विश्लेषणात्मक ज्यामिति: Difference between revisions
No edit summary |
No edit summary |
||
Line 79: | Line 79: | ||
=== शंकु वर्ग === | === शंकु वर्ग === | ||
{{main|शंकु खंड}} | {{main|शंकु खंड}} | ||
कार्टेशियन निर्देशांक प्रणाली में, दो चर में द्विघात समीकरण का ग्राफ हमेशा एक शंकु अनुभाग होता है - हालांकि यह पतित हो सकता है, और सभी शंकु खंड इस तरह से उत्पन्न होते हैं। समीकरण प्रपत्र का होगा<math display="block">Ax^2 + Bxy + Cy^2 +Dx + Ey + F = 0\text{ with }A, B, C\text{ not all zero.} </math>छह स्थिरांक के स्केलिंग के कारण शून्य का एक ही स्थान उत्पन्न होता है, एक कॉनिक्स को पांच आयामी प्रक्षेपीय स्थान के अंक के रूप में माना जा सकता है <math>\mathbf{P}^5.</math> | कार्टेशियन निर्देशांक प्रणाली में, दो चर में द्विघात समीकरण का ग्राफ हमेशा एक शंकु अनुभाग होता है - हालांकि यह पतित हो सकता है, और सभी शंकु खंड इस तरह से उत्पन्न होते हैं। समीकरण प्रपत्र का होगा<math display="block">Ax^2 + Bxy + Cy^2 +Dx + Ey + F = 0\text{ with }A, B, C\text{ not all zero.} </math>छह स्थिरांक के स्केलिंग के कारण शून्य का एक ही स्थान उत्पन्न होता है, एक कॉनिक्स को पांच आयामी प्रक्षेपीय स्थान के अंक के रूप में माना जा सकता है <math>\mathbf{P}^5.</math> | ||
इस समीकरण द्वारा वर्णित शंकु वर्गों को भेदभावपूर्ण द्वारा वर्गीकृत किया जा सकता है<ref>{{citation | title=Math refresher for scientists and engineers | first1=John R. | last1=Fanchi | publisher=John Wiley and Sons | year=2006 | isbn=0-471-75715-2 | pages=44–45 | url=https://books.google.com/books?id=75mAJPcAWT8C}}, [https://books.google.com/books?id=75mAJPcAWT8C&pg=PA45 Section 3.2, page 45]</ref><math display="block">B^2 - 4AC .</math>यदि शंकु गैर-पतित है, तो: | इस समीकरण द्वारा वर्णित शंकु वर्गों को भेदभावपूर्ण द्वारा वर्गीकृत किया जा सकता है<ref>{{citation | title=Math refresher for scientists and engineers | first1=John R. | last1=Fanchi | publisher=John Wiley and Sons | year=2006 | isbn=0-471-75715-2 | pages=44–45 | url=https://books.google.com/books?id=75mAJPcAWT8C}}, [https://books.google.com/books?id=75mAJPcAWT8C&pg=PA45 Section 3.2, page 45]</ref><math display="block">B^2 - 4AC .</math>यदि शंकु गैर-पतित है, तो: | ||
* यदि <math>B^2 - 4AC < 0 </math>, समीकरण एक दीर्घवृत्त का प्रतिनिधित्व करता है; | * यदि <math>B^2 - 4AC < 0 </math>, समीकरण एक दीर्घवृत्त का प्रतिनिधित्व करता है; | ||
Line 92: | Line 89: | ||
=== द्विघात सतहें === | === द्विघात सतहें === | ||
{{main|द्विघात सतह}} | {{main|द्विघात सतह}} | ||
द्विघात या द्विघात सतह, तीन-आयामी समष्टि में द्विआयामी सतह (गणित) होती है जिसे [[द्विघात बहुपद]] के शून्य के स्थान के रूप में परिभाषित किया जाता है, निर्देशांक x1, x2,x3, में सामान्य चतुष्कोणीय बीजीय समीकरण द्वारा परिभाषित किया जाता है।<ref name="geom">Silvio Levy [http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node61.html Quadrics] in "Geometry Formulas and Facts", excerpted from 30th Edition of ''CRC Standard Mathematical Tables and Formulas'', [[CRC Press]], from [[The Geometry Center]] at [[University of Minnesota]]</ref><math display="block">\sum_{i,j=1}^{3} x_i Q_{ij} x_j + \sum_{i=1}^{3} P_i x_i + R = 0.</math>द्विघात सतहों में दीर्घ [[वृत्त]] (गोला सहित), [[ ठोस अनुवृत्त |ठोस अनुवृत्त]] , [[ hyperboloid |hyperboloid]],[[ सिलेंडर (ज्यामिति) | सिलेंडर (ज्यामिति)]] , [[ शंकु |शंकु]], और समतल उपलब्ध हैं। | |||
<math display="block">\sum_{i,j=1}^{3} x_i Q_{ij} x_j + \sum_{i=1}^{3} P_i x_i + R = 0.</math> | |||
[[Category:All articles with unsourced statements]] | [[Category:All articles with unsourced statements]] | ||
Line 109: | Line 103: | ||
==दूरी और कोण== | ==दूरी और कोण== | ||
{{main| | {{main|दूरी|कोण}} | ||
[[File:Distance Formula.svg|thumb|right|250px|समतल पर दूरी सूत्र पाइथागोरस प्रमेय का अनुसरण करता है।]]विश्लेषणात्मक ज्यामिति में, ज्यामितीय | [[File:Distance Formula.svg|thumb|right|250px|समतल पर दूरी सूत्र पाइथागोरस प्रमेय का अनुसरण करता है।]]विश्लेषणात्मक ज्यामिति में, ज्यामितीय विचार जैसे[[ दूरी | दूरी]] तथा कोण माप, [[ सूत्र |सूत्रों]] द्वारा परिभाषित होते हैं। ये परिभाषाएं अंतर्निहित [[ यूक्लिडियन ज्यामिति |यूक्लिडियन ज्यामिति]] के अनुरूप हैं। उदाहरण के लिए, समतल पर [[ कार्तीय निर्देशांक ]] का उपयोग करते हुए दो बिंदुओं के बीच की दूरी (x1, y1) और (x2, y2) को सूत्र द्वारा परिभाषित किया जाता है।<math display="block">d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},</math>जिसे [[ पाइथागोरस प्रमेय | पाइथागोरस प्रमेय]] के एक संस्करण के रूप में देखा जा सकता है। इसी तरह, एक रेखा क्षैतिज से जो कोण बनाती है, उसे सूत्र द्वारा परिभाषित किया जा सकता है<math display="block">\theta = \arctan(m),</math>जहाँ m रेखा का ढाल है। | ||
<math display="block">d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},</math> | |||
जिसे [[ पाइथागोरस प्रमेय ]] के एक संस्करण के रूप में देखा जा सकता है। इसी तरह, एक रेखा क्षैतिज से जो कोण बनाती है, उसे सूत्र द्वारा परिभाषित किया जा सकता है | |||
<math display="block">\theta = \arctan(m),</math> | |||
जहाँ m रेखा का ढाल है। | |||
तीन आयामों में, पायथागॉरियन प्रमेय के सामान्यीकरण द्वारा दूरी दी गई है: | तीन आयामों में, पायथागॉरियन प्रमेय के सामान्यीकरण द्वारा दूरी दी गई है: | ||
<math display="block">d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2+ (z_2 - z_1)^2},</math> | <math display="block">d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2+ (z_2 - z_1)^2},</math> |
Revision as of 08:31, 21 November 2022
ज्यामिति |
---|
जियोमेटर्स |
शास्त्रीय गणित, विश्लेषणात्मक ज्यामिति, को निर्देशांक ज्यामिति या कार्टेशियन ज्यामिति के रूप में भी जाना जाता है, एक समन्वय प्रणाली का उपयोग कर ज्यामिति का अध्ययन क्या है।यह सिंथेटिक ज्यामिति के साथ विरोधाभासी है।
विश्लेषणात्मक ज्यामिति का उपयोग भौतिकी और अभियांत्रिकी के साथ-साथ समतलन, रॉकेटरी, अंतरिक्ष विज्ञान और अंतरिक्ष उड़ान में भी किया जाता है। यह बीजगणितीय ज्यामिति , विभेदक ज्यामिति , असतत ज्यामिति और कम्प्यूटेशनल ज्यामिति के अधिकांश आधुनिक क्षेत्रों का आधार है।
सामान्यतया कर्णनलिका निर्देशांक प्रणाली का प्रयोग समतलों, सीधी रेखाओं और वृत्तों के समीकरणों में बहुधा दो या कभी-कभी तीन आयामों में हेरफेर करने के लिए किया जाता है। ज्यामितीय दृष्टि से, एक यूक्लिडियन समतल (दो आयाम) और यूक्लिडियन अंतरिक्ष का अध्ययन करता है। जैसा कि स्कूल की पुस्तकों में पढ़ाया जाता है, विश्लेषणात्मक ज्यामिति को अधिक आसानी से समझाया जा सकता है: यह ज्यामितीय आकृतियों को संख्यात्मक रूप से परिभाषित करने और उनका प्रतिनिधित्व करने और आकृतियों के संख्यात्मक परिभाषाओं और निरूपण से संख्यात्मक जानकारी निकालने से संबंधित है। कि ज्यामिति की रैखिक सातत्य के परिणाम उत्पन्न करने के लिए वास्तविक संख्या के बीजगणित का प्रयोग किया जा सकता है यह कैंटर-डेडेकिंड स्वयंसिद्ध पर निर्भर करता है।
इतिहास
प्राचीन ग्रीस
ग्रीक गणितज्ञ मेनेकामस ने समस्याओं को हल किया और प्रमेय को साबित करने के लिए एक ऐसी विधि का प्रयोग किया जिसमें निर्देशांक के उपयोग में काफी समानता थी और कभी-कभी यह भी कहा गया है कि उन्होंने विश्लेषणात्मक ज्यामिति की शुरुआत की थी।[1]
पर्गा के अपोलोनियस को निर्धारित अनुभाग में समस्याओं से ऐसे तरीके से निपटाया गया है जिसे एक आयाम का विश्लेषणात्मक ज्यामिति कहा जा सकता है।एक पंक्ति पर अंक पाने के सवाल के साथ जो एक दूसरे के अनुपात में थे।[2] कॉनिक्स में अपोलोनियस ने आगे एक ऐसा तरीका विकसित किया, जो विश्लेषणात्मक ज्यामिति के समान है और कभी-कभी, ऐसा माना जाता है कि उनके काम से प्रायः 1800 वर्ष पहले डेसकार्टेस के काम का पूर्वानुमान लग गया था। उनके निर्देश रेखाओं, एक व्यास, और स्पर्शरेखा का अनुप्रयोग, निश्चित रूप से किसी समन्वय तंत्र के हमारे आधुनिक प्रयोग से भिन्न नहीं है, जहां संपन्नता के बिंदु से व्यास के साथ मापा जाने वाली दूरियां घर्षण हैं और खंड स्पर्शरेखा के समांतर हैं और अक्ष और वक्र के बीच में अंतर है निर्देशांक। आगे चलकर उन्होंने अलंकारों तथा तदनुकूल अध्यादेशों के बीच संबंध विकसित किये, जो अलंकारों (शब्दों में अभिव्यक्त) समीकरणों के समतुल्य होते हैं, यद्यपि अपोलोनियस विश्लेषणात्मक ज्यामिति के विकास के निकट आ गये थे, पर उन्होने नकारात्मक परिमाणों को ध्यान में नहीं रखा और हर स्थिति में समन्वय प्रणाली पर प्राथमिकता के स्थान पर एक पौष्टिकता पर अध्यारोपित कर दी गई। अर्थात, समीकरण वक्रों द्वारा निर्धारित किए गए थे, लेकिन वक्रों का निर्धारण समीकरणों द्वारा नहीं किया गया था। एक विशिष्ट ज्यामितीय स्थिति पर लागू एक गौण धारणा निर्देशांक, चर और समीकरण थे।[3]
फारस
11 वीं शताब्दी के फारसी गणितज्ञ उमर खय्याम ने ज्यामिति और बीजगणित के मध्य गहन संबंध देखे और उस समय उन्होंने संख्यात्मक और ज्यामितीय बीजगणित के मध्य का अंतर समाप्त करने में सहायता की।[4] सामान्य घन समीकरणों के अपने ज्यामितीय समाधान के साथ,[5] लेकिन निर्णायक कदम बाद में डेस्कार्टेस के साथ आया।[4] उमर खय्याम को बीजीय ज्यामिति की नींव की पहचान करने का श्रेय दिया जाता है, और उनकी पुस्तक ग्रंथ बीजगणित की समस्याओं के प्रदर्शन के लिए (1070), जो विश्लेषणात्मक ज्यामिति के सिद्धांतों को निर्धारित किया, क्या फ़ारसी गणित के शरीर का एक हिस्सा है जो अंत में यूरोप में प्रेषित हुआ था[6] बीजीय समीकरणों के लिए उनके अलौकिक दृष्टिकोण की वजह से, खयाम को विश्लेषणात्मक ज्यामिति के आविष्कार में डेस्कार्टेस का अग्रदूत माना जा सकता था।[7]: 248
पश्चिमी यूरोप
Part of a series on |
René Descartes |
---|
विश्लेषणात्मक ज्यामिति का आविष्कार स्वतंत्र रूप से रेने डेसकार्टेस और पियरे डी फ़र्माटा द्वारा किया गया था,[8][9] हालांकि डेसकार्टेस को कभी-कभी एकमात्र श्रेय दिया जाता है।[10][11] कार्तीय ज्यामिति, विश्लेषणात्मक ज्यामिति के लिए प्रयुक्त वैकल्पिक शब्द, का नाम डेसकार्टेस के नाम पर रखा गया है।
डेस्कार्टेस ने ला जियोमेट्रिई (ज्यामिति) नामक एक निबंध में विधियों के साथ महत्वपूर्ण प्रगति की, 1637 में प्रकाशित तीन निबंधों (परिशिष्ट) में से एक, जिसमें उन्होंने अपने तर्क को उचित ढंग से निर्देशित करने और विज्ञान में सत्य की खोज करने की विधि पर अपने प्रवचन सहित, जिसे सामान्यतया विधि पर परिचर्चा कहा जाता है, प्रकाशित किया था। ला जियोमेट्रिय ने अपनी मातृभाषा में फ्रांसीसी भाषा तथा इसके दार्शनिक सिद्धांतों में लिखे हैं और उन्हें यूरोप में कैल्कुलस की नींव प्रदान की है। कुछ अंशों में तर्क तथा जटिल समीकरणों के अनेक अंतरालों में आरम्भ में इस ग्रंथ का अच्छा स्वागत नहीं हुआ। लैटिन में अनुवाद के बाद और 1649 में फ्रैंस वैन शूटेन द्वारा टिप्पणी के अतिरिक्त (और उसके बाद आगे का काम) डेसकार्टेस की उत्कृष्ट कृति को उचित पहचान मिली।[12]
पियरे डी फ़र्मैट ने विश्लेषणात्मक ज्यामिति के विकास का भी बीड़ा उठाया। हालांकि अपने जीवनकाल में प्रकाशित नहीं हुआ, विज्ञापन अवलोककों और सॉलिडोस आईगोगे का एक पाण्डुलिपि रूप (समतल और ठोस स्थान की शुरूआत) 1637 में पेरिस में घूम रहा था। डेस्कार्टेस के प्रवचन के प्रकाशन से ठीक पहले[13][14][15] स्पष्ट रूप से लिखा और अच्छी तरह से प्राप्त, परिचय ने विश्लेषणात्मक ज्यामिति के लिए नींव रखी। फ़र्मैट और डिस्कार्टेस उपचार के बीच मुख्य अंतर दृष्टिकोण का विषय है: फ़र्मेट हमेशा एक बीजीय समीकरण के साथ शुरू किया और फिर ज्यामितीय वक्र है कि यह संतुष्ट वर्णित, जबकि डिस्कार्टस ने ज्यामितीय वक्रों के साथ शुरुआत की और उनके समीकरणों को वक्रों के कई गुणों में से एक के रूप में उत्पन्न किया।[12] इस दृष्टिकोण के परिणामस्वरूप डेसकार्टेस को और अधिक जटिल समीकरणों से निपटना पड़ा और उन्हें बहुपद समीकरणों के साथ काम करने की विधि विकसित करनी पड़ी। लियोनहार्ड यूलर ने पहले अंतरिक्ष घटता और सतहों के व्यवस्थित अध्ययन में समन्वय विधि को लागू किया था।
निर्देशांक
विश्लेषणात्मक ज्यामिति में, समतल को एक निर्देशांक प्रणाली दिया गया है, जिसके द्वारा प्रत्येक बिंदु (ज्यामिति) में वास्तविक संख्या निर्देशांक की एक जोड़ी होती है। इसी प्रकार, यूक्लिडियन अंतरिक्ष को निर्देशांक दिया जाता है जहां प्रत्येक बिंदु तीन निर्देशांक होते हैं। निर्देशांक का मान मूल के प्रारंभिक बिन्दु के चयन पर निर्भर करता है। कई समन्वय प्रणालियां प्रयुक्त की जाती हैं, लेकिन सबसे आम निम्न है:[16]
कार्तीय निर्देशांक (एक समतल या अंतरिक्ष में)
कर्णनलिका निर्देशांक प्रणाली के उपयोग की जाने वाली सबसे सामान्य निर्देशांक प्रणाली है, जहां प्रत्येक बिंदु में एक क्षैतिज स्थिति का प्रतिनिधित्व x-निर्देशांक है, और एक y-निर्देशांक इसकी ऊर्ध्वाधर स्थिति का प्रतिनिधित्व। ये समान्यतः आदेशित युग्म (x, y) के रूप में लिखे जाते हैं। इस प्रणाली का उपयोग त्रि-आयामी ज्यामिति के लिए भी किया जा सकता है, जहां यूक्लिडियन स्पेस में प्रत्येक बिंदु को निर्देशांक (x, y, z) के आदेश वाले तिहरी द्वारा दर्शाया जाता है।
ध्रुवीय निर्देशांक (एक समतल में)
ध्रुवीय निर्देशांक में समतल के प्रत्येक बिंदु आर मूल और उसके कोण θ से इसकी दूरी r द्वारा प्रदर्शित कि जाती है, θ के साथ सामान्य रूप से सकारात्मक x-अक्ष से घड़ी की विपरीत दिशा में मापा जाता है। इस संकेतन का उपयोग करते हुए, अंक आमतौर पर एक क्रमित युग्म (r, θ) के रूप में लिखा जाता है। इन सूत्रों का इस्तेमाल करके आप दो आयामी कार्टेशियन और ध्रुवीय निर्देशांकों के बीच आगे-पीछे रूपांतरण कर सकते हैं:
बेलनाकार निर्देशांक (एक अंतरिक्ष में)
बेलनाकार निर्देशांक में, स्थान के प्रत्येक बिंदु को उसकी ऊँचाई z द्वारा दर्शाया जाता है, z-अक्ष से इसकी त्रिज्या r और कोण θ है, xy-समतल पर इसके प्रक्षेपण क्षैतिज अक्ष के संबंध में करता है।
गोलाकार निर्देशांक (एक अंतरिक्ष में)
गोलाकार निर्देशांक में, अंतरिक्ष में हर बिंदु को मूल से इसकी दूरी ρ द्वारा दर्शायी जाती है, कोण θ अपने प्रक्षेपण xy-समतल पर इसका प्रक्षेपण क्षैतिज अक्ष के संबंध में बनाता है, और यह कोण φ जो हैं यह वह z-अक्ष के संबंध में बनाता है। अक्सर भौतिकी में कोणों के नाम उलटे कर दिए जाते हैं।[16]
समीकरण और वक्र
विश्लेषणात्मक ज्यामिति में, निर्देशांकों को अंतर्ग्रस्त करने वाला कोई भी समीकरण समतल का सबसेट विनिर्दिष्ट करता है, अर्थात् समीकरण के लिए निर्धारित समाधान सेट, या समष्टि। उदाहरण के लिए, समीकरण y = x समतल में सभी बिंदुओं के सेट से मेल खाती है जिसका x-निर्देशांक और y-निर्देशांक बराबर हैं। ये बिंदु एक रेखा(ज्यामिति) बनाते हैं, और y = x को इस रेखा का समीकरण कहा जाता है। सामान्य में, रैखिक समीकरण जिसमें एक्स और वाई निर्दिष्ट रेखाएं शामिल हैं,द्विघात समीकरण शंकु वर्गों को निर्दिष्ट करते हैं, और अधिक जटिल समीकरण और अधिक जटिल आंकड़े बताते हैं।[17]
आम तौर पर, एक समीकरण समतल पर एक वक्र के अनुरूप होता है। ऐसी स्थिति हर बार नहीं होती है: तुच्छ समीकरण x = x पूरे तल को निर्दिष्ट करता है, और समीकरण x2 + y2 = 0 केवल एक बिंदु निर्दिष्ट करता है।(0, 0) तीन आयामों में, एक एकल समीकरण आमतौर पर एक सतह (गणित) देता है, और एक वक्र दो सतहों के चौराहे के रूप में निर्दिष्ट किया जाना चाहिए (नीचे देखें), या पैरामीट्रिक समीकरणों की एक प्रणाली के रूप में।[18] समीकरण x2 + y2 = r2 किसी भी चक्र के लिए समीकरण है जो r के त्रिज्या के साथ मूल (0, 0) पर केंद्रित है।
रेखाएं और समतल
कर्णनलिका समतल में रेखाएँ, या अधिक सामान्यतः, एफ़िन निर्देशांक में, रैखिक समीकरणों द्वारा बीजगणितीय रूप से वर्णित किया जा सकता है। दो आयामों में, गैर-ऊर्ध्वाधर रेखाओं के लिए समीकरण अक्सर ढलान-अवरोधन रूप में दिया जाता है:
- m रेखा का ढलान या ढाल है।
- b रेखा का y-अवरोधन है।
- x फलन y = f(x) का स्वतंत्र चर है।
द्वि-आयामी समष्टि की रेखाओं के अनुरूप उनके समीकरणों के लिए एक बिंदु- ढलान रूपाकार का प्रयोग करते हुए वर्णन किया गया है, त्रिविम समष्टि में समतलो का प्राकृतिक वर्णन होता है जो तल में बिंदु का प्रयोग करता है तथा इसके "झुकाव" को निर्दिष्ट करने के लिए इसके सदिश लंबकोणीय (सामान्य सदिश) का प्रयोग होता है।
विशेष रूप से, मान लीजिए किसी बिंदु का स्थिति सदिश है ,और मान लीजिए एक अशून्य वेक्टर है। इस बिंदु द्वारा निर्धारित समतल और सदिश में वे बिंदु होते हैं , स्थिति वेक्टर के साथ , जैसे कि सदिश से बनाया गया से , के लंबवत है। याद रखें कि दो वैक्टर लंबवत हैं, यदि और केवल यदि उनका डॉट उत्पाद शून्य है, यह इस प्रकार है कि वांछित तल को सभी बिंदुओं के समुच्चय के रूप में वर्णित किया जा सकता है अर्थात
- x, y, और z सभी स्वतंत्र चर t के फलन हैं, जो वास्तविक संख्या से अधिक है।
- (x0, y0, z0) किसी भी रेखा पर कोई बिंदु है।
- a, b, और c रेखा के ढलान से संबंधित हैं, जैसे कि सदिश (a, b,c) रेखा के समानांतर होते हैं।
शंकु वर्ग
कार्टेशियन निर्देशांक प्रणाली में, दो चर में द्विघात समीकरण का ग्राफ हमेशा एक शंकु अनुभाग होता है - हालांकि यह पतित हो सकता है, और सभी शंकु खंड इस तरह से उत्पन्न होते हैं। समीकरण प्रपत्र का होगा
- यदि , समीकरण एक दीर्घवृत्त का प्रतिनिधित्व करता है;
- यदि तथा , समीकरण एक वृत्त का प्रतिनिधित्व करता है, जो एक दीर्घवृत्त का एक विशेष मामला है;
- यदि , समीकरण एक परवलय का प्रतिनिधित्व करता है;
- यदि , समीकरण एक अतिपरवलय को निरूपित करता है;
- अगर हमारे पास भी है , समीकरण एक आयताकार अतिपरवलय का प्रतिनिधित्व करता है।
द्विघात सतहें
द्विघात या द्विघात सतह, तीन-आयामी समष्टि में द्विआयामी सतह (गणित) होती है जिसे द्विघात बहुपद के शून्य के स्थान के रूप में परिभाषित किया जाता है, निर्देशांक x1, x2,x3, में सामान्य चतुष्कोणीय बीजीय समीकरण द्वारा परिभाषित किया जाता है।[21]
दूरी और कोण
विश्लेषणात्मक ज्यामिति में, ज्यामितीय विचार जैसे दूरी तथा कोण माप, सूत्रों द्वारा परिभाषित होते हैं। ये परिभाषाएं अंतर्निहित यूक्लिडियन ज्यामिति के अनुरूप हैं। उदाहरण के लिए, समतल पर कार्तीय निर्देशांक का उपयोग करते हुए दो बिंदुओं के बीच की दूरी (x1, y1) और (x2, y2) को सूत्र द्वारा परिभाषित किया जाता है।
तीन आयामों में, पायथागॉरियन प्रमेय के सामान्यीकरण द्वारा दूरी दी गई है:
परिवर्तन
समान विशेषताओं के साथ इसे एक नए फ़ंक्शन में बदलने के लिए पैरेंट फ़ंक्शन पर रूपांतरण लागू किए जाते हैं।
का ग्राफ मानक परिवर्तनों द्वारा निम्नानुसार बदला जाता है:
- बदलना प्रति ग्राफ़ को दाईं ओर ले जाता है इकाइयां
- बदलना प्रति ग्राफ को ऊपर ले जाता है इकाइयां
- बदलना प्रति ग्राफ को क्षैतिज रूप से के एक कारक द्वारा फैलाता है . (के बारे में सोचो फैलाव के रूप में)
- बदलना प्रति ग्राफ को लंबवत रूप से फैलाता है।
- बदलना प्रति और बदल रहा है प्रति ग्राफ को एक कोण से घुमाता है .
आम तौर पर प्राथमिक विश्लेषणात्मक ज्यामिति में अन्य मानक परिवर्तन का अध्ययन नहीं किया जाता है क्योंकि परिवर्तन वस्तुओं के आकार को उन तरीकों से बदलते हैं जिन्हें आमतौर पर नहीं माना जाता है। तिरछा एक परिवर्तन का एक उदाहरण है जिसे आमतौर पर नहीं माना जाता है। अधिक जानकारी के लिए, एफाइन ट्रांसफॉर्मेशन पर विकिपीडिया लेख देखें।
उदाहरण के लिए, मूल कार्य एक क्षैतिज और एक ऊर्ध्वाधर स्पर्शोन्मुख है, और पहले और तीसरे चतुर्थांश पर कब्जा कर लेता है, और इसके सभी रूपांतरित रूपों में एक क्षैतिज और ऊर्ध्वाधर स्पर्शोन्मुख होता है, और यह पहले और तीसरे या दूसरे और चौथे चतुर्थांश पर कब्जा कर लेता है। सामान्य तौर पर, अगर , तब इसे रूपांतरित किया जा सकता है . नए रूपांतरित फ़ंक्शन में, वह कारक है जो फ़ंक्शन को लंबवत रूप से फैलाता है यदि यह 1 से अधिक है या फ़ंक्शन को लंबवत रूप से संपीड़ित करता है यदि यह 1 से कम है, और नकारात्मक के लिए मान, फ़ंक्शन में परिलक्षित होता है -एक्सिस। h> मान 1 से अधिक होने पर फ़ंक्शन के ग्राफ़ को क्षैतिज रूप से संपीड़ित करता है और 1 से कम होने पर फ़ंक्शन को क्षैतिज रूप से फैलाता है, और पसंद करता है , में समारोह को दर्शाता है -अक्ष जब यह नकारात्मक है। एच> और मूल्य अनुवाद का परिचय देते हैं, , लंबवत, और क्षैतिज। सकारात्मक तथा मूल्यों का मतलब है कि फ़ंक्शन का अपनी धुरी के सकारात्मक अंत में अनुवाद किया गया है और नकारात्मक अर्थ का नकारात्मक अंत की ओर अनुवाद किया गया है।
रूपांतरण किसी भी ज्यामितीय समीकरण पर लागू किया जा सकता है चाहे समीकरण किसी फ़ंक्शन का प्रतिनिधित्व करता हो या नहीं। परिवर्तनों को व्यक्तिगत लेनदेन या संयोजनों में माना जा सकता है।
मान लो कि में एक रिश्ता है समतल। उदाहरण के लिए,
ज्यामितीय वस्तुओं के प्रतिच्छेदन का पता लगाना
दो ज्यामितीय वस्तुओं के लिए P और Q संबंधों द्वारा दर्शाया गया है तथा चौराहा सभी बिंदुओं का संग्रह है जो दोनों संबंधों में हैं।[23] उदाहरण के लिए, त्रिज्या 1 और केंद्र वाला वृत्त हो सकता है : तथा त्रिज्या 1 और केंद्र वाला वृत्त हो सकता है . इन दोनों वृत्तों का प्रतिच्छेदन उन बिंदुओं का संग्रह है जो दोनों समीकरणों को सत्य बनाते हैं। क्या बात दोनों समीकरणों को सत्य बनाओ? का उपयोग करते हुए के लिये , के लिए समीकरण हो जाता है या जो सच है, तो संबंध में है . दूसरी ओर, अभी भी उपयोग कर रहे हैं के लिये के लिए समीकरण हो जाता है या जो झूठा है। इसमें नहीं है तो यह चौराहे में नहीं है।
दो ज्यामितीय वस्तुओं के लिए P और Q संबंधों द्वारा प्रतिनिधित्व किया गया है तथा प्रतिच्छेदन सभी बिंदुओं का संग्रह है जो दोनों संबंधों में हैं। [23]
उदाहरण के लिए, त्रिज्या 1 और केंद्र के साथ चक्र हो सकता है :तथा त्रिज्या 1 और केंद्र के साथ चक्र हो सकता हैइन दोनों वृत्तों का प्रतिच्छेदन उन बिंदुओं का संग्रह है जो दोनों समीकरणों को सत्य बनाते हैं।मुद्दा यह हैदोनों समीकरणों को सत्य बनाओ? का उपयोग करते हुए के लिये, के लिए समीकरण हो जाता है या जो सच है, इसलिए संबंध में है .
का चौराहा तथा समकालिक समीकरणों को हल करके पाया जा सकता है:
प्रतिस्थापन: के लिए पहला समीकरण हल करें के अनुसार और फिर के लिए व्यंजक को प्रतिस्थापित करें दूसरे समीकरण में:
इंटरसेप्ट्स ढूँढना
एक प्रकार का प्रतिच्छेदन जो व्यापक रूप से अध्ययन किया जाता है, वह ज्यामितीय वस्तु का प्रतिच्छेदन तथा समायोजन ध्रुव।
एक ज्यामितीय वस्तु के प्रतिच्छेदन और -अक्ष को कहा जाता है -वस्तु का अवरोधन।
एक ज्यामितीय वस्तु के प्रतिच्छेदन और -अक्ष को कहा जाता है -वस्तु का अवरोधन।
लाइन के लिए, पैरामीटर उस बिंदु को निर्दिष्ट करता है जहां रेखा पार करती है एक्सिस। संदर्भ के आधार पर, या तो या बिंदु कहा जाता है -अवरोध।
ज्यामितीय अक्ष
ज्यामिति में अक्ष किसी भी रेखा, वस्तु या सतह पर लंबवत रेखा होती है।
इसके अलावा इसके लिए सामान्य भाषा का उपयोग एक: सामान्य (लंबवत) रेखा के रूप में किया जा सकता है, अन्यथा इंजीनियरिंग में अक्षीय रेखा के रूप में।
ज्यामिति में, एक सामान्य वस्तु है जैसे कि एक रेखा या सदिश जो किसी दिए गए ऑब्जेक्ट के लिए लंबवत होती है। उदाहरण के लिए, द्वि-आयामी स्थिति में किसी दिए गए बिंदु पर वक्र की साधारण रेखा बिंदु की वक्र से स्पर्शरेखा तक लम्बवत होती है।
त्रि-आयामी स्थिति में एक सतह सामान्य, या सामान्य है, या बस सामान्य, एक बिंदु P पर एक सतह के लिए एक सदिश है जो P पर उस सतह के स्पर्शरेखा तल के लंबवत है। शब्द "सामान्य" को एक विशेषण के रूप में भी प्रयोग किया जाता है: एक समतल में सामान्य रेखा, एक बल के सामान्य घटक, सामान्य सदिश आदि। सामान्यता की अवधारणा रूढ़िवादिता का सामान्यीकरण करती है।
गोलाकार और अरेखीय तल और उनकी स्पर्श रेखाएं
स्पर्शरेखा किसी फ़ंक्शन की गोलाकार या अन्य घुमावदार या मुड़ी हुई रेखा का रैखिक सन्निकटन है।
स्पर्श रेखाएं और तल
ज्यामिति में, किसी दिए गए बिंदु (ज्यामिति) पर एक समतल वक्र की स्पर्श रेखा (या केवल स्पर्शरेखा) वह सीधी रेखा होती है जो उस बिंदु पर वक्र को स्पर्श करती है। अनौपचारिक रूप से, यह वक्र पर अतिसूक्ष्म बिंदुओं की एक जोड़ी के माध्यम से एक रेखा है। अधिक सटीक रूप से, एक सीधी रेखा को वक्र की स्पर्श रेखा कहा जाता है y = f(x) एक बिंदु पर x = c वक्र पर यदि रेखा बिंदु से गुजरती है (c, f(c)) वक्र पर और ढलान है f'(c) जहां च' f का व्युत्पन्न है। इसी तरह की परिभाषा एन-आयामी यूक्लिडियन अंतरिक्ष में अंतरिक्ष घटता और घटता पर लागू होती है।
जैसे ही यह उस बिंदु से गुजरती है जहां स्पर्शरेखा रेखा और वक्र मिलते हैं, जिसे 'स्पर्शरेखा बिंदु' कहा जाता है, स्पर्शरेखा रेखा वक्र के समान दिशा में जा रही है, और इस प्रकार वक्र के लिए सबसे अच्छी सीधी रेखा सन्निकटन। है बिंदु।
इसी तरह, किसी दिए गए बिंदु पर एक सतह (गणित) के लिए 'स्पर्शरेखा समतल' समतल (गणित) है जो उस बिंदु पर सतह को छूता है। स्पर्शरेखा की अवधारणा विभेदक ज्यामिति में सबसे मौलिक धारणाओं में से एक है और इसे व्यापक रूप से सामान्यीकृत किया गया है; स्पर्शरेखा स्थान देखें।
ज्यामिति में, दिए गए बिंदु पर एक समतल वक्र में स्पर्श रेखा (या सीधे स्पर्शरेखा) वह सीधी रेखा होती है जो उस बिंदु पर वक्र को "स्पर्श" करती है। अनौपचारिक रूप से, यह वक्र पर असीम रूप से निकट बिंदुओं की एक जोड़ी के माध्यम से एक रेखा है। अधिक सटीक रूप से, एक सीधी रेखा को वक्र की स्पर्शरेखा कहा जाता है y = f(x) एक बिंदु पर x = c वक्र पर यदि रेखा बिंदु से होकर गुजरती है (c, f(c)) वक्र पर और ढलान है f'(c) जहां एफ 'व्युत्पन्न एफ का है। एक समान परिभाषा एन-आयामी यूक्लिडियन स्पेस में अंतरिक्ष घटता और घटता पर लागू होती है।
जैसा कि यह उस बिंदु से होकर गुजरती है जहां स्पर्श रेखा और वक्र मिलते हैं, जिसे 'स्पर्शरेखा बिंदु' कहा जाता है, स्पर्श रेखा "वक्र के समान दिशा में जा रही है, और इस प्रकार उस बिंदु पर वक्र के लिए सबसे अच्छा सीधी रेखा सन्निकटन है। इसी प्रकार, किसी दिए गए बिंदु पर सतह का स्पर्श करने वाला स्पर्शरेखा समतल वह समतल है जो उस बिंदु पर सतह को "स्पर्श करता है"। स्पर्शरेखा की अवधारणा अवकलक ज्यामिति के मूलभूत विचारों में से एक है और बड़े पैमाने पर स्पर्शरेखा स्थान को सामान्यीकृत किया गया है।
यह भी देखें
- अनुप्रयुक्त गणित#इंजीनियरिंग और तकनीकी इंजीनियरिंग
- पार उत्पाद
- कुल्हाड़ियों का घूमना
- कुल्हाड़ियों का अनुवाद
- सदिश स्थल
टिप्पणियाँ
- ↑ Boyer, Carl B. (1991). "The Age of Plato and Aristotle". गणित का इतिहास (Second ed.). John Wiley & Sons, Inc. pp. 94–95. ISBN 0-471-54397-7.
मेनेचमस ने स्पष्ट रूप से शंकु वर्गों और अन्य के इन गुणों को भी प्राप्त किया। चूंकि इस सामग्री में निर्देशांक के उपयोग के लिए एक मजबूत समानता है, जैसा कि ऊपर दिखाया गया है, यह कभी-कभी बनाए रखा गया है कि मेनेचमुस में विश्लेषणात्मक ज्यामिति थी। ऐसा निर्णय केवल आंशिक रूप से आवश्यक है, निश्चित रूप से मेनेचमुस इस बात से अनजान थे कि दो अज्ञात मात्राओं में कोई भी समीकरण एक वक्र निर्धारित करता है। वास्तव में, अज्ञात मात्रा में समीकरण की सामान्य अवधारणा ग्रीक विचार के लिए विदेशी थी। यह बीजीय संकेतन में कमियां थीं, जो किसी भी चीज़ से अधिक, एक पूर्ण समन्वय ज्यामिति की ग्रीक उपलब्धि के खिलाफ संचालित होती थीं।
- ↑ Boyer, Carl B. (1991). "Apollonius of Perga". गणित का इतिहास (Second ed.). John Wiley & Sons, Inc. pp. 142. ISBN 0-471-54397-7.
अपोलोनियन ग्रंथ ऑन डिटरमिनेट सेक्शन में एक आयाम की विश्लेषणात्मक ज्यामिति कहा जा सकता है। इसने ज्यामितीय रूप में विशिष्ट ग्रीक बीजीय विश्लेषण का उपयोग करते हुए निम्नलिखित सामान्य समस्या पर विचार किया: एक सीधी रेखा पर चार बिंदुओं ए, बी, सी, डी को देखते हुए, उस पर पांचवां बिंदु पी निर्धारित करें जैसे कि एपी और सीपी पर आयत एक में है BP और DP पर आयत से अनुपात दिया गया है। यहाँ भी, समस्या आसानी से एक द्विघात के समाधान के लिए कम हो जाती है; और, अन्य मामलों की तरह, अपोलोनियस ने संभावना की सीमा और समाधानों की संख्या सहित, इस प्रश्न का व्यापक रूप से इलाज किया।
- ↑ Boyer, Carl B. (1991). "Apollonius of Perga". गणित का इतिहास (Second ed.). John Wiley & Sons, Inc. pp. 156. ISBN 0-471-54397-7.
'शंकु' में एपोलोनियस की पद्धति कई मायनों में आधुनिक दृष्टिकोण के समान है कि उनके काम को कभी-कभी 1800 वर्षों तक डेसकार्टेस की भविष्यवाणी करने वाली एक विश्लेषणात्मक ज्यामिति माना जाता है। सामान्य रूप से संदर्भ रेखाओं का प्रयोग, और विशेष रूप से इसके चरम पर एक व्यास और एक स्पर्शरेखा, निश्चित रूप से, एक समन्वय फ्रेम के उपयोग से अनिवार्य रूप से अलग नहीं है, चाहे आयताकार या अधिक आम तौर पर तिरछा हो। स्पर्शरेखा के बिंदु से व्यास के साथ मापी गई दूरियाँ भुज हैं, और स्पर्शरेखा के समानांतर खंड और अक्ष और वक्र के बीच का अवरोधन निर्देशांक हैं। इन भुजों और संबंधित निर्देशांकों के बीच अपोलोनियन संबंध वक्रों के समीकरणों के आलंकारिक रूपों से अधिक या कम नहीं हैं। हालांकि, यूनानी ज्यामितीय बीजगणित ने ऋणात्मक परिमाण प्रदान नहीं किया; इसके अलावा, समन्वय प्रणाली हर मामले में इसके गुणों का अध्ययन करने के लिए दिए गए वक्र पर एक पोस्टीरियरी आरोपित किया गया था। ऐसा प्रतीत होता है कि प्राचीन ज्यामिति में ऐसा कोई मामला नहीं है जिसमें किसी समीकरण या रिश्ते के चित्रमय प्रतिनिधित्व के प्रयोजनों के लिए संदर्भ के एक समन्वय फ्रेम को 'प्राथमिकता' निर्धारित किया गया हो, चाहे वह प्रतीकात्मक रूप से या अलंकारिक रूप से व्यक्त किया गया हो। ग्रीक ज्यामिति के बारे में हम कह सकते हैं कि समीकरण वक्रों द्वारा निर्धारित होते हैं, लेकिन यह नहीं कि वक्र समीकरणों द्वारा निर्धारित होते हैं। निर्देशांक, चर और समीकरण एक विशिष्ट ज्यामितीय स्थिति से प्राप्त सहायक धारणाएँ थीं; [...] वह एपोलोनियस, पुरातनता का सबसे बड़ा ज्यामिति, विश्लेषणात्मक ज्यामिति विकसित करने में विफल रहा, शायद विचार के बजाय घटता की गरीबी का परिणाम था। सामान्य तरीके आवश्यक नहीं हैं जब समस्याएं हमेशा सीमित संख्या में विशेष मामलों में से एक होती हैं।
- ↑ 4.0 4.1 Boyer (1991). "The Arabic Hegemony". गणित का इतिहास. pp. 241–242. ISBN 9780471543978.
उमर खय्याम (सीए. 1050–1123), "तम्बू बनाने वाले," ने एक बीजगणित लिखा, जो अल-ख़्वारिज़्मी से आगे बढ़कर तीसरी डिग्री के समीकरणों को शामिल करता है। अपने अरब पूर्ववर्तियों की तरह, उमर खय्याम ने अंकगणितीय और ज्यामितीय समाधान दोनों द्विघात समीकरणों के लिए प्रदान किया; सामान्य घन समीकरणों के लिए, उनका मानना था (गलती से, जैसा कि सोलहवीं शताब्दी बाद में दिखाया गया), अंकगणितीय समाधान असंभव थे; इसलिए उन्होंने केवल ज्यामितीय हल दिए। क्यूबिक्स को हल करने के लिए इंटरसेक्टिंग कॉनिक्स का उपयोग करने की योजना का उपयोग पहले मेनाएकमस, आर्किमिडीज़ और अलहज़ान द्वारा किया गया था, लेकिन उमर खय्याम ने सभी थर्ड-डिग्री समीकरणों (सकारात्मक जड़ों वाले) को कवर करने के लिए विधि को सामान्य बनाने का प्रशंसनीय कदम उठाया। तीन से अधिक डिग्री के समीकरणों के लिए, उमर खय्याम ने स्पष्ट रूप से समान ज्यामितीय विधियों की कल्पना नहीं की, क्योंकि अंतरिक्ष में तीन से अधिक आयाम नहीं होते हैं, ... अरबी उदारवाद के सबसे उपयोगी योगदानों में से एक संख्यात्मक और के बीच के अंतर को बंद करने की प्रवृत्ति थी ज्यामितीय बीजगणित। इस दिशा में निर्णायक कदम डेसकार्टेस के साथ बहुत बाद में आया, लेकिन उमर खय्याम इस दिशा में आगे बढ़ रहे थे जब उन्होंने लिखा, "जो कोई भी बीजगणित को अज्ञात प्राप्त करने की एक युक्ति समझता है, उसने इसे व्यर्थ समझा। इस तथ्य पर कोई ध्यान नहीं दिया जाना चाहिए कि बीजगणित और ज्यामिति दिखने में भिन्न हैं। बीजगणित ज्यामितीय तथ्य हैं जो सिद्ध होते हैं।"
{{cite book}}
: zero width space character in|quote=
at position 306 (help) - ↑ Cooper, Glen M. (2003). "समीक्षा करें: ओमर खय्याम, गणितज्ञ आर. राशेद, बी. वहाबज़ादेह द्वारा". The Journal of the American Oriental Society. 123 (1): 248–249. JSTOR 3217882.
- ↑ Mathematical Masterpieces: Further Chronicles by the Explorers, p. 92
- ↑ Cooper, G. (2003). Journal of the American Oriental Society,123(1), 248-249.
- ↑ Boyer 2004, p. 74
- ↑ Stillwell, John (2004). "Analytic Geometry". गणित और उसका इतिहास (Second ed.). Springer Science + Business Media Inc. p. 105. ISBN 0-387-95336-1.
विश्लेषणात्मक ज्यामिति के दो संस्थापक, फर्मेट और डेसकार्टेस, दोनों इन विकासों से अत्यधिक प्रभावित थे।
- ↑ Cooke, Roger (1997). "The Calculus". गणित का इतिहास: एक संक्षिप्त पाठ्यक्रम. Wiley-Interscience. pp. 326. ISBN 0-471-18082-3.
जिस व्यक्ति को विश्लेषणात्मक ज्यामिति के खोजकर्ता होने का श्रेय दिया जाता है, वह दार्शनिक रेने डेसकार्टेस (1596-1650) थे, जो आधुनिक युग के सबसे प्रभावशाली विचारकों में से एक थे।
- ↑ Boyer 2004, p. 82
- ↑ 12.0 12.1 Katz 1998, pg. 442
- ↑ Katz 1998, pg. 436
- ↑ Pierre de Fermat, Varia Opera Mathematica d. Petri de Fermat, Senatoris Tolosani (Toulouse, France: Jean Pech, 1679), "Ad locos planos et solidos isagoge," pp. 91–103.
- ↑ "Eloge de Monsieur de Fermat" (Eulogy of Mr. de Fermat), Le Journal des Scavans, 9 February 1665, pp. 69–72. From p. 70: "Une introduction aux lieux, plans & solides; qui est un traité analytique concernant la solution des problemes plans & solides, qui avoit esté veu devant que M. des Cartes eut rien publié sur ce sujet." (An introduction to loci, plane and solid; which is an analytical treatise concerning the solution of plane and solid problems, which was seen before Mr. des Cartes had published anything on this subject.)
- ↑ 16.0 16.1 Stewart, James (2008). Calculus: Early Transcendentals, 6th ed., Brooks Cole Cengage Learning. ISBN 978-0-495-01166-8
- ↑ Percey Franklyn Smith, Arthur Sullivan Gale (1905)Introduction to Analytic Geometry, Athaeneum Press
- ↑ William H. McCrea, Analytic Geometry of Three Dimensions Courier Dover Publications, Jan 27, 2012
- ↑ Weisstein, Eric W. (2009), "Plane", MathWorld--A Wolfram Web Resource, retrieved 2009-08-08
- ↑ Fanchi, John R. (2006), Math refresher for scientists and engineers, John Wiley and Sons, pp. 44–45, ISBN 0-471-75715-2, Section 3.2, page 45
- ↑ Silvio Levy Quadrics in "Geometry Formulas and Facts", excerpted from 30th Edition of CRC Standard Mathematical Tables and Formulas, CRC Press, from The Geometry Center at University of Minnesota
- ↑ M.R. Spiegel; S. Lipschutz; D. Spellman (2009). वेक्टर विश्लेषण (शॉम की रूपरेखा) (2nd ed.). McGraw Hill. ISBN 978-0-07-161545-7.
- ↑ 23.0 23.1 While this discussion is limited to the xy-plane, it can easily be extended to higher dimensions.
संदर्भ
पुस्तकें
- Boyer, Carl B. (2004) [1956], History of Analytic Geometry, Dover Publications, ISBN 978-0486438320
- Cajori, Florian (1999), A History of Mathematics, AMS, ISBN 978-0821821022
- जॉन केसी (गणितज्ञ) (1885) पॉइंट, लाइन, सर्कल और कॉनिक सेक्शन की विश्लेषणात्मक ज्यामिति, इंटरनेट संग्रह से लिंक।
- Katz, Victor J. (1998), A History of Mathematics: An Introduction (2nd Ed.), Reading: Addison Wesley Longman, ISBN 0-321-01618-1
- Struik, D. J. (1969), A Source Book in Mathematics, 1200-1800, Harvard University Press, ISBN 978-0674823556
लेख
- Bissell, Christopher C. (1987), "Cartesian geometry: The Dutch contribution", The Mathematical Intelligencer, 9 (4): 38–44, doi:10.1007/BF03023730
- Boyer, Carl B. (1944), "Analytic Geometry: The Discovery of Fermat and Descartes", Mathematics Teacher, 37 (3): 99–105, doi:10.5951/MT.37.3.0099
- Boyer, Carl B. (1965), "Johann Hudde and space coordinates", Mathematics Teacher, 58 (1): 33–36, doi:10.5951/MT.58.1.0033
- Coolidge, J. L. (1948), "The Beginnings of Analytic Geometry in Three Dimensions", American Mathematical Monthly, 55 (2): 76–86, doi:10.2307/2305740, JSTOR 2305740
- Pecl, J., Newton and analytic geometry
बाहरी संबंध
- Coordinate Geometry topics with interactive animations
{{Navbox
| name =गणित के क्षेत्र
|state = autocollapse
| title =अंक शास्त्र
| bodyclass = hlist
|above =
| group1 = नींव
| list1 =* श्रेणी सिद्धांत
| group2 =बीजगणित | list2 =* सार
| group3 = विश्लेषण | list3 =* पथरी
- वास्तविक विश्लेषण
- जटिल विश्लेषण
- हाइपरकम्प्लेक्स विश्लेषण
- अंतर समीकरण
- कार्यात्मक विश्लेषण
- हार्मोनिक विश्लेषण
- माप सिद्धांत
| group4 = असतत | list4 =* कॉम्बीनेटरिक्स
| group5 =ज्यामिति | list5 =* बीजगणितीय
| group6 =संख्या सिद्धांत | list6 =* अंकगणित
| group7 =टोपोलॉजी | list7 =* सामान्य
| group8 = लागू | list8 =* इंजीनियरिंग गणित
- गणितीय जीव विज्ञान
- गणितीय रसायन विज्ञान
- गणितीय अर्थशास्त्र
- गणितीय वित्त
- गणितीय भौतिकी
- गणितीय मनोविज्ञान
- गणितीय समाजशास्त्र
- गणितीय सांख्यिकी
- संभावना
- सांख्यिकी
- सिस्टम साइंस
| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान
| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित
| below =* '
}}