यूक्लिडियन ग्रुप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Group theory sidebar |संस्थानिक}}{{Short description|Isometry group of Euclidean space}}{{Lie groups |Other}}
{{Group theory sidebar |संस्थानिक}}{{Short description|Isometry group of Euclidean space}}{{Lie groups |Other}}
गणित में, एक '''यूक्लिडियन समूह''' एक [[यूक्लिडियन अंतरिक्ष]] के (यूक्लिडियन) [[आइसोमेट्री]] (सममिति) का समूह है। <math>\mathbb{E}^n</math>; अर्थात्, उस स्थान का रूपांतरण जो किसी भी दो बिंदुओं के बीच [[यूक्लिडियन दूरी]] को परिवर्तित करता है (जिसे [[यूक्लिडियन परिवर्तन]] भी कहा जाता है)। समूह केवल स्थान के विस्तार एन पर निर्भर करता है, और आमतौर पर ई(एन) या आईएसओ(एन) को निरूपित करता है।
गणित में, एक '''यूक्लिडियन समूह''' एक [[यूक्लिडियन अंतरिक्ष]] के (यूक्लिडियन) [[आइसोमेट्री]] (सममिति) का समूह है। <math>\mathbb{E}^n</math>; अर्थात्, उस स्थान का रूपांतरण जो किसी भी दो बिंदुओं के बीच [[यूक्लिडियन दूरी]] को परिवर्तित करता है (जिसे [[यूक्लिडियन परिवर्तन]] भी कहा जाता है)। समूह केवल स्थान के विस्तार एन पर निर्भर करता है, और सामान्यतः ई(एन) या आईएसओ(एन) को निरूपित करता है।


यूक्लिडियन समूह ई(एन) में सभी [[अनुवाद (ज्यामिति)]], [[रोटेशन (गणित)]] और <math>\mathbb{E}^n</math> [[प्रतिबिंब (गणित)]] सम्मिलित हैं और उनका मनमाना परिमित संयोजन हैं। यूक्लिडियन समूह को अंतरिक्ष के सममिति समूह के रूप में ही देखा जा सकता है और इसमें उस स्थान के किसी भी आकृति (उपसमुच्चय) की समरूपता का समूह सम्मिलित है।
यूक्लिडियन समूह ई(एन) में सभी [[अनुवाद (ज्यामिति)]], [[रोटेशन (गणित)]] और <math>\mathbb{E}^n</math> [[प्रतिबिंब (गणित)]] सम्मिलित हैं और उनका मनमाना परिमित संयोजन हैं। यूक्लिडियन समूह को अंतरिक्ष के सममिति समूह के रूप में ही देखा जा सकता है और इसमें उस स्थान के किसी भी आकृति (उपसमुच्चय) की समरूपता का समूह सम्मिलित है।
Line 8: Line 8:
ये [[समूह (गणित)]] सबसे पुराने और सबसे अधिक अध्ययन किए गए हैं, कम से कम विस्तार 2 और 3 के घटनाओं में – समूह की अवधारणा के आविष्कार से बहुत पहले।
ये [[समूह (गणित)]] सबसे पुराने और सबसे अधिक अध्ययन किए गए हैं, कम से कम विस्तार 2 और 3 के घटनाओं में – समूह की अवधारणा के आविष्कार से बहुत पहले।


== सिंहावलोकन ==
== अवलोकन ==


=== परिमाणिकता ===
=== परिमाणिकता ===


(एन) के लिए स्वतंत्रता की डिग्री की संख्या एन(एन+1)/2 है, जो एन = 2 के घटनाओं में 3 और एन = 3 के लिए 6 देती है। इनमें से, एन को उपलब्ध अनुवादक समरूपता के लिए जिम्मेदार बताया जा सकता है और घूर्णी सममिति के लिए शेष एन(एन − 1)/2 ।
E(''n'') के लिए स्वतंत्रता की डिग्री की संख्या ''n''(''n'' + 1)/2 है, जो ''n'' = 2 के घटनाओं में 3 और ''n'' = 3 के लिए 6 देती है। इनमें से, ''n'' को उपलब्ध अनुवादक समरूपता के लिए जिम्मेदार बताया जा सकता है और घूर्णी सममिति के लिए शेष ''n''(''n'' − 1)/2 ।


=== प्रत्यक्ष और अप्रत्यक्ष आइसोमेट्री ===
=== प्रत्यक्ष और अप्रत्यक्ष आइसोमेट्री ===
Line 32: Line 32:
   "Symmetry";
   "Symmetry";
-->
-->
प्रत्यक्ष आइसोमेट्रीज़ (अर्थात, आइसोमेट्रीज़ चिरलिटी (गणित) उपसमुच्चय के [[अभिविन्यास (गणित)]] को संरक्षित करती हैं) में (एन) का एक [[उपसमूह]] सम्मिलित होता है, जिसे विशेष यूक्लिडियन समूह कहा जाता है और आमतौर पर ई द्वारा निरूपित किया जाता है।<sup>+</sup>(एन) या एसई (एन), उनमें अनुवाद और घुमाव और उनके संयोजन सम्मिलित हैं; पहचान परिवर्तन सहित, लेकिन सभी  प्रतिबिंब को छोड़कर।
प्रत्यक्ष आइसोमेट्रीज़ (अर्थात, आइसोमेट्रीज़ चिरलिटी (गणित) उपसमुच्चय के [[अभिविन्यास (गणित)]] को संरक्षित करती हैं) में E(''n'')का एक [[उपसमूह]] सम्मिलित होता है, जिसे विशेष यूक्लिडियन समूह कहा जाता है और सामान्यतः E<sup>+</sup>(''n'') या SE(''n'') द्वारा निरूपित किया जाता है।, उनमें अनुवाद और घुमाव और उनके संयोजन सम्मिलित हैं; पहचान परिवर्तन सहित, लेकिन सभी  प्रतिबिंब को छोड़कर।


आइसोमेट्रीज जो रिवर्स हैंडनेस को '<nowiki/>'''अप्रत्यक्ष'''<nowiki/>' या ''''विपरीत'''<nowiki/>' कहते हैं। किसी भी निश्चित अप्रत्यक्ष आइसोमेट्री आर के लिए, जैसे कि कुछ हाइपरप्लेन के बारे में एक प्रतिबिंब, कुछ प्रत्यक्ष आइसोमेट्री के साथ आर की संरचना से हर दूसरे अप्रत्यक्ष आइसोमेट्री को प्राप्त किया जा सकता है। इसलिए, अप्रत्यक्ष आइसोमेट्री ई का एक सहसमुच्चय है <sup>+</sup>(एन), जिसे ई से दर्शाया जा सकता है, <sup>−</sup>(एन) यह इस प्रकार है कि उपसमूह <sup>+</sup>(एन), ई(एन) में एक उपसमूह 2 के सूचकांक का है।
आइसोमेट्रीज जो रिवर्स हैंडनेस कहलाती हैं को '<nowiki/>'''अप्रत्यक्ष'''<nowiki/>' या ''''विपरीत'''<nowiki/>' कहते हैं। किसी भी निश्चित अप्रत्यक्ष आइसोमेट्री ''R'' के लिए, जैसे कि कुछ हाइपरप्लेन के बारे में एक प्रतिबिंब, कुछ प्रत्यक्ष आइसोमेट्री के साथ आर की संरचना से हर दूसरे अप्रत्यक्ष आइसोमेट्री को प्राप्त किया जा सकता है। इसलिए, अप्रत्यक्ष आइसोमेट्री E<sup>+</sup>(n) का एक सहसमुच्चय है, जिसे E<sup>−</sup>(n) से दर्शाया जा सकता है,  यह इस प्रकार है कि उपसमूह E<sup>+</sup>(n) में एक उपसमूह 2 के E(''n'') सूचकांक का है।


=== समूह की [[टोपोलॉजी]] ===
=== समूह की [[टोपोलॉजी]] ===
यूक्लिडियन अंतरिक्ष की प्राकृतिक टोपोलॉजी <math>\mathbb{E}^n</math> यूक्लिडियन समूह (एन) के लिए एक टोपोलॉजी का तात्पर्य है। अर्थात्, एक अनुक्रम एफ<sub>''आई''</sub> की आइसोमेट्री <math>\mathbb{E}^n</math> (<math>i \in \mathbb{N}</math>) के किसी भी बिंदु पी के लिए अगर और केवल अगर अभिसरण करने के लिए परिभाषित किया गया है <math>\mathbb{E}^n</math>, अंक पी का क्रम<sub>''i''</sub> अभिसरण।
यूक्लिडियन अंतरिक्ष की प्राकृतिक टोपोलॉजी <math>\mathbb{E}^n</math> यूक्लिडियन समूह E(''n)'' के लिए एक टोपोलॉजी का तात्पर्य है। अर्थात्, एक अनुक्रम ''f<sub>i</sub>'' की आइसोमेट्री <math>\mathbb{E}^n</math> (<math>i \in \mathbb{N}</math>) के किसी भी बिंदु ''p'' के लिए अगर और केवल अगर अभिसरण करने के लिए परिभाषित किया गया है <math>\mathbb{E}^n</math>, अंक ''p<sub>i</sub>'' का क्रम<sub>''i''</sub> अभिसरण।


इस परिभाषा से यह इस प्रकार है कि एक फ़ंक्शन <math>f:[0,1] \to E(n)</math> निरंतर है अगर और केवल अगर, किसी भी बिंदु पी के लिए <math>\mathbb{E}^n</math>, कार्यक्रम <math>f_p: [0,1] \to \mathbb{E}^n</math> एफ द्वारा परिभाषित<sub>''पी''</sub>(टी) = (एफ(टी))(पी) निरंतर है। इस तरह के एक समारोह को (एन) में निरंतर प्रक्षेपवक्र कहा जाता है।
इस परिभाषा से यह इस प्रकार है कि एक फ़ंक्शन <math>f:[0,1] \to E(n)</math> निरंतर है अगर और केवल अगर, किसी भी बिंदु पी के लिए <math>\mathbb{E}^n</math>, कार्यक्रम <math>f_p: [0,1] \to \mathbb{E}^n</math> एफ द्वारा परिभाषित ''f<sub>p</sub>''(''t'') = (''f''(''t''))(''p'') निरंतर है। इस तरह के एक समारोह को E(''n'') में निरंतर प्रक्षेपवक्र कहा जाता है।


यह पता चला है कि विशेष यूक्लिडियन समूह एसई (एन) = <sup>+</sup>(एन) इस टोपोलॉजी में जुड़ा हुआ है। अर्थात्, किन्हीं भी दो प्रत्यक्ष समस्थानिकों और बी का दिया हुआ है <math>\mathbb{E}^n</math>, ई में एक निरंतर प्रक्षेपवक्र एफ है <sup>+</sup>(एन) ऐसा है कि एफ(0) = ए और एफ(1) = बी. यही बात अप्रत्यक्ष सममिति ई के लिए भी सही है <sup>−</sup>(एन). दूसरी ओर, समूह (एन) एक पूरे के रूप में जुड़ा नहीं है: ई में प्रारंभ होने वाला कोई निरंतर प्रक्षेपवक्र नहीं है <sup>+</sup>(n) और ई में समाप्त होता है<sup>−</sup>(एन).
यह पता चला है कि विशेष यूक्लिडियन समूह SE(''n'') = E<sup>+</sup>(''n'') इस टोपोलॉजी में जुड़ा हुआ है। अर्थात्, किन्हीं भी दो प्रत्यक्ष समस्थानिकों और B का दिया हुआ है <math>\mathbb{E}^n</math>, E<sup>+</sup>(''n'') में एक निरंतर प्रक्षेपवक्र f है जैसे कि ''f''(0) = ''A'' and ''f''(1) = ''B''। यही बात अप्रत्यक्ष सममिति E<sup>−</sup>(''n'') के लिए भी सच है। दूसरी ओर, समूह E(''n'') पूरी तरह से जुड़ा नहीं है ऐसा प्रारंभ होने वाला कोई निरंतर प्रक्षेपवक्र नहीं है जो ई + (एन) में शुरू होता है और ई- (एन) में समाप्त होता है।


ई (3) में निरंतर प्रक्षेपवक्र [[शास्त्रीय यांत्रिकी]] में एक महत्वपूर्ण भूमिका निभाते हैं, क्योंकि वे समय के साथ त्रि-आयामी अंतरिक्ष में एक [[कठोर शरीर]] के भौतिक रूप से संभव आंदोलनों का वर्णन करते हैं। एक एफ(0) को पहचान रूपांतरण लेता है <math>\mathbb{E}^3</math>, जो शरीर की प्रारंभिक स्थिति का वर्णन करता है। किसी बाद के समय टी पर शरीर की स्थिति और अभिविन्यास परिवर्तन एफ(टी ) द्वारा वर्णित किया जाएगा। चूँकि एफ(0) = आई , ई में है <sup>+</sup>(3), वही बाद के समय के लिए एफ(टी) के लिए सही होना चाहिए। इस कारण से, प्रत्यक्ष यूक्लिडियन समरूपता को कठोर गति भी कहा जाता है।
ई (3) में निरंतर प्रक्षेपवक्र [[शास्त्रीय यांत्रिकी]] में एक महत्वपूर्ण भूमिका निभाते हैं, क्योंकि वे समय के साथ त्रि-आयामी अंतरिक्ष में एक [[कठोर शरीर]] के भौतिक रूप से संभव आंदोलनों का वर्णन करते हैं। एक f(0) को पहचान रूपांतरण I लेता है <math>\mathbb{E}^3</math>, जो शरीर की प्रारंभिक स्थिति का वर्णन करता है। किसी बाद के समय t पर शरीर की स्थिति और अभिविन्यास परिवर्तन f(t ) द्वारा वर्णित किया जाएगा। चूँकि f(0) = I , E<sup>+</sup>(3) में है , वही बाद के समय के लिए f(t) के लिए सत्य होना चाहिए। इस कारण से, प्रत्यक्ष यूक्लिडियन समरूपता को "कठोर गति" भी कहा जाता है।


=== झूठ संरचना ===
=== झूठ संरचना ===
Line 50: Line 50:


===एफ़ाइन समूह से संबंध===
===एफ़ाइन समूह से संबंध===
यूक्लिडियन समूह (एन) एन विस्तारों के लिए [[affine समूह|एफाइन समूह]] का एक उपसमूह है, और इस तरह से दोनों की [[अर्ध-प्रत्यक्ष उत्पाद]] संरचना का सम्मान करने के लिए{{clarify|date=October 2016}} समूह। यह, एक स्पष्ट संकेतन में तत्वों को लिखने के दो तरीके देता है। य़े हैं:
यूक्लिडियन समूह E(n) n विस्तारों के लिए [[affine समूह|एफाइन समूह]] का एक उपसमूह है, और इस तरह से दोनों की [[अर्ध-प्रत्यक्ष उत्पाद]] संरचना का सम्मान करने के लिए{{clarify|date=October 2016}} समूह। यह, एक स्पष्ट संकेतन में तत्वों को लिखने के दो तरीके देता है। य़े हैं:


# एक जोड़ी द्वारा {{nowrap|('''', ''बी '')}}, ए ए के साथ {{nowrap|''एन'' × ''एन''}} [[ऑर्थोगोनल मैट्रिक्स]], और बी आकार एन का एक वास्तविक स्तंभ वेक्टर; या
# एक जोड़ी द्वारा {{nowrap|(''A'', ''b'')}}, ए ए के साथ {{nowrap|''n'' × ''n''}} [[ऑर्थोगोनल मैट्रिक्स]], और b आकार एन का एक वास्तविक स्तंभ वेक्टर; या
# आकार के एकल [[स्क्वायर मैट्रिक्स]] द्वारा {{nowrap|''एन'' + 1}}, जैसा कि एफाइन समूह के लिए समझाया गया है।
# आकार के एकल [[स्क्वायर मैट्रिक्स]] द्वारा {{nowrap|''n'' + 1}}, जैसा कि एफाइन समूह के लिए समझाया गया है।


पहले प्रतिनिधित्व का विवरण अगले भाग में दिया गया है।
पहले प्रतिनिधित्व का विवरण अगले भाग में दिया गया है।
Line 64: Line 64:
यूक्लिडियन समूह एफ़िन परिवर्तनों के समूह का एक उपसमूह है।
यूक्लिडियन समूह एफ़िन परिवर्तनों के समूह का एक उपसमूह है।


इसमें उपसमूहों के रूप में अनुवाद (ज्यामिति) समूह टी (एन) और [[ऑर्थोगोनल समूह]] (एन) है। (एन) का कोई भी तत्व एक अनुवाद है जिसके बाद एक ऑर्थोगोनल परिवर्तन (आइसोमेट्री का रैखिक भाग) एक अद्वितीय तरीके से होता है:<math display="block">x \mapsto A (x + b)</math>जहाँ A एक ओर्थोगोनल मैट्रिक्स है
इसमें उपसमूहों के रूप में अनुवाद (ज्यामिति) समूह T(''n'') और [[ऑर्थोगोनल समूह]] O(''n'') है। E(''n'') का कोई भी तत्व एक अनुवाद है जिसके बाद एक ऑर्थोगोनल परिवर्तन (आइसोमेट्री का रैखिक भाग) एक अद्वितीय तरीके से होता है:<math display="block">x \mapsto A (x + b)</math>


या उसी ऑर्थोगोनल परिवर्तन के बाद अनुवाद:<math display="block">x \mapsto A x + c,</math>साथ {{math|1=''c'' = ''Ab''}}


टी (एन) (एन) का एक [[सामान्य उपसमूह]] है: प्रत्येक अनुवाद टी और प्रत्येक आइसोमेट्री यू के लिए, फ़ंक्शन संरचना<math display="block">u^{-1}tu</math>फिर से एक अनुवाद है।
 
साथ में, इन तथ्यों का अर्थ है कि (एन), टी (एन) द्वारा विस्तारित (एन) का अर्ध-प्रत्यक्ष उत्पाद है, जिसे इस रूप में लिखा गया है <math>\text{E}(n) = \text{T}(n) \rtimes \text{O}(n)</math>. दूसरे शब्दों में, (एन) (स्वाभाविक रूप से) टी(एन) द्वारा (एन) का [[भागफल समूह]] भी है:<math display="block">\text{O}(n) \cong \text{E}(n) / \text{T}(n)</math>अब एसओ(एन), विशेष ओर्थोगोनल समूह, एक उपसमूह दो के सूचकांक के ओ(एन) का एक उपसमूह है। इसलिए, ई (एन) का एक उपसमूह ई है<sup>+</sup>(एन), इंडेक्स दो का भी, जिसमें प्रत्यक्ष आइसोमेट्रीज़ सम्मिलित हैं। इन स्थितियों में ए का निर्धारक 1 है।
जहाँ A एक ओर्थोगोनल मैट्रिक्स है
 
या उसी ऑर्थोगोनल परिवर्तन के बाद अनुवाद:<math display="block">x \mapsto A x + c,</math>
 
 
 
साथ {{math|1=''c'' = ''Ab''}}
 
t(n), E(''n'') का एक [[सामान्य उपसमूह]] है: प्रत्येक अनुवाद t और प्रत्येक आइसोमेट्री u के लिए, फ़ंक्शन संरचना<math display="block">u^{-1}tu</math>
 
 
 
फिर से एक अनुवाद है।
 
साथ में, इन तथ्यों का अर्थ है कि E(''n''), T(''n'') द्वारा विस्तारित O(''n'') का अर्ध-प्रत्यक्ष उत्पाद है, जिसे इस रूप में लिखा गया है <math>\text{E}(n) = \text{T}(n) \rtimes \text{O}(n)</math>. दूसरे शब्दों में, O(''n'') (स्वाभाविक रूप से) E(''n'') द्वारा T(''n'')का [[भागफल समूह]] भी है:<math display="block">\text{O}(n) \cong \text{E}(n) / \text{T}(n)</math>
 
 
 
अब SO(''n''), विशेष ओर्थोगोनल समूह, एक उपसमूह दो के सूचकांक के ओ(एन) का एक उपसमूह है। इसलिए, ई (एन) का एक उपसमूह ई है<sup>+</sup>(एन), इंडेक्स दो का भी, जिसमें प्रत्यक्ष आइसोमेट्रीज़ सम्मिलित हैं। इन स्थितियों में ए का निर्धारक 1 है।
 
उन्हें किसी तरह के प्रतिबिंब (गणित) के बाद अनुवाद के बदले में [[रोटेशन]] के बाद अनुवाद के रूप में दर्शाया जाता है (विस्तार 2 और 3 में, ये [[दर्पण]] रेखा या विमान में परिचित प्रतिबिंब हैं, जिन्हें सम्मिलित करने के लिए, लिया जा सकता है) [[उत्पत्ति (गणित)]], या 3डी में, एक अनुचित घूर्णन)।
उन्हें किसी तरह के प्रतिबिंब (गणित) के बाद अनुवाद के बदले में [[रोटेशन]] के बाद अनुवाद के रूप में दर्शाया जाता है (विस्तार 2 और 3 में, ये [[दर्पण]] रेखा या विमान में परिचित प्रतिबिंब हैं, जिन्हें सम्मिलित करने के लिए, लिया जा सकता है) [[उत्पत्ति (गणित)]], या 3डी में, एक अनुचित घूर्णन)।


यह संबंध आमतौर पर इस प्रकार लिखा जाता है:<math display="block">\text{SO}(n) \cong \text{E}^+(n) / \text{T}(n)</math>या, समकक्ष:<math display="block">\text{E}^+(n) = \text{SO}(n) \ltimes \text{T}(n).</math>
यह संबंध सामान्यतः इस प्रकार लिखा जाता है<math display="block">\text{SO}(n) \cong \text{E}^+(n) / \text{T}(n)</math>या, समकक्ष:<math display="block">\text{E}^+(n) = \text{SO}(n) \ltimes \text{T}(n).</math>


=== उपसमूह ===<!-- This section is linked from [[Symmetry group]] -->
=== उपसमूह ===<!-- This section is linked from [[Symmetry group]] -->
Line 107: Line 125:
{| class=wikitable
{| class=wikitable
|+ ई (1) की आइसोमेट्री
|+ ई (1) की आइसोमेट्री
! Type of isometry
!आइसोमेट्री का प्रकार
! Degrees of freedom
!स्वतंत्रता का दर्जा
! Preserves orientation?
!ओरिएंटेशन सुरक्षित रखता है?
|- align=center
|- align=center
| Identity|| 0|| {{yes}}
|पहचान
| 0|| {{yes}}
|- align=center
|- align=center
| Translation|| 1|| {{yes}}
|अनुवाद
| 1|| {{yes}}
|- align=center
|- align=center
| Reflection in a point|| 1|| {{no}}
|एक बिंदु में प्रतिबिंब
| 1|| {{no}}
|}
|}


{| class=wikitable
{| class=wikitable
|+ ई (2) की आइसोमेट्री
|+ ई (2) की आइसोमेट्री
! Type of isometry
!आइसोमेट्री का प्रकार
! Degrees of freedom
!स्वतंत्रता का दर्जा
! Preserves orientation?
!ओरिएंटेशन सुरक्षित रखता है?
|- align=center
|- align=center
| Identity|| 0|| {{yes}}
|पहचान
| 0|| {{yes}}
|- align=center
|- align=center
| Translation|| 2|| {{yes}}
|अनुवाद
| 2|| {{yes}}
|- align=center
|- align=center
| Rotation about a point|| 3|| {{yes}}
|एक बिंदु के बारे में घूमना
| 3|| {{yes}}
|- align=center
|- align=center
| Reflection in a line|| 2|| {{no}}
|एक पंक्ति में प्रतिबिंब
| 2|| {{no}}
|-  align=center
|-  align=center
| [[Glide reflection]]|| 3|| {{no}}
| [[Glide reflection|सरकना प्रतिबिंब]]|| 3|| {{no}}
|}
|}


Line 143: Line 168:
! Preserves orientation?
! Preserves orientation?
|- align=center
|- align=center
| Identity|| 0|| {{yes}}
|पहचान
| 0|| {{yes}}
|- align=center
|- align=center
| Translation|| 3|| {{yes}}
|अनुवाद
| 3|| {{yes}}
|- align=center
|- align=center
| Rotation about an axis|| 5|| {{yes}}
|एक अक्ष के चारों ओर घूमना
| 5|| {{yes}}
|- align=center
|- align=center
| [[Screw displacement]]|| 6|| {{yes}}
| [[Screw displacement|पेंच विस्थापन]]|| 6|| {{yes}}
|- align=center
|- align=center
| Reflection in a plane|| 3|| {{no}}
|एक विमान में प्रतिबिंब
| 3|| {{no}}
|- align=center
|- align=center
| [[Glide plane]] operation|| 5|| {{no}}
| [[Glide plane|ग्लाइड विमान]] संचालन|| 5|| {{no}}
|- align=center
|- align=center
| [[Improper rotation]]|| 6|| {{no}}
| [[Improper rotation|अनुचित घुमाव]]|| 6|| {{no}}
|- align=center
|- align=center
| Inversion in a point||3|| {{no}}
|एक बिंदु में उलटा
|3|| {{no}}
|}
|}
चासल्स प्रमेय (कीनेमेटीक्स), चासल्स प्रमेय दावा करता है कि, ई का कोई भी तत्व <sup>+</sup>(3) एक [[पेंच विस्थापन]] है।
चासल्स प्रमेय (कीनेमेटीक्स), चासल्स प्रमेय दावा करता है कि, ई का कोई भी तत्व <sup>+</sup>(3) एक [[पेंच विस्थापन]] है।
Line 178: Line 208:
किसी भी दिशा में दी गई दूरी से किए गए अनुवाद संयुग्मी वर्ग का निर्माण करते हैं; अनुवाद समूह सभी दूरियों के लिए उनका संघ है।
किसी भी दिशा में दी गई दूरी से किए गए अनुवाद संयुग्मी वर्ग का निर्माण करते हैं; अनुवाद समूह सभी दूरियों के लिए उनका संघ है।


1D में, सभी प्रतिबिंब एक ही कक्षा में होते हैं।
1डी में, सभी प्रतिबिंब एक ही कक्षा में होते हैं।


2डी में, किसी भी दिशा में एक ही कोण से घुमाव एक ही वर्ग में होते हैं। एक ही दूरी से अनुवाद के साथ ग्लाइड प्रतिबिंब एक ही कक्षा में हैं।
2डी में, किसी भी दिशा में एक ही कोण से घुमाव एक ही वर्ग में होते हैं। एक ही दूरी से अनुवाद के साथ ग्लाइड प्रतिबिंब एक ही कक्षा में हैं।
Line 202: Line 232:


{{DEFAULTSORT:Euclidean Group}}
{{DEFAULTSORT:Euclidean Group}}
[[Category:CS1 errors|Euclidean Group]]
[[Category:Lua-based templates|Euclidean Group]]
[[Category:Machine Translated Page|Euclidean Group]]
[[Category:Mathematics sidebar templates|Euclidean Group]]
[[Category:Pages with script errors|Euclidean Group]]
[[Category:Physics sidebar templates|Euclidean Group]]
[[Category:Short description with empty Wikidata description|Euclidean Group]]
[[Category:Sidebars with styles needing conversion|Euclidean Group]]
[[Category:Templates Vigyan Ready|Euclidean Group]]
[[Category:Templates that add a tracking category|Euclidean Group]]
[[Category:Templates that generate short descriptions|Euclidean Group]]
[[Category:Templates using TemplateData|Euclidean Group]]
[[Category:Wikipedia articles needing clarification from October 2016|Euclidean Group]]

Latest revision as of 18:06, 31 January 2023

गणित में, एक यूक्लिडियन समूह एक यूक्लिडियन अंतरिक्ष के (यूक्लिडियन) आइसोमेट्री (सममिति) का समूह है। ; अर्थात्, उस स्थान का रूपांतरण जो किसी भी दो बिंदुओं के बीच यूक्लिडियन दूरी को परिवर्तित करता है (जिसे यूक्लिडियन परिवर्तन भी कहा जाता है)। समूह केवल स्थान के विस्तार एन पर निर्भर करता है, और सामान्यतः ई(एन) या आईएसओ(एन) को निरूपित करता है।

यूक्लिडियन समूह ई(एन) में सभी अनुवाद (ज्यामिति), रोटेशन (गणित) और प्रतिबिंब (गणित) सम्मिलित हैं और उनका मनमाना परिमित संयोजन हैं। यूक्लिडियन समूह को अंतरिक्ष के सममिति समूह के रूप में ही देखा जा सकता है और इसमें उस स्थान के किसी भी आकृति (उपसमुच्चय) की समरूपता का समूह सम्मिलित है।

एक यूक्लिडियन सममिति प्रत्यक्ष या अप्रत्यक्ष हो सकती है, यह इस बात पर निर्भर करता है कि यह आंकड़ों की सहजता को स्थिर रखती है या नहीं। प्रत्यक्ष यूक्लिडियन सममिति एक उपसमूह बनाते हैं, विशेष यूक्लिडियन समूह, जिसे प्रायः एसई (एन) कहा जाता है, जिनके तत्वों को कठोर गति या यूक्लिडियन गति कहा जाता है। उनमें अनुवाद और घुमावों का मनमाना संयोजन सम्मिलित है, लेकिन प्रतिबिंब नहीं।

ये समूह (गणित) सबसे पुराने और सबसे अधिक अध्ययन किए गए हैं, कम से कम विस्तार 2 और 3 के घटनाओं में – समूह की अवधारणा के आविष्कार से बहुत पहले।

अवलोकन

परिमाणिकता

E(n) के लिए स्वतंत्रता की डिग्री की संख्या n(n + 1)/2 है, जो n = 2 के घटनाओं में 3 और n = 3 के लिए 6 देती है। इनमें से, n को उपलब्ध अनुवादक समरूपता के लिए जिम्मेदार बताया जा सकता है और घूर्णी सममिति के लिए शेष n(n − 1)/2 ।

प्रत्यक्ष और अप्रत्यक्ष आइसोमेट्री

प्रत्यक्ष आइसोमेट्रीज़ (अर्थात, आइसोमेट्रीज़ चिरलिटी (गणित) उपसमुच्चय के अभिविन्यास (गणित) को संरक्षित करती हैं) में E(n)का एक उपसमूह सम्मिलित होता है, जिसे विशेष यूक्लिडियन समूह कहा जाता है और सामान्यतः E+(n) या SE(n) द्वारा निरूपित किया जाता है।, उनमें अनुवाद और घुमाव और उनके संयोजन सम्मिलित हैं; पहचान परिवर्तन सहित, लेकिन सभी प्रतिबिंब को छोड़कर।

आइसोमेट्रीज जो रिवर्स हैंडनेस कहलाती हैं को 'अप्रत्यक्ष' या 'विपरीत' कहते हैं। किसी भी निश्चित अप्रत्यक्ष आइसोमेट्री R के लिए, जैसे कि कुछ हाइपरप्लेन के बारे में एक प्रतिबिंब, कुछ प्रत्यक्ष आइसोमेट्री के साथ आर की संरचना से हर दूसरे अप्रत्यक्ष आइसोमेट्री को प्राप्त किया जा सकता है। इसलिए, अप्रत्यक्ष आइसोमेट्री E+(n) का एक सहसमुच्चय है, जिसे E(n) से दर्शाया जा सकता है, यह इस प्रकार है कि उपसमूह E+(n) में एक उपसमूह 2 के E(n) सूचकांक का है।

समूह की टोपोलॉजी

यूक्लिडियन अंतरिक्ष की प्राकृतिक टोपोलॉजी यूक्लिडियन समूह E(n) के लिए एक टोपोलॉजी का तात्पर्य है। अर्थात्, एक अनुक्रम fi की आइसोमेट्री () के किसी भी बिंदु p के लिए अगर और केवल अगर अभिसरण करने के लिए परिभाषित किया गया है , अंक pi का क्रमi अभिसरण।

इस परिभाषा से यह इस प्रकार है कि एक फ़ंक्शन निरंतर है अगर और केवल अगर, किसी भी बिंदु पी के लिए , कार्यक्रम एफ द्वारा परिभाषित fp(t) = (f(t))(p) निरंतर है। इस तरह के एक समारोह को E(n) में निरंतर प्रक्षेपवक्र कहा जाता है।

यह पता चला है कि विशेष यूक्लिडियन समूह SE(n) = E+(n) इस टोपोलॉजी में जुड़ा हुआ है। अर्थात्, किन्हीं भी दो प्रत्यक्ष समस्थानिकों A और B का दिया हुआ है , E+(n) में एक निरंतर प्रक्षेपवक्र f है जैसे कि f(0) = A and f(1) = B। यही बात अप्रत्यक्ष सममिति E(n) के लिए भी सच है। दूसरी ओर, समूह E(n) पूरी तरह से जुड़ा नहीं है ऐसा प्रारंभ होने वाला कोई निरंतर प्रक्षेपवक्र नहीं है जो ई + (एन) में शुरू होता है और ई- (एन) में समाप्त होता है।

ई (3) में निरंतर प्रक्षेपवक्र शास्त्रीय यांत्रिकी में एक महत्वपूर्ण भूमिका निभाते हैं, क्योंकि वे समय के साथ त्रि-आयामी अंतरिक्ष में एक कठोर शरीर के भौतिक रूप से संभव आंदोलनों का वर्णन करते हैं। एक f(0) को पहचान रूपांतरण I लेता है , जो शरीर की प्रारंभिक स्थिति का वर्णन करता है। किसी बाद के समय t पर शरीर की स्थिति और अभिविन्यास परिवर्तन f(t ) द्वारा वर्णित किया जाएगा। चूँकि f(0) = I , E+(3) में है , वही बाद के समय के लिए f(t) के लिए सत्य होना चाहिए। इस कारण से, प्रत्यक्ष यूक्लिडियन समरूपता को "कठोर गति" भी कहा जाता है।

झूठ संरचना

यूक्लिडियन समूह केवल सांस्थितिक समूह नहीं हैं, वे लाई समूह हैं, ताकि कलन धारणाओं को इस सेटिंग के लिए तुरंत अनुकूलित किया जा सके।

एफ़ाइन समूह से संबंध

यूक्लिडियन समूह E(n) n विस्तारों के लिए एफाइन समूह का एक उपसमूह है, और इस तरह से दोनों की अर्ध-प्रत्यक्ष उत्पाद संरचना का सम्मान करने के लिए[clarification needed] समूह। यह, एक स्पष्ट संकेतन में तत्वों को लिखने के दो तरीके देता है। य़े हैं:

  1. एक जोड़ी द्वारा (A, b), ए ए के साथ n × n ऑर्थोगोनल मैट्रिक्स, और b आकार एन का एक वास्तविक स्तंभ वेक्टर; या
  2. आकार के एकल स्क्वायर मैट्रिक्स द्वारा n + 1, जैसा कि एफाइन समूह के लिए समझाया गया है।

पहले प्रतिनिधित्व का विवरण अगले भाग में दिया गया है।

फेलिक्स क्लेन के एर्लांगेन कार्यक्रम के संदर्भ में, हम इससे पढ़ते हैं कि यूक्लिडियन ज्यामिति, समरूपता के यूक्लिडियन समूह की ज्यामिति, इसलिए, एफाइन ज्यामिति की विशेषज्ञता है। सभी एफ़िन प्रमेय लागू होते हैं। यूक्लिडियन ज्यामिति की उत्पत्ति दूरी की धारणा को परिभाषित करने की अनुमति देती है, जिससे कोण का अनुमान लगाया जा सकता है।

विस्तृत वार्तालाप

उपसमूह संरचना, मैट्रिक्स और वेक्टर प्रतिनिधित्व

यूक्लिडियन समूह एफ़िन परिवर्तनों के समूह का एक उपसमूह है।

इसमें उपसमूहों के रूप में अनुवाद (ज्यामिति) समूह T(n) और ऑर्थोगोनल समूह O(n) है। E(n) का कोई भी तत्व एक अनुवाद है जिसके बाद एक ऑर्थोगोनल परिवर्तन (आइसोमेट्री का रैखिक भाग) एक अद्वितीय तरीके से होता है:


जहाँ A एक ओर्थोगोनल मैट्रिक्स है

या उसी ऑर्थोगोनल परिवर्तन के बाद अनुवाद:


साथ c = Ab

t(n), E(n) का एक सामान्य उपसमूह है: प्रत्येक अनुवाद t और प्रत्येक आइसोमेट्री u के लिए, फ़ंक्शन संरचना


फिर से एक अनुवाद है।

साथ में, इन तथ्यों का अर्थ है कि E(n), T(n) द्वारा विस्तारित O(n) का अर्ध-प्रत्यक्ष उत्पाद है, जिसे इस रूप में लिखा गया है . दूसरे शब्दों में, O(n) (स्वाभाविक रूप से) E(n) द्वारा T(n)का भागफल समूह भी है:


अब SO(n), विशेष ओर्थोगोनल समूह, एक उपसमूह दो के सूचकांक के ओ(एन) का एक उपसमूह है। इसलिए, ई (एन) का एक उपसमूह ई है+(एन), इंडेक्स दो का भी, जिसमें प्रत्यक्ष आइसोमेट्रीज़ सम्मिलित हैं। इन स्थितियों में ए का निर्धारक 1 है।

उन्हें किसी तरह के प्रतिबिंब (गणित) के बाद अनुवाद के बदले में रोटेशन के बाद अनुवाद के रूप में दर्शाया जाता है (विस्तार 2 और 3 में, ये दर्पण रेखा या विमान में परिचित प्रतिबिंब हैं, जिन्हें सम्मिलित करने के लिए, लिया जा सकता है) उत्पत्ति (गणित), या 3डी में, एक अनुचित घूर्णन)।

यह संबंध सामान्यतः इस प्रकार लिखा जाता है

या, समकक्ष:

उपसमूह

ई (एन) के उपसमूहों के प्रकार:

परिमित समूह:

उनका हमेशा एक निश्चित बिंदु होता है। 3डी में, प्रत्येक बिंदु के लिए प्रत्येक ओरिएंटेशन के लिए दो हैं जो परिमित समूहों के बीच अधिकतम (समावेशन के संबंध में) हैं: ओएच और आई एच. समूह, आई एच अगली श्रेणी सहित समूहों में भी अधिकतम हैं।

मनमाने ढंग से छोटे अनुवादों, घुमावों या संयोजनों के बिना असंख्य अनंत समूह: यानी, प्रत्येक बिंदु के लिए आइसोमेट्री के तहत छवियों का सेट टोपोलॉजिकल रूप से असतत स्थान है (उदाहरण के लिए, 1 ≤ एमएन स्वतंत्र दिशाओं में एम अनुवाद द्वारा उत्पन्न एक समूह और संभवतः एक परिमित बिंदु समूह)। इसमें जाली (समूह) सम्मिलित हैं। असतत स्थान समूह उन लोगों की तुलना में अधिक सामान्य उदाहरण हैं।

मनमाने ढंग से छोटे अनुवाद, घुमाव या संयोजन के साथ अनगिनत अनंत समूह: इस घटना में ऐसे बिंदु हैं जिनके लिए आइसोमेट्री के तहत छवियों का सेट बंद नहीं होता है।

ऐसे समूहों के उदाहरण हैं, 1डी में, 1 और एक के अनुवाद से उत्पन्न समूह 2, और 2डी में, 1 रेडियन द्वारा उत्पत्ति के बारे में घूर्णन द्वारा उत्पन्न समूह।

गैर-गणनीय समूह, जहां ऐसे बिंदु हैं जिनके लिए आइसोमेट्री के तहत छवियों का सेट बंद नहीं है
(उदाहरण के लिए, 2डी में सभी अनुवाद एक दिशा में, और सभी अनुवाद तर्कसंगत दूरी द्वारा दूसरी दिशा में)।
गैर-गणनीय समूह, जहां सभी बिंदुओं के लिए आइसोमेट्री के तहत छवियों का सेट बंद है
उदाहरण:
  • सभी प्रत्यक्ष समरूपताएं जो मूल को स्थिर रखती हैं, या अधिक सामान्यतः, कुछ बिंदु (3डी में रोटेशन समूह एसओ (3) कहा जाता है
  • सभी आइसोमेट्री जो मूल को स्थिर रखते हैं, या अधिक सामान्यतः, कुछ बिंदु (ऑर्थोगोनल समूह) सभी प्रत्यक्ष आइसोमेट्री ई+(एन)
  • संपूर्ण यूक्लिडियन समूह ई(एन)
  • ऑर्थोगोनल (एन-एम) -डायमेंशनल स्पेस में आइसोमेट्री के असतत समूह के साथ संयुक्त एम-डायमेंशनल सबस्पेस में इन समूहों में से एक
  • इन समूहों में से एक एम-डायमेंशनल सबस्पेस में ऑर्थोगोनल (एन-एम) -डायमेंशनल स्पेस में एक दूसरे के साथ संयुक्त है

संयोजनों के 3डी में उदाहरण:

  • सभी घुमाव एक निश्चित अक्ष के बारे में
  • ऐसा ही अक्ष के माध्यम से विमानों में प्रतिबिंब और/या अक्ष के लंबवत विमान के साथ संयुक्त है
  • अक्ष के साथ असतत अनुवाद के साथ या अक्ष के साथ सभी आइसोमेट्री के साथ संयुक्त
  • एक विमान में एक असतत बिंदु समूह, फ्रीज़ समूह या वॉलपेपर समूह, लंबवत दिशा में किसी भी समरूपता समूह के साथ संयुक्त
  • सभी आइसोमेट्री जो किसी धुरी के चारों ओर घूमने और अक्ष के साथ आनुपातिक अनुवाद का संयोजन हैं; सामान्य तौर पर यह एक ही धुरी के बारे में के-गुना घूर्णी आइसोमेट्रीज़ के साथ संयुक्त होता है (के ≥ 1); आइसोमेट्री के तहत एक बिंदु की छवियों का सेट एक के-फोल्ड कुंडलित वक्रता है; इसके अलावा लंबवत रूप से प्रतिच्छेदी अक्ष के बारे में 2-गुना घुमाव हो सकता है, और इसलिए ऐसी कुल्हाड़ियों का के-गुना हेलिक्स होता है।
  • किसी भी बिंदु समूह के लिए: सभी आइसोमेट्री का समूह जो बिंदु समूह में एक आइसोमेट्री और अनुवाद का एक संयोजन है; उदाहरण के लिए, मूल में व्युत्क्रम द्वारा उत्पन्न समूह के मामले में: सभी अनुवादों का समूह और सभी बिंदुओं में व्युत्क्रम; यह आर का सामान्यीकृत डायहेड्रल समूह है3, डीह(आर3).

अधिकतम तीन आयामों में आइसोमेट्री का अवलोकन

ई (1), ई (2), और ई (3) को स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान) के साथ निम्नानुसार वर्गीकृत किया जा सकता है:

ई (1) की आइसोमेट्री
आइसोमेट्री का प्रकार स्वतंत्रता का दर्जा ओरिएंटेशन सुरक्षित रखता है?
पहचान 0 Yes
अनुवाद 1 Yes
एक बिंदु में प्रतिबिंब 1 No
ई (2) की आइसोमेट्री
आइसोमेट्री का प्रकार स्वतंत्रता का दर्जा ओरिएंटेशन सुरक्षित रखता है?
पहचान 0 Yes
अनुवाद 2 Yes
एक बिंदु के बारे में घूमना 3 Yes
एक पंक्ति में प्रतिबिंब 2 No
सरकना प्रतिबिंब 3 No
ई (3) की आइसोमेट्री
Type of isometry Degrees of freedom Preserves orientation?
पहचान 0 Yes
अनुवाद 3 Yes
एक अक्ष के चारों ओर घूमना 5 Yes
पेंच विस्थापन 6 Yes
एक विमान में प्रतिबिंब 3 No
ग्लाइड विमान संचालन 5 No
अनुचित घुमाव 6 No
एक बिंदु में उलटा 3 No

चासल्स प्रमेय (कीनेमेटीक्स), चासल्स प्रमेय दावा करता है कि, ई का कोई भी तत्व +(3) एक पेंच विस्थापन है।

ओर्थोगोनल समूह # 3डी आइसोमेट्रीज़ भी देखें जो मूल को निश्चित, अंतरिक्ष समूह, इनवॉल्यूशन (गणित) छोड़ देते हैं।

कम्यूटिंग आइसोमेट्री

कुछ आइसोमेट्री जोड़े के लिए रचना क्रम पर निर्भर नहीं करती है:

  • दो अनुवाद
  • एक ही धुरी के बारे में दो घुमाव या पेंच
  • एक समतल के संबंध में परावर्तन, और उस तल में एक अनुवाद, तल के लम्बवत् अक्ष के बारे में एक घूर्णन, या एक लम्बवत समतल के संबंध में एक प्रतिबिंब
  • एक विमान के संबंध में ग्लाइड प्रतिबिंब और उस विमान में एक अनुवाद
  • एक बिंदु में उलटा और बिंदु को स्थिर रखते हुए कोई भी आइसोमेट्री
  • किसी अक्ष के परितः 180° का घूर्णन और उस अक्ष से किसी तल में परावर्तन
  • एक अक्ष के बारे में 180° का घूर्णन और लम्बवत अक्ष के बारे में 180° का घूर्णन (परिणामस्वरूप दोनों के लम्बवत अक्ष के बारे में 180° का घूर्णन)
  • एक ही विमान के संबंध में एक ही धुरी के बारे में दो रोटर प्रतिबिंब
  • एक ही विमान के संबंध में दो ग्लाइड प्रतिबिंब

संयुग्मन वर्ग

किसी भी दिशा में दी गई दूरी से किए गए अनुवाद संयुग्मी वर्ग का निर्माण करते हैं; अनुवाद समूह सभी दूरियों के लिए उनका संघ है।

1डी में, सभी प्रतिबिंब एक ही कक्षा में होते हैं।

2डी में, किसी भी दिशा में एक ही कोण से घुमाव एक ही वर्ग में होते हैं। एक ही दूरी से अनुवाद के साथ ग्लाइड प्रतिबिंब एक ही कक्षा में हैं।

3डी में:

  • सभी बिंदुओं के संबंध में व्युत्क्रम एक ही वर्ग में हैं।
  • समान कोण से घूर्णन एक ही वर्ग में होते हैं।
  • यदि कोण समान है और अनुवाद दूरी समान है, तो उस धुरी के साथ अनुवाद के साथ संयुक्त अक्ष के चारों ओर घुमाव एक ही वर्ग में हैं।
  • तल में प्रतिबिम्ब एक ही श्रेणी के होते हैं
  • समान दूरी से उस तल में अनुवाद के साथ संयुक्त विमान में प्रतिबिंब एक ही कक्षा में होते हैं।
  • एक अक्ष के चारों ओर समान कोण से 180 डिग्री के बराबर नहीं, उस धुरी के लंबवत विमान में प्रतिबिंब के साथ घूर्णन, एक ही कक्षा में हैं।

यह भी देखें

संदर्भ

  • सीडरबर्ग, जूडिथ एन. (2001). आधुनिक ज्यामिति में एक कोर्स. pp. 136–164. ISBN 978-0-387-98972-3. {{cite book}}: Invalid |url-access=सीमित (help)
  • विलियम थर्स्टन, त्रि-आयामी ज्यामिति और टोपोलॉजी, वॉल्यूम1, सिल्वियो लेवी द्वारा संपादित। प्रिंसटन गणितीय श्रृंखला, 35. प्रिंसटन यूनिवर्सिटी प्रेस, प्रिंसटन, एनजे, 1997. x+311 पीपी। आईएसबीएन 0-691-08304-5