोट: यह खंड विशेष रूप से त्रि-आयामी अण्डाकार ज्यामिति को संदर्भित करने के लिए अण्डाकार स्थान शब्द का उपयोग करता है। यह पिछले खंड के विपरीत है, जो लगभग 2-आयामी अण्डाकार ज्यामिति था। इस स्थान को स्पष्ट करने के लिए चतुष्कोणों का उपयोग किया जाता है। | ||
अण्डाकार स्थान का निर्माण त्रि-आयामी वेक्टर | अण्डाकार स्थान का निर्माण [[ तुल्यता वर्ग |तुल्यता वर्गों]] के साथ त्रि-आयामी वेक्टर स्पेस के निर्माण के समान ही किया जा सकता है। गोले के बड़े घेरे पर निर्देशित चाप का उपयोग करता है। जैसा कि निर्देशित रेखा खंड समानांतर (ज्यामिति) होते हैं, समान लंबाई के होते हैं, और समान रूप से उन्मुख होते हैं, इसलिए बड़े वृत्तों पर पाए जाने वाले निर्देशित चाप समतुल्य होते हैं, जब वे समान लंबाई, अभिविन्यास और बड़े वृत्त के होते हैं। समतुल्यता के ये संबंध क्रमशः त्रि-आयामी सदिश स्थान और अण्डाकार स्थान उत्पन्न करते हैं। | ||
[[ विलियम रोवन हैमिल्टन ]] के वेक्टर बीजगणित के माध्यम से अण्डाकार | [[ विलियम रोवन हैमिल्टन | विलियम रोवन हैमिल्टन]] के वेक्टर बीजगणित के माध्यम से अण्डाकार स्पेस संरचना तक पहुंच प्रदान की जाती है: उन्होंने एक क्षेत्र को ऋणात्मक एक के वर्गमूल के डोमेन के रूप में देखा। तब यूलर का सूत्र <math>\exp(\theta r) = \cos \theta + r \sin \theta </math> (जहाँ r गोले पर है) 1 और r वाले समतल में बड़े वृत्त का प्रतिनिधित्व करता है। विपरीत बिंदु r और –r विपरीत दिशाओं वाले हलकों के अनुरूप हैं। θ और φ के बीच एक चाप 0 और φ - θ के बीच एक के साथ समतुल्य है। अण्डाकार स्थान में, चाप की लंबाई π से कम है, इसलिए चापों को [0, π) या (-π/2, π/2] में θ के साथ पैरामीट्रिज किया जा सकता है।<ref>[[Rafael Artzy]] (1965) ''Linear Geometry'', Chapter 3–8 Quaternions and Elliptic Three-space, pp. 186–94,[[Addison-Wesley]]</ref> | ||
<math>z = \exp(\theta r), \ z^* = \exp(-\theta r) \implies z z^* = 1 .</math> के लिये ऐसा कहा जाता है कि z का मापांक या मानदंड है (हैमिल्टन ने इसे z का टेन्सर कहा है)। लेकिन चूँकि r 3-स्पेस में गोले के ऊपर है, exp(θ r) 4-स्पेस में गोले के ऊपर है, जिसे अब 3-गोला कहा जाता है, क्योंकि इसकी सतह के तीन आयाम हैं। हैमिल्टन ने अपने बीजगणित चतुष्कोणों को बुलाया और यह जल्दी से गणित का उपयोगी और प्रसिद्ध उपकरण बन गया। इसका चार आयामों का स्थान ध्रुवीय निर्देशांक <math>t \exp(\theta r),</math> धनात्मक वास्तविक संख्या में t के साथ में विकसित होता है। | |||
पृथ्वी या [[ आकाश |आकाशीय]] गोले पर त्रिकोणमिति करते समय, त्रिभुजों की भुजाएँ बड़े वृत्ताकार चाप होती हैं। चतुष्कोणों की पहली सफलता बीजगणित के लिए [[ गोलाकार त्रिकोणमिति |गोलाकार त्रिकोणमिति]] का प्रतिपादन था।<ref>W.R. Hamilton(1844 to 1850) [http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/OnQuat/ On quaternions or a new system of imaginaries in algebra], [[Philosophical Magazine]], link to David R. Wilkins collection at [[Trinity College, Dublin]]</ref> हैमिल्टन ने मानदंड के चतुर्भुज को वर्सेज कहा, और ये अण्डाकार स्थान के बिंदु हैं। | |||
{{mvar|r}} निश्चित के साथ, वर्सेज | |||
:<math>e^{ar}, \quad 0 \le a < \pi</math> | :<math>e^{ar}, \quad 0 \le a < \pi</math> | ||
एक अण्डाकार रेखा बनाएँ। | एक अण्डाकार रेखा बनाएँ। <math>e^{ar}</math> से 1 की दूरी {{math|''a''}} है। इच्छानुसार वर्सेज {{mvar|''u''}} के लिए, दूरी वह θ होगी जिसके लिए {{math|1=cos θ = (''u'' + ''u''<sup>∗</sup>)/2}} होगा चूँकि यह किसी भी चतुष्कोण के अदिश भाग का सूत्र है। | ||
चतुष्कोणीय मानचित्रण द्वारा | चतुष्कोणीय मानचित्रण द्वारा अण्डाकार गति का वर्णन किया गया है | ||
:<math>q \mapsto u q v,</math> | :<math>q \mapsto u q v,</math> जहां {{mvar|u}} और {{mvar|v}} निश्चित वर्सेज हैं। | ||
बिंदुओं के बीच की दूरियां | बिंदुओं के बीच की दूरियां अण्डाकार गति के छवि बिंदुओं के समान होती हैं। उस स्थिति में {{mvar|u}} और {{mvar|v}} एक दूसरे के चतुष्कोणीय संयुग्म हैं, गति चतुष्कोणीय और स्थानिक घुमाव है, और उनका सदिश भाग घूर्णन की धुरी है। यदि {{math|1=''u'' = 1}} अण्डाकार गति को [[ बाएँ और दाएँ (बीजगणित) |बाएँ और दाएँ (बीजगणित)]] आइसोक्लिनिक रोटेशन, या पैराटेक्सी कहा जाता है। स्थिति {{math|1=''v'' = 1}} बाएं क्लिफर्ड अनुवाद के अनुरूप है। | ||
वर्सेज के माध्यम से अण्डाकार रेखाएँ {{mvar|u}} स्वरूप का हो सकता है | |||
:<math>\lbrace u e^{ar} : 0 \le a < \pi \rbrace</math> या <math>\lbrace e^{ar}u : 0 \le a < \pi \rbrace</math> | :<math>\lbrace u e^{ar} : 0 \le a < \pi \rbrace</math> या <math>\lbrace e^{ar}u : 0 \le a < \pi \rbrace</math> निश्चित {{mvar|r}} के लिए. | ||
वे | वे 1 के माध्यम से दीर्घवृत्त रेखा के साथ {{mvar|u}} के दाएं और बाएं क्लिफोर्ड अनुवाद हैं । | ||
अण्डाकार स्थान | |||
अण्डाकार स्थान {{math|S<sup>3</sup>}} से एंटीपोडल बिंदुओं की पहचान करके से बनता है।<ref>{{Citation | |||
|author-first=Georges | |author-first=Georges | ||
|author-last=Lemaître | |author-last=Lemaître | ||
Line 73: | Line 75: | ||
|issn = 0370-2138 | |issn = 0370-2138 | ||
}}</ref> | }}</ref> | ||
अण्डाकार स्थान के | अण्डाकार स्पेस में विशेष संरचनाएं होती हैं जिन्हें [[ क्लिफर्ड समानांतर |क्लिफर्ड समानांतर]] और क्लिफर्ड सतह कहा जाता है। | ||
स्पेस के वैकल्पिक प्रतिनिधित्व के लिए अण्डाकार स्थान के वर्सेज बिंदुओं को [[ केली रूपांतरण |केली रूपांतरण]] द्वारा ℝ<sup>3</sup> में मैप किया जाता है। | |||
== उच्च-आयामी स्थान == | == उच्च-आयामी स्थान == | ||
=== हाइपरस्फेरिकल मॉडल === | === हाइपरस्फेरिकल मॉडल === | ||
हाइपरस्फेरिकल मॉडल उच्च आयामों के लिए गोलाकार मॉडल का सामान्यीकरण है। | हाइपरस्फेरिकल मॉडल उच्च आयामों के लिए गोलाकार मॉडल का सामान्यीकरण है। n-डायमेंशनल एलिप्टिक स्पेस के बिंदु R<sup>n+1</sup> में यूनिट वैक्टर {{math|(''x'', −''x'')}} के जोड़े हैं, अर्थात् यूनिट बॉल की सतह पर {{nowrap|(''n'' + 1)}}-डायमेंशनल स्पेस (एन-डायमेंशनल हाइपरस्फीयर) में एंटीपोडल बिंदुओं के जोड़े हैं। इस मॉडल में रेखाएँ महान वृत्त हैं, अर्थात्, हाइपरस्फीयर के चौराहों के साथ डायमेंशन n के फ्लैट हाइपरसर्फ्स मूल से निकलते हैं। | ||
=== प्रक्षेपी अण्डाकार ज्यामिति === | === प्रक्षेपी अण्डाकार ज्यामिति === | ||
अण्डाकार ज्यामिति के प्रक्षेपी मॉडल में, एन-डायमेंशनल [[ वास्तविक प्रक्षेप्य स्थान ]] के बिंदुओं को मॉडल के बिंदुओं के रूप में उपयोग किया जाता है। यह | अण्डाकार ज्यामिति के प्रक्षेपी मॉडल में, एन-डायमेंशनल [[ वास्तविक प्रक्षेप्य स्थान |वास्तविक प्रक्षेप्य स्पेस]] के बिंदुओं को मॉडल के बिंदुओं के रूप में उपयोग किया जाता है। यह अमूर्त अण्डाकार ज्यामिति का मॉडल करता है जिसे [[ प्रक्षेपी ज्यामिति |प्रक्षेपी ज्यामिति]] के रूप में भी जाना जाता है। | ||
n-डायमेंशनल प्रोजेक्टिव स्पेस के बिंदुओं को {{nowrap|(''n'' + 1)}} -डायमेंशनल स्पेस में मूल के माध्यम से लाइनों के साथ पहचाना जा सकता है, और R<sup>n+1</sup> में गैर-शून्य वैक्टर द्वारा गैर-विशिष्ट रूप से प्रदर्शित किया जा सकता है, इस समझ के साथ कि {{mvar|u}} और {{math|λ''u''}}, किसी भी अशून्य अदिश के लिए {{math|λ}}, एक ही बिंदु का प्रतिनिधित्व करते हैं। दूरी को मीट्रिक का उपयोग करके परिभाषित किया गया है | |||
:<math>d(u, v) = \arccos \left(\frac{|u \cdot v|}{\|u\|\ \|v\|}\right);</math> | :<math>d(u, v) = \arccos \left(\frac{|u \cdot v|}{\|u\|\ \|v\|}\right);</math> | ||
अर्थात्, दो बिंदुओं के बीच की दूरी R में उनकी संगत रेखाओं के बीच का कोण है | अर्थात्, दो बिंदुओं के बीच की दूरी R<sup>n+1</sup> में उनकी संगत रेखाओं के बीच का कोण है. दूरी सूत्र प्रत्येक चर में सजातीय है, {{math|1=''d''(λ''u'', μ''v'') = ''d''(''u'', ''v'')}} के साथ यदि {{math|λ}} और {{math|μ}} गैर-शून्य स्केलर हैं, इसलिए यह प्रक्षेप्य स्पेस के बिंदुओं पर दूरी को परिभाषित करता है। | ||
प्रक्षेपी अण्डाकार ज्यामिति की | प्रक्षेपी अण्डाकार ज्यामिति की उल्लेखनीय गुण यह है कि समतल जैसे आयामों के लिए भी ज्यामिति गैर-उन्मुख है। यह उनकी पहचान करके दक्षिणावर्त और वामावर्त घुमाव के बीच के अंतर को समाप्त कर देता है। | ||
=== स्टीरियोग्राफिक मॉडल === | === स्टीरियोग्राफिक मॉडल === | ||
हाइपरस्फेरिकल मॉडल के समान स्थान का प्रतिनिधित्व करने वाला मॉडल [[ त्रिविम प्रक्षेपण ]] के माध्यम से प्राप्त किया जा सकता है। | हाइपरस्फेरिकल मॉडल के समान स्थान का प्रतिनिधित्व करने वाला मॉडल [[ त्रिविम प्रक्षेपण |स्टीरियोग्राफिक प्रक्षेपण]] के माध्यम से प्राप्त किया जा सकता है। मान लीजिए कि E<sup>n</sup> {{nowrap|'''R'''<sup>''n''</sup> ∪ {∞},}} को निरूपित करता है, अर्थात्, {{mvar|n}}-विमीय वास्तविक स्थान अनंत पर बिंदु द्वारा विस्तारित है। हम E<sup>n</sup> पर मेट्रिक, कॉर्डल मेट्रिक को परिभाषित कर सकते हैं | ||
:<math>\delta(u, v)=\frac{2 \|u-v\|}{\sqrt{(1+\|u\|^2)(1+\|v\|^2)}}</math> | :<math>\delta(u, v)=\frac{2 \|u-v\|}{\sqrt{(1+\|u\|^2)(1+\|v\|^2)}}</math> | ||
जहां {{mvar|u}} और {{mvar|v}} R<sup>n</sup> में कोई दो सदिश हैं और <math>\|\cdot\|</math> सामान्य यूक्लिडियन मानदंड है। हम भी परिभाषित करते हैं | |||
:<math>\delta(u, \infty)=\delta(\infty, u) = \frac{2}{\sqrt{1+\|u\|^2}}.</math> | :<math>\delta(u, \infty)=\delta(\infty, u) = \frac{2}{\sqrt{1+\|u\|^2}}.</math> | ||
परिणाम | परिणाम E<sup>n</sup> पर एक मीट्रिक स्थान है, जो हाइपरस्फेरिकल मॉडल पर संबंधित बिंदुओं की एक जीवा के साथ दूरी का प्रतिनिधित्व करता है, जिसके लिए यह स्टीरियोग्राफिक प्रोजेक्शन द्वारा विशेष रूप से मैप करता है। यदि हम मीट्रिक का उपयोग करते हैं तो हमें गोलीय ज्यामिति का मॉडल प्राप्त होता है | ||
:<math>d(u, v) = 2 \arcsin\left(\frac{\delta(u,v)}{2}\right).</math> | :<math>d(u, v) = 2 \arcsin\left(\frac{\delta(u,v)}{2}\right).</math> | ||
अण्डाकार ज्यामिति इससे एंटीपोडल पॉइंट {{mvar|u}} और {{math|−''u''{{hsp}}/{{hsp}}‖''u''‖<sup>2</sup>}} की पहचान करके और वी से इस जोड़ी की दूरी को इन दो बिंदुओं में से प्रत्येक के लिए वी से न्यूनतम दूरी के रूप में ले कर प्राप्त की जाती है। | |||
== स्व-संगति == | == स्व-संगति == | ||
क्योंकि गोलाकार | क्योंकि गोलाकार अण्डाकार ज्यामिति को मॉडल किया जा सकता है, उदाहरण के लिए, यूक्लिडियन स्पेस के गोलाकार उप-स्थान, यह इस प्रकार है कि यदि यूक्लिडियन ज्यामिति स्व-सुसंगत है, तो गोलाकार अण्डाकार ज्यामिति भी है। इसलिए यूक्लिडियन ज्यामिति की अन्य चार अभिधारणाओं के आधार पर समानांतर अभिधारणा को सिद्ध करना संभव नहीं है। | ||
[[ अल्फ्रेड टार्स्की ]] ने | [[ अल्फ्रेड टार्स्की | अल्फ्रेड टार्स्की]] ने सिद्ध किया कि प्रारंभिक यूक्लिडियन ज्यामिति पूर्ण सिद्धांत है: एक एल्गोरिदम है जो प्रत्येक प्रस्ताव के लिए इसे सत्य या असत्य दिखा सकता है।<ref>Tarski (1951)</ref> (यह गोडेल की अपूर्णता प्रमेय का उल्लंघन नहीं करता है। क्योंकि यूक्लिडियन ज्यामिति प्रमेय को लागू करने के लिए पर्याप्त मात्रा में पीनो अंकगणित का वर्णन नहीं कर सकती है।<ref>Franzén 2005, pp. 25–26.</ref>) इसलिए यह अनुसरण करता है कि प्राथमिक अण्डाकार ज्यामिति भी आत्मनिर्भर और पूर्ण है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 112: | Line 114: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{Reflist}} | {{Reflist}} | ||
==संदर्भ== | ==संदर्भ== | ||
Line 125: | Line 126: | ||
*{{cite book|first=Torkel|last= Franzén|title=Gödel's Theorem: An Incomplete Guide to its Use and Abuse|url=https://archive.org/details/gdelstheoreminco0000fran|url-access=registration|publisher= AK Peters|year=2005|isbn= 1-56881-238-8}} | *{{cite book|first=Torkel|last= Franzén|title=Gödel's Theorem: An Incomplete Guide to its Use and Abuse|url=https://archive.org/details/gdelstheoreminco0000fran|url-access=registration|publisher= AK Peters|year=2005|isbn= 1-56881-238-8}} | ||
*[[Alfred North Whitehead]] (1898) [http://projecteuclid.org/euclid.chmm/1263316509 Universal Algebra] {{Webarchive|url=https://web.archive.org/web/20140903110153/http://projecteuclid.org/euclid.chmm/1263316509 |date=2014-09-03 }}, Book VI Chapter 2: Elliptic Geometry, pp 371–98. | *[[Alfred North Whitehead]] (1898) [http://projecteuclid.org/euclid.chmm/1263316509 Universal Algebra] {{Webarchive|url=https://web.archive.org/web/20140903110153/http://projecteuclid.org/euclid.chmm/1263316509 |date=2014-09-03 }}, Book VI Chapter 2: Elliptic Geometry, pp 371–98. | ||
==बाहरी कड़ियाँ== | ==बाहरी कड़ियाँ== | ||
*{{Commons category-inline}} | *{{Commons category-inline}} | ||
[[Category:Created On 27/12/2022]] | [[Category:Created On 27/12/2022]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Webarchive template wayback links]] |
Latest revision as of 12:24, 2 November 2023
ज्यामिति |
---|
जियोमेटर्स |
अण्डाकार ज्यामिति एक ज्यामिति का उदाहरण है जिसमें यूक्लिड की समानांतर अभिधारणा धारण नहीं करती है। इसके अतिरिक्त, गोलाकार ज्यामिति की तरह, कोई समानांतर रेखाएँ नहीं हैं क्योंकि किन्हीं भी दो रेखाओं को एक दूसरे को प्रतिच्छेद करना चाहिए। चूंकि, गोलाकार ज्यामिति के विपरीत, दो रेखाओं को सामान्यतः एक बिंदु (दो के अतिरिक्त) पर प्रतिच्छेद करने के लिए माना जाता है। इस कारण से, इस लेख में वर्णित अण्डाकार ज्यामिति को कभी-कभी एकल अण्डाकार ज्यामिति कहा जाता है जबकि गोलाकार ज्यामिति को कभी-कभी डबल अण्डाकार ज्यामिति कहा जाता है।
उन्नीसवीं शताब्दी में इस ज्यामिति की उपस्थिति ने सामान्यतः गैर-यूक्लिडियन ज्यामिति के विकास को प्रेरित किया, जिसमें अतिशयोक्तिपूर्ण ज्यामिति भी सम्मिलित थी।
अण्डाकार ज्यामिति में विभिन्न प्रकार के गुण होते हैं जो मौलिक यूक्लिडियन समतल ज्यामिति से भिन्न होते हैं। उदाहरण के लिए, किसी त्रिभुज के आंतरिक कोणों का योग हमेशा 180° से अधिक होता है।
परिभाषाएँ
अण्डाकार ज्यामिति में, दी गई रेखा के लंबवत दो रेखाएँ प्रतिच्छेद करती हैं। वास्तविक में, एक ओर के सभी लंब एक ही बिंदु पर प्रतिच्छेद करते हैं जिसे उस रेखा का निरपेक्ष ध्रुव कहा जाता है। दूसरी ओर के लंब भी एक बिंदु पर प्रतिच्छेद करते हैं। चूंकि, गोलीय ज्यामिति के विपरीत, दोनों ओर ध्रुव समान होते हैं। ऐसा इसलिए है क्योंकि अण्डाकार ज्यामिति में कोई एंटीपोडल बिंदु नहीं होते हैं। उदाहरण के लिए, यह हमारे ज्यामिति में "बिंदुओं" को वास्तविक में एक गोले पर विपरीत बिंदुओं के जोड़े बनाकर हाइपरस्फेरिकल मॉडल (नीचे वर्णित) में प्राप्त किया जाता है। ऐसा करने का कारण यह है कि यह अण्डाकार ज्यामिति को इस स्वयंसिद्ध को संतुष्ट करने की अनुमति देता है कि किन्हीं दो बिंदुओं से निकलने वाली अद्वितीय रेखा है।
प्रत्येक बिंदु पूर्ण ध्रुवीय रेखा के समान होता है जिसका यह पूर्ण ध्रुव है। इस ध्रुवीय रेखा पर कोई भी बिंदु ध्रुव के साथ निरपेक्ष संयुग्मी युग्म बनाता है। बिंदुओं का ऐसा युग्म लंबकोणीय होता है, और उनके बीच की दूरी चतुर्थांश होती है।[1]: 89
बिंदुओं की जोड़ी के बीच की दूरी उनके पूर्ण ध्रुवों के बीच के कोण के समानुपाती होती है।[1]: 101 जैसा कि एचएसएम कॉक्सेटर द्वारा समझाया गया है:
- अण्डाकार नाम संभवतः भ्रामक है। यह दीर्घवृत्त नामक वक्र के साथ कोई सीधा संबंध नहीं दर्शाता है, लेकिन केवल दूरगामी सादृश्य है। केंद्रीय शंकु को दीर्घवृत्त या अतिपरवलय कहा जाता है क्योंकि इसमें कोई स्पर्शोन्मुख या दो स्पर्शोन्मुख नहीं होते हैं। अनुरूप रूप से, गैर-यूक्लिडियन समतल को अण्डाकार या अतिशयोक्तिपूर्ण कहा जाता है क्योंकि इसकी प्रत्येक रेखा (ज्यामिति) में अनंत पर कोई बिंदु या अनंत पर दो बिंदु नहीं होते हैं।[2]
दो आयाम
अण्डाकार समतल
दीर्घ वृत्त तल मीट्रिक (गणित) के साथ प्रदान किया गया वास्तविक प्रक्षेपी तल है: केपलर और डाउनलोड ने ग्नोमोनिक प्रक्षेपण का उपयोग समतल σ को स्फेयर स्पर्शरेखा पर बिंदुओं से संबंधित करने के लिए किया। O के गोलार्ध के केंद्र के साथ, σ में एक बिंदु P रेखा OP निर्धारित करता है जो गोलार्ध को काटती है, और कोई भी रेखा L ⊂ σ समतल OL निर्धारित करती है जो गोलार्ध को बड़े वृत्त के आधे हिस्से में काटती है। गोलार्द्ध O के माध्यम से कोई समतल से घिरा है और σ के समानांतर है। σ की कोई साधारण रेखा इस तल से मेल नहीं खाती; इसके अतिरिक्त अनंत पर रेखा σ से जोड़ दी जाती है। चूंकि σ के इस विस्तार में कोई भी रेखाओ के माध्यम से समतल के समान है, और चूंकि इस तरह के समतलों की कोई भी जोड़ी O के माध्यम से एक रेखा में प्रतिच्छेद करती है, इसलिए यह निष्कर्ष निकाला जा सकता है कि विस्तार में रेखाओं की कोई भी जोड़ी प्रतिच्छेद करती है: प्रतिच्छेद का बिंदु जहां समतल स्थित है प्रतिच्छेदन σ या रेखा से अनंत पर मिलता है। इस प्रकार प्रक्षेपी ज्यामिति का स्वयंसिद्ध, जिसके लिए समतल में रेखाओं के सभी युग्मों को प्रतिच्छेद करने की आवश्यकता होती है, की पुष्टि की जाती है।[3]
P और Q को σ में दिया गया है, उनके बीच 'अण्डाकार दूरी' कोण POQ का माप है, जिसे सामान्यतः रेडियन में लिया जाता है। आर्थर केली ने अण्डाकार ज्यामिति के अध्ययन की प्रारंभ तब की जब उन्होंने "ऑन द डेफिनिशन ऑफ डिस्टेंस" लिखा।[4]: 82 ज्यामिति में अमूर्तता में इस उद्यम के बाद फेलिक्स क्लेन और बर्नहार्ड रीमैन ने गैर-यूक्लिडियन ज्यामिति और रीमैनियन ज्यामिति का नेतृत्व किया।
यूक्लिडियन ज्यामिति के साथ तुलना
यूक्लिडियन ज्यामिति में, आकृति को अनिश्चित काल तक बढ़ाया या घटाया जा सकता है, और परिणामी आंकड़े समान होते हैं, अर्थात, उनके समान कोण और समान आंतरिक अनुपात होते हैं। अण्डाकार ज्यामिति में, ऐसा नहीं है। उदाहरण के लिए, गोलाकार मॉडल में हम देख सकते हैं कि किन्हीं भी दो बिंदुओं के बीच की दूरी गोले की परिधि के आधे से भी कम होनी चाहिए (क्योंकि एंटीपोडल बिंदुओं की पहचान की जाती है)। इसलिए रेखा खंड को अनिश्चित काल तक बढ़ाया नहीं जा सकता है। जिस स्थान पर वह निवास करता है, उसके ज्यामितीय गुणों को मापने वाला जियोमीटर से माप के माध्यम से यह पता लगाया जा सकता है कि निश्चित दूरी का पैमाना है जो स्पेस का गुण है। इससे बहुत छोटे पैमाने पर, स्पेस लगभग सपाट है, ज्यामिति लगभग यूक्लिडियन है, और आंकड़े लगभग समान रहते हुए ऊपर और नीचे बढ़ाए जा सकते हैं।
यूक्लिडियन ज्यामिति का बड़ा भाग सीधे अण्डाकार ज्यामिति पर ले जाता है। उदाहरण के लिए, यूक्लिड की पहली और चौथी अवधारणा, कि किन्हीं दो बिंदुओं के बीच अद्वितीय रेखा होती है और यह कि सभी समकोण समान होते हैं, अण्डाकार ज्यामिति में धारण करते हैं। अभिधारणा 3, कि कोई किसी भी दिए गए केंद्र और त्रिज्या के साथ वृत्त का निर्माण कर सकता है, विफल रहता है यदि किसी त्रिज्या को किसी वास्तविक संख्या के रूप में लिया जाता है, लेकिन यदि इसे किसी दिए गए रेखा खंड की लंबाई के रूप में लिया जाता है तो यह धारण करता है। इसलिए यूक्लिडियन ज्यामिति में कोई भी परिणाम जो इन तीन अभिधारणाओं से अनुसरण करता है, अण्डाकार ज्यामिति में धारण करेगा, जैसे कि तत्वों की पुस्तक I से प्रस्ताव 1, जिसमें कहा गया है कि किसी भी रेखा खंड को दिए जाने पर, एक समबाहु त्रिभुज का निर्माण इसके आधार के रूप में खंड के साथ किया जा सकता है।
अण्डाकार ज्यामिति भी यूक्लिडियन ज्यामिति की तरह होती है, जिसमें स्पेस निरंतर, सजातीय, आइसोट्रोपिक और बिना सीमाओं के होता है। इसोट्रोपी की गारंटी चौथी अभिधारणा द्वारा दी जाती है, कि सभी समकोण बराबर होते हैं। समरूपता के उदाहरण के लिए, ध्यान दें कि यूक्लिड के प्रस्ताव I.1 का अर्थ है कि समान समबाहु त्रिभुज किसी भी स्थान पर बनाया जा सकता है, न कि केवल उन स्थानों में जो किसी तरह से विशेष हैं। सीमाओं की कमी दूसरी अभिधारणा, एक रेखा खंड की विस्तारशीलता से उत्पन्न होती है।
यूक्लिडियन ज्यामिति से अण्डाकार ज्यामिति के अलग होने का विधि यह है कि त्रिभुज के आंतरिक कोणों का योग 180 डिग्री से अधिक होता है। गोलाकार मॉडल में, उदाहरण के लिए, त्रिभुज का निर्माण उन स्थानों पर शीर्षों के साथ किया जा सकता है जहां तीन धनात्मक कार्तीय समन्वय अक्ष गोले को काटते हैं, और इसके तीनों आंतरिक कोण 90 डिग्री हैं, जो 270 डिग्री के बराबर हैं। पर्याप्त रूप से छोटे त्रिभुजों के लिए, 180 डिग्री से अधिक के आधिक्य को इच्छानुकूल रूप से छोटा किया जा सकता है।
पाइथागोरस प्रमेय अण्डाकार ज्यामिति में विफल रहता है। ऊपर वर्णित 90°–90°–90° त्रिभुज में, तीनों भुजाओं की लंबाई समान होती है, और फलस्वरूप संतुष्ट नहीं होती हैं. पायथागॉरियन परिणाम छोटे त्रिकोणों की सीमा में पुनर्प्राप्त किया जाता है।
एक वृत्त की परिधि का उसके क्षेत्रफल से अनुपात यूक्लिडियन ज्यामिति की तुलना में छोटा होता है। सामान्यतः, क्षेत्र और मात्रा रैखिक आयामों की दूसरी और तीसरी शक्तियों के रूप में स्केल नहीं करते हैं।
अण्डाकार स्थान (त्रि-आयामी स्थिति)
नोट: यह खंड विशेष रूप से त्रि-आयामी अण्डाकार ज्यामिति को संदर्भित करने के लिए अण्डाकार स्थान शब्द का उपयोग करता है। यह पिछले खंड के विपरीत है, जो लगभग 2-आयामी अण्डाकार ज्यामिति था। इस स्थान को स्पष्ट करने के लिए चतुष्कोणों का उपयोग किया जाता है।
अण्डाकार स्थान का निर्माण तुल्यता वर्गों के साथ त्रि-आयामी वेक्टर स्पेस के निर्माण के समान ही किया जा सकता है। गोले के बड़े घेरे पर निर्देशित चाप का उपयोग करता है। जैसा कि निर्देशित रेखा खंड समानांतर (ज्यामिति) होते हैं, समान लंबाई के होते हैं, और समान रूप से उन्मुख होते हैं, इसलिए बड़े वृत्तों पर पाए जाने वाले निर्देशित चाप समतुल्य होते हैं, जब वे समान लंबाई, अभिविन्यास और बड़े वृत्त के होते हैं। समतुल्यता के ये संबंध क्रमशः त्रि-आयामी सदिश स्थान और अण्डाकार स्थान उत्पन्न करते हैं।
विलियम रोवन हैमिल्टन के वेक्टर बीजगणित के माध्यम से अण्डाकार स्पेस संरचना तक पहुंच प्रदान की जाती है: उन्होंने एक क्षेत्र को ऋणात्मक एक के वर्गमूल के डोमेन के रूप में देखा। तब यूलर का सूत्र (जहाँ r गोले पर है) 1 और r वाले समतल में बड़े वृत्त का प्रतिनिधित्व करता है। विपरीत बिंदु r और –r विपरीत दिशाओं वाले हलकों के अनुरूप हैं। θ और φ के बीच एक चाप 0 और φ - θ के बीच एक के साथ समतुल्य है। अण्डाकार स्थान में, चाप की लंबाई π से कम है, इसलिए चापों को [0, π) या (-π/2, π/2] में θ के साथ पैरामीट्रिज किया जा सकता है।[5]
के लिये ऐसा कहा जाता है कि z का मापांक या मानदंड है (हैमिल्टन ने इसे z का टेन्सर कहा है)। लेकिन चूँकि r 3-स्पेस में गोले के ऊपर है, exp(θ r) 4-स्पेस में गोले के ऊपर है, जिसे अब 3-गोला कहा जाता है, क्योंकि इसकी सतह के तीन आयाम हैं। हैमिल्टन ने अपने बीजगणित चतुष्कोणों को बुलाया और यह जल्दी से गणित का उपयोगी और प्रसिद्ध उपकरण बन गया। इसका चार आयामों का स्थान ध्रुवीय निर्देशांक धनात्मक वास्तविक संख्या में t के साथ में विकसित होता है।
पृथ्वी या आकाशीय गोले पर त्रिकोणमिति करते समय, त्रिभुजों की भुजाएँ बड़े वृत्ताकार चाप होती हैं। चतुष्कोणों की पहली सफलता बीजगणित के लिए गोलाकार त्रिकोणमिति का प्रतिपादन था।[6] हैमिल्टन ने मानदंड के चतुर्भुज को वर्सेज कहा, और ये अण्डाकार स्थान के बिंदु हैं।
r निश्चित के साथ, वर्सेज
एक अण्डाकार रेखा बनाएँ। से 1 की दूरी a है। इच्छानुसार वर्सेज u के लिए, दूरी वह θ होगी जिसके लिए cos θ = (u + u∗)/2 होगा चूँकि यह किसी भी चतुष्कोण के अदिश भाग का सूत्र है।
चतुष्कोणीय मानचित्रण द्वारा अण्डाकार गति का वर्णन किया गया है
- जहां u और v निश्चित वर्सेज हैं।
बिंदुओं के बीच की दूरियां अण्डाकार गति के छवि बिंदुओं के समान होती हैं। उस स्थिति में u और v एक दूसरे के चतुष्कोणीय संयुग्म हैं, गति चतुष्कोणीय और स्थानिक घुमाव है, और उनका सदिश भाग घूर्णन की धुरी है। यदि u = 1 अण्डाकार गति को बाएँ और दाएँ (बीजगणित) आइसोक्लिनिक रोटेशन, या पैराटेक्सी कहा जाता है। स्थिति v = 1 बाएं क्लिफर्ड अनुवाद के अनुरूप है।
वर्सेज के माध्यम से अण्डाकार रेखाएँ u स्वरूप का हो सकता है
- या निश्चित r के लिए.
वे 1 के माध्यम से दीर्घवृत्त रेखा के साथ u के दाएं और बाएं क्लिफोर्ड अनुवाद हैं ।
अण्डाकार स्थान S3 से एंटीपोडल बिंदुओं की पहचान करके से बनता है।[7]
अण्डाकार स्पेस में विशेष संरचनाएं होती हैं जिन्हें क्लिफर्ड समानांतर और क्लिफर्ड सतह कहा जाता है।
स्पेस के वैकल्पिक प्रतिनिधित्व के लिए अण्डाकार स्थान के वर्सेज बिंदुओं को केली रूपांतरण द्वारा ℝ3 में मैप किया जाता है।
उच्च-आयामी स्थान
हाइपरस्फेरिकल मॉडल
हाइपरस्फेरिकल मॉडल उच्च आयामों के लिए गोलाकार मॉडल का सामान्यीकरण है। n-डायमेंशनल एलिप्टिक स्पेस के बिंदु Rn+1 में यूनिट वैक्टर (x, −x) के जोड़े हैं, अर्थात् यूनिट बॉल की सतह पर (n + 1)-डायमेंशनल स्पेस (एन-डायमेंशनल हाइपरस्फीयर) में एंटीपोडल बिंदुओं के जोड़े हैं। इस मॉडल में रेखाएँ महान वृत्त हैं, अर्थात्, हाइपरस्फीयर के चौराहों के साथ डायमेंशन n के फ्लैट हाइपरसर्फ्स मूल से निकलते हैं।
प्रक्षेपी अण्डाकार ज्यामिति
अण्डाकार ज्यामिति के प्रक्षेपी मॉडल में, एन-डायमेंशनल वास्तविक प्रक्षेप्य स्पेस के बिंदुओं को मॉडल के बिंदुओं के रूप में उपयोग किया जाता है। यह अमूर्त अण्डाकार ज्यामिति का मॉडल करता है जिसे प्रक्षेपी ज्यामिति के रूप में भी जाना जाता है।
n-डायमेंशनल प्रोजेक्टिव स्पेस के बिंदुओं को (n + 1) -डायमेंशनल स्पेस में मूल के माध्यम से लाइनों के साथ पहचाना जा सकता है, और Rn+1 में गैर-शून्य वैक्टर द्वारा गैर-विशिष्ट रूप से प्रदर्शित किया जा सकता है, इस समझ के साथ कि u और λu, किसी भी अशून्य अदिश के लिए λ, एक ही बिंदु का प्रतिनिधित्व करते हैं। दूरी को मीट्रिक का उपयोग करके परिभाषित किया गया है
अर्थात्, दो बिंदुओं के बीच की दूरी Rn+1 में उनकी संगत रेखाओं के बीच का कोण है. दूरी सूत्र प्रत्येक चर में सजातीय है, d(λu, μv) = d(u, v) के साथ यदि λ और μ गैर-शून्य स्केलर हैं, इसलिए यह प्रक्षेप्य स्पेस के बिंदुओं पर दूरी को परिभाषित करता है।
प्रक्षेपी अण्डाकार ज्यामिति की उल्लेखनीय गुण यह है कि समतल जैसे आयामों के लिए भी ज्यामिति गैर-उन्मुख है। यह उनकी पहचान करके दक्षिणावर्त और वामावर्त घुमाव के बीच के अंतर को समाप्त कर देता है।
स्टीरियोग्राफिक मॉडल
हाइपरस्फेरिकल मॉडल के समान स्थान का प्रतिनिधित्व करने वाला मॉडल स्टीरियोग्राफिक प्रक्षेपण के माध्यम से प्राप्त किया जा सकता है। मान लीजिए कि En Rn ∪ {∞}, को निरूपित करता है, अर्थात्, n-विमीय वास्तविक स्थान अनंत पर बिंदु द्वारा विस्तारित है। हम En पर मेट्रिक, कॉर्डल मेट्रिक को परिभाषित कर सकते हैं
जहां u और v Rn में कोई दो सदिश हैं और सामान्य यूक्लिडियन मानदंड है। हम भी परिभाषित करते हैं
परिणाम En पर एक मीट्रिक स्थान है, जो हाइपरस्फेरिकल मॉडल पर संबंधित बिंदुओं की एक जीवा के साथ दूरी का प्रतिनिधित्व करता है, जिसके लिए यह स्टीरियोग्राफिक प्रोजेक्शन द्वारा विशेष रूप से मैप करता है। यदि हम मीट्रिक का उपयोग करते हैं तो हमें गोलीय ज्यामिति का मॉडल प्राप्त होता है
अण्डाकार ज्यामिति इससे एंटीपोडल पॉइंट u और −u / ‖u‖2 की पहचान करके और वी से इस जोड़ी की दूरी को इन दो बिंदुओं में से प्रत्येक के लिए वी से न्यूनतम दूरी के रूप में ले कर प्राप्त की जाती है।
स्व-संगति
क्योंकि गोलाकार अण्डाकार ज्यामिति को मॉडल किया जा सकता है, उदाहरण के लिए, यूक्लिडियन स्पेस के गोलाकार उप-स्थान, यह इस प्रकार है कि यदि यूक्लिडियन ज्यामिति स्व-सुसंगत है, तो गोलाकार अण्डाकार ज्यामिति भी है। इसलिए यूक्लिडियन ज्यामिति की अन्य चार अभिधारणाओं के आधार पर समानांतर अभिधारणा को सिद्ध करना संभव नहीं है।
अल्फ्रेड टार्स्की ने सिद्ध किया कि प्रारंभिक यूक्लिडियन ज्यामिति पूर्ण सिद्धांत है: एक एल्गोरिदम है जो प्रत्येक प्रस्ताव के लिए इसे सत्य या असत्य दिखा सकता है।[8] (यह गोडेल की अपूर्णता प्रमेय का उल्लंघन नहीं करता है। क्योंकि यूक्लिडियन ज्यामिति प्रमेय को लागू करने के लिए पर्याप्त मात्रा में पीनो अंकगणित का वर्णन नहीं कर सकती है।[9]) इसलिए यह अनुसरण करता है कि प्राथमिक अण्डाकार ज्यामिति भी आत्मनिर्भर और पूर्ण है।
यह भी देखें
टिप्पणियाँ
- ↑ 1.0 1.1 Duncan Sommerville (1914) The Elements of Non-Euclidean Geometry, chapter 3 Elliptic geometry, pp 88 to 122, George Bell & Sons
- ↑ Coxeter 1969 94
- ↑ H. S. M. Coxeter (1965) Introduction to Geometry, page 92
- ↑ Cayley, Arthur (1859), "A sixth memoir upon quantics", Philosophical Transactions of the Royal Society of London, 149: 61–90, doi:10.1098/rstl.1859.0004, ISSN 0080-4614, JSTOR 108690
- ↑ Rafael Artzy (1965) Linear Geometry, Chapter 3–8 Quaternions and Elliptic Three-space, pp. 186–94,Addison-Wesley
- ↑ W.R. Hamilton(1844 to 1850) On quaternions or a new system of imaginaries in algebra, Philosophical Magazine, link to David R. Wilkins collection at Trinity College, Dublin
- ↑ Lemaître, Georges (1948), "Quaternions et espace elliptique", Pontificia Academia Scientiarum, Acta, 12: 57–78, ISSN 0370-2138
- ↑ Tarski (1951)
- ↑ Franzén 2005, pp. 25–26.
संदर्भ
- Alan F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, 1983
- H. S. M. Coxeter (1942) Non-Euclidean Geometry, chapters 5, 6, & 7: Elliptic geometry in 1, 2, & 3 dimensions, University of Toronto Press, reissued 1998 by Mathematical Association of America, ISBN 0-88385-522-4.
- H.S.M. Coxeter (1969) Introduction to Geometry, §6.9 The Elliptic Plane, pp. 92–95. John Wiley & Sons.
- "Elliptic geometry", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Felix Klein (1871) "On the so-called noneuclidean geometry" Mathematische Annalen 4:573–625, translated and introduced in John Stillwell (1996) Sources of Hyperbolic Geometry, American Mathematical Society ISBN 0-8218-0529-0.
- Boris Odehnal "On isotropic congruences of lines in elliptic three-space"
- Eduard Study (1913) D.H. Delphenich translator, "Foundations and goals of analytical kinematics", page 20.
- Alfred Tarski (1951) A Decision Method for Elementary Algebra and Geometry. Univ. of California Press.
- Franzén, Torkel (2005). Gödel's Theorem: An Incomplete Guide to its Use and Abuse. AK Peters. ISBN 1-56881-238-8.
- Alfred North Whitehead (1898) Universal Algebra Archived 2014-09-03 at the Wayback Machine, Book VI Chapter 2: Elliptic Geometry, pp 371–98.
बाहरी कड़ियाँ
- Media related to अण्डाकार ज्यामिति at Wikimedia Commons