प्वासों ब्रेकेट: Difference between revisions
m (Sugatha moved page पॉइसन ब्रैकेट to प्वासों ब्रेकेट) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Classical mechanics|expanded=Formulations}} | {{Classical mechanics|expanded=Formulations}} | ||
गणित और [[शास्त्रीय यांत्रिकी|चिरसम्मत यांत्रिकी]] में, '''प्वासों ब्रेकेट''' [[हैमिल्टनियन यांत्रिकी]] में एक महत्वपूर्ण [[बाइनरी ऑपरेशन|द्विआधारी संक्रिया]] है, जो हैमिल्टन के गति के समीकरणों में एक केंद्रीय भूमिका निभाता है और जो हैमिल्टनियन [[गतिशील प्रणाली]] के समय के विकास को नियंत्रित करता है। प्वासों ब्रेकेट समन्वय परिवर्तनों के एक निश्चित वर्ग को भी अलग करता है, जिसे ''[[विहित परिवर्तन|विहित रूपांतरण]]'' कहा जाता है, जो [[कैननिकल निर्देशांक]] को कैनोनिकल समन्वय प्रणालियों में प्रतिचित्र करता है। एक विहित समन्वय प्रणाली में विहित स्थिति और संवेग चर होते हैं (नीचे प्रतीक द्वारा <math>q_i</math> और <math>p_i</math>, क्रमशः) जो कैनोनिकल प्वासों ब्रेकेट संबंधों को संतुष्ट करते हैं। संभावित विहित रूपांतरणों का सम्मुच्चय सदैव बहुत समृद्ध होता है। उदाहरण के लिए, हैमिल्टनियन को नए विहित संवेग में से एक के रूप <math>H =H(q, p, t)</math> में ही चुनना प्रायः संभव होता है। | गणित और [[शास्त्रीय यांत्रिकी|चिरसम्मत यांत्रिकी]] में, '''प्वासों ब्रेकेट''' [[हैमिल्टनियन यांत्रिकी]] में एक महत्वपूर्ण [[बाइनरी ऑपरेशन|द्विआधारी संक्रिया]] है, जो हैमिल्टन के गति के समीकरणों में एक केंद्रीय भूमिका निभाता है और जो हैमिल्टनियन [[गतिशील प्रणाली]] के समय के विकास को नियंत्रित करता है। प्वासों ब्रेकेट समन्वय परिवर्तनों के एक निश्चित वर्ग को भी अलग करता है, जिसे ''[[विहित परिवर्तन|विहित रूपांतरण]]'' कहा जाता है, जो [[कैननिकल निर्देशांक]] को कैनोनिकल समन्वय प्रणालियों में प्रतिचित्र करता है। एक विहित समन्वय प्रणाली में विहित स्थिति और संवेग चर होते हैं (नीचे प्रतीक द्वारा <math>q_i</math> और <math>p_i</math>, क्रमशः) जो कैनोनिकल प्वासों ब्रेकेट संबंधों को संतुष्ट करते हैं। संभावित विहित रूपांतरणों का सम्मुच्चय सदैव बहुत समृद्ध होता है। उदाहरण के लिए, हैमिल्टनियन को नए विहित संवेग में से एक के रूप <math>H =H(q, p, t)</math> में ही चुनना प्रायः संभव होता है। |
Latest revision as of 11:38, 6 November 2023
Part of a series on |
चिरसम्मत यांत्रिकी |
---|
गणित और चिरसम्मत यांत्रिकी में, प्वासों ब्रेकेट हैमिल्टनियन यांत्रिकी में एक महत्वपूर्ण द्विआधारी संक्रिया है, जो हैमिल्टन के गति के समीकरणों में एक केंद्रीय भूमिका निभाता है और जो हैमिल्टनियन गतिशील प्रणाली के समय के विकास को नियंत्रित करता है। प्वासों ब्रेकेट समन्वय परिवर्तनों के एक निश्चित वर्ग को भी अलग करता है, जिसे विहित रूपांतरण कहा जाता है, जो कैननिकल निर्देशांक को कैनोनिकल समन्वय प्रणालियों में प्रतिचित्र करता है। एक विहित समन्वय प्रणाली में विहित स्थिति और संवेग चर होते हैं (नीचे प्रतीक द्वारा और , क्रमशः) जो कैनोनिकल प्वासों ब्रेकेट संबंधों को संतुष्ट करते हैं। संभावित विहित रूपांतरणों का सम्मुच्चय सदैव बहुत समृद्ध होता है। उदाहरण के लिए, हैमिल्टनियन को नए विहित संवेग में से एक के रूप में ही चुनना प्रायः संभव होता है।
अधिक सामान्य अर्थ में, प्वासों ब्रेकेट का उपयोग पॉसॉन बीजगणित को परिभाषित करने के लिए किया जाता है, जिसमें प्वासों बहुविध पर कार्यों का बीजगणित एक विशेष स्तिथि है। अन्य सामान्य उदाहरण भी हैं: यह लाई बीजगणित के सिद्धांत में पाया जाता है, जहां लाई बीजगणित का प्रदिश बीजगणित प्वासों बीजगणित बनाता है; यह कैसे होता है इसका एक विस्तृत निर्माण सार्वभौमिक आवरण बीजगणित लेख में दिया गया है। सार्वभौमिक आवरण बीजगणित की परिमाण विकृति परिमाण समूह की धारणा को उत्पन्न करती है।
इन सभी वस्तुओं का नाम शिमोन डेनिस पोइसन के सम्मान में रखा गया है।
गुण
दो दिए गए फलन f और g जो चरण स्थान और समय पर निर्भर करता है, उनके प्वासों ब्रेकेट एक अन्य कार्य है जो चरण स्थान और समय पर निर्भर करता है। चरण स्थान और समय के किन्हीं तीन कार्य के लिए निम्नलिखित नियम मान्य हैं:
साथ ही, यदि कोई फलन चरण स्थान पर स्थिर है (लेकिन समय पर निर्भर हो सकता है), फिर किसी के लिए ।
विहित निर्देशांक में परिभाषा
विहित निर्देशांक में (जिसे डार्बौक्स निर्देशांक भी कहा जाता है) चरण स्थान पर, दो कार्य और दिए गए हैं,[Note 1] प्वासों ब्रेकेट रूप ले लेता है
हैमिल्टन की गति के समीकरण
हैमिल्टन के गति के समीकरणों में प्वासों ब्रेकेट के संदर्भ में एक समान अभिव्यक्ति है। यह एक स्पष्ट समन्वय वृत्ति में सबसे प्रत्यक्ष रूप से प्रदर्शित किया जा सकता है। मान लीजिये समाधान के प्रक्षेपवक्र-कई गुना पर एक फलन है। फिर बहुभिन्नरूपी श्रृंखला नियम से,
इस प्रकार, एक सिम्पेक्टिक बहुविध पर एक फलन का समय विकास सिम्प्लेक्टोमोर्फिम्स के एक-मापदण्ड श्रेणी के रूप में दिया जा सकता है (अर्थात, विहित रूपांतरण, क्षेत्र-संरक्षण डिफोमोर्फिज्म), समय मापदण्ड होने के नाते: हैमिल्टनियन गति हैमिल्टनियन द्वारा उत्पन्न एक विहित रूपांतरण है। अर्थात प्वासों ब्रेकेट इसमें संरक्षित हैं, ताकि किसी भी समय हैमिल्टन के समीकरणों के समाधान में,
निम्न निर्देशांक,
गति के स्थिरांक
एक एकीकृत गतिशील प्रणाली में ऊर्जा के अतिरिक्त गति के स्थिरांक होंगे। गति के ऐसे स्थिरांक हैमिल्टनियन के साथ प्वासों ब्रेकेट के तहत आवागमन करेंगे। मान लीजिए कुछ फलन गति का एक स्थिरांक है। इसका तात्पर्य यह है कि यदि हैमिल्टन के गति के समीकरणों का एक प्रक्षेपवक्र या समाधान है, फिर
यदि प्वासों ब्रेकेट और () को लुप्त कर देता है, तब और को प्रत्यावर्तन कहा जाता है। हैमिल्टनियन प्रणाली को पूरी तरह से एकीकृत करने के लिए, गति के स्वतंत्र स्थिरांक वितरण में होना चाहिए, जहां स्वातंत्र्य कोटि की संख्या है।
इसके अलावा, पॉसों के प्रमेय के अनुसार, यदि दो मात्राएँ और स्पष्ट रूप से समय स्वतंत्र () गति के स्थिरांक हैं, तो उनका प्वासों ब्रेकेट है। यह सदैव एक उपयोगी परिणाम प्रदान नहीं करता है, हालांकि, गति के संभावित स्थिरांक की संख्या सीमित है ( के साथ एक प्रणाली के लिए स्वातंत्र्य कोटि), और इसलिए परिणाम तुच्छ हो सकता है (एक स्थिर, या का एक कार्य और .)
समन्वय-मुक्त भाषा में प्वासों ब्रेकेट
मान लीजिए कि M एक सिम्पलेक्टिक बहुविध है, अर्थात, एक सिम्पलेक्टिक बहुविध से सुसज्जित बहुविध: एक 2-विधि जो दोनों बंद है (अर्थात, इसका बाहरी व्युत्पन्न लुप्त हो जाता है) और गैर-पतित है। उदाहरण के लिए ऊपर दिए गए उपचार में को लें और
|
(1) |
यहाँ Xgf सदिश क्षेत्र Xg को दर्शाता है, एक दिशात्मक व्युत्पन्न के रूप में f फलन पर लागू होता है, और फलन f के व्युत्पन्न (पूरी तरह से समतुल्य) को दर्शाता है।
यदि α स्वेच्छाचारी एक-रूप M है, सदिश क्षेत्र Ωα प्रवाहिता (गणित) उत्पन्न करता है (कम से कम स्थानीय रूप से) सीमा की स्थिति को संतुष्ट करता है और प्रथम-क्रम अंतर समीकरण निम्न है
(1) से भी होता है कि प्वासों ब्रेकेट एक व्युत्पत्ति (अमूर्त बीजगणित) है; अर्थात्, यह लीबनिज के उत्पाद नियम के एक गैर-क्रम विनिमय संस्करण को संतुष्ट करता है:
और |
|
(2) |
प्वासों ब्रेकेट हैमिल्टनियन सदिश क्षेत्र के लाई ब्रेकेट से घनिष्ठ रूप से जुड़ा हुआ है। क्योंकि लाई व्युत्पादित एक व्युत्पत्ति है,
|
(3) |
इस प्रकार, फलन पर प्वासों ब्रेकेट संबंधित हैमिल्टनियन सदिश छेत्र के लाई ब्रेकेट से मेल खाता है। हमने यह भी दिखाया है कि दो सिम्प्लेक्टिक सदिश क्षेत्र का लाइ ब्रेकेट एक हैमिल्टनियन सदिश छेत्र है और इसलिए यह सिम्प्लेक्टिक भी है। सार बीजगणित की भाषा में, सैम्पलेक्टिक सदिश क्षेत्र सुचारु सदिश क्षेत्रों के लाई बीजगणित का एक उपलजगणित M बनाते हैं, और हैमिल्टनियन सदिश क्षेत्र इस उपबीजगणित का एक बीजगणितीय आदर्श बनाते हैं। सैम्पलेक्टिक सदिश क्षेत्र (अनंत-आयामी) के लाइ बीजगणित हैं M.
यह व्यापक रूप से माना जाता है कि प्वासों ब्रेकेट के लिए जैकोबी अस्मिता,
M पर सुचारु कार्यों के एक क्षेत्र पर बीजगणित, प्वासों ब्रेकेट के साथ एक पॉसॉन बीजगणित बनाता है, क्योंकि यह प्वासों ब्रेकेट के तहत एक लाई बीजगणित है, जो अतिरिक्त रूप से लीबनिज के नियम (2) को संतुष्ट करता है। हमने दिखाया है कि प्रत्येक सिम्प्लेक्टिक बहुविध एक पोइज़न बहुविध है, जो कि एक धनु-ब्रेकेट संचालक के साथ कई गुना है, जो सुचारू कार्यों पर होता है, जैसे कि सुचारू कार्य एक पॉइज़न बीजगणित बनाते हैं। हालांकि, प्रत्येक प्वासों बहुविध इस तरह से उत्पन्न नहीं होता है, क्योंकि प्वासों बहुविध अध: पतन की अनुमति देता है जो सैम्पलेक्टिकपूर्ण स्तिथि में उत्पन्न नहीं हो सकता है।
संयुग्म संवेग पर परिणाम
एक सुचारु सदिश क्षेत्र को देखते हुए समाकृति स्थान पर, मान लीजिये इसका संयुग्मी संवेग है। संयुग्म संवेग मानचित्रण सदिश क्षेत्रों के लाई ब्रेकेट से प्वासों ब्रेकेट तक एक लाई बीजगणित विरोधी समरूपता है:
परिमाणीकरण
परिमाणीकरण पर पोइसन कोष्ठक विकृत होकर मोयल कोष्ठक में बदल जाते हैं, अर्थात्, वे एक अलग लाइ बीजगणित, मोयल ब्रेकेट, या, हिल्बर्ट अंतरिक्ष में समान रूप से, परिमाण दिक्परिवर्तक के लिए सामान्यीकृत करते हैं। इनमें से विग्नेर-इनोनू समूह संकुचन (चिरसम्मत सीमा, ħ → 0) उपरोक्त लाइ बीजगणित उत्पन्न करता है।
इसे अधिक स्पष्ट और सटीक रूप से बताने के लिए, हाइजेनबर्ग बीजगणित का सार्वभौमिक आवरण बीजगणित वेइल बीजगणित है। मोयल उत्पाद तब प्रतीकों के बीजगणित पर स्टार उत्पाद का एक विशेष स्तिथि है। प्रतीकों के बीजगणित की एक स्पष्ट परिभाषा, और तारकीय गुणनफल सार्वभौम घेरने वाले बीजगणित पर लेख में दिया गया है।
यह भी देखें
- दिक्परिवर्तक
- डायराक कोष्ठक
- लैग्रेंज कोष्ठक
- मोयल कोष्ठक
- पीयरल्स कोष्ठक
- चरण स्थान
- प्वासों बीजगणित
- प्वासों वलय
- प्वासों सुपरएलजेब्रा
- प्वासों सुपरकोष्ठक
टिप्पणी
- ↑ means is a function of the independent variables: momentum, ; position, ; and time,
संदर्भ
- Arnold, Vladimir I. (1989). Mathematical Methods of Classical Mechanics (2nd ed.). New York: Springer. ISBN 978-0-387-96890-2.
- Landau, Lev D.; Lifshitz, Evegeny M. (1982). Mechanics. Course of Theoretical Physics. Vol. 1 (3rd ed.). Butterworth-Heinemann. ISBN 978-0-7506-2896-9.
- Karasëv, Mikhail V.; Maslov, Victor P. (1993). Nonlinear Poisson brackets, Geometry and Quantization. Translations of Mathematical Monographs. Vol. 119. Translated by Sossinsky, Alexey; Shishkova, M.A. Providence, RI: American Mathematical Society. ISBN 978-0821887967. MR 1214142.