डेटा आर्किटेक्चर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
डेटा आर्किटेक्चर में मॉडल, नीतियां, नियम और मानक शामिल होते हैं जो नियंत्रित करते हैं कि कौन सा डेटा एकत्र किया [[आंकड़े]] है और इसे कैसे संग्रहीत, व्यवस्थित, एकीकृत और डेटा सिस्टम और संगठनों में उपयोग में लाया जाता है।<ref>[http://www.businessdictionary.com/definition/data-architecture.html Business Dictionary - Data Architecture] {{Webarchive|url=https://web.archive.org/web/20130330185324/http://www.businessdictionary.com/definition/data-architecture.html |date=2013-03-30 }}; [http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap09.html TOGAF 9.1 - Phase C: Information Systems Architectures - Data Architecture]</ref> डेटा आमतौर पर कई [[आर्किटेक्चर डोमेन]] में से एक है जो [[उद्यम स्थापत्य]] या समाधान आर्किटेक्चर के स्तंभ बनाते हैं।<ref>[http://www.learn.geekinterview.com/data-warehouse/data-architecture/what-is-data-architecture.html What is data architecture] GeekInterview, 2008-01-28, accessed 2011-04-28</ref>
'''डेटा आर्किटेक्चर''' में मॉडल, नीतियां, नियम और मानक सम्म्मिलित होते हैं जो नियंत्रित करते हैं कि कौन सा [[आंकड़े|डेटा]] एकत्र किया जाता है और इसे कैसे संग्रहीत, व्यवस्थित, एकीकृत और डेटा प्रणाली और संगठनों में उपयोग में लाया जाता है।<ref>[http://www.businessdictionary.com/definition/data-architecture.html Business Dictionary - Data Architecture] {{Webarchive|url=https://web.archive.org/web/20130330185324/http://www.businessdictionary.com/definition/data-architecture.html |date=2013-03-30 }}; [http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap09.html TOGAF 9.1 - Phase C: Information Systems Architectures - Data Architecture]</ref> डेटा सामान्यतः कई [[आर्किटेक्चर डोमेन]] में से एक है जो [[उद्यम स्थापत्य|उद्योग आर्किटेक्चर]] या समाधान आर्किटेक्चर के स्तंभों का निर्माण करता है।<ref>[http://www.learn.geekinterview.com/data-warehouse/data-architecture/what-is-data-architecture.html What is data architecture] GeekInterview, 2008-01-28, accessed 2011-04-28</ref>




== सिंहावलोकन ==
== '''अवलोकन''' ==
डेटा आर्किटेक्चर का लक्ष्य अपने सभी डेटा सिस्टम के लिए डेटा मानकों को एक दृष्टि या उन डेटा सिस्टम के बीच अंतिम इंटरैक्शन के मॉडल के रूप में सेट करना है। [[डेटा एकीकरण]], उदाहरण के लिए, डेटा आर्किटेक्चर मानकों पर निर्भर होना चाहिए क्योंकि डेटा एकीकरण के लिए दो या दो से अधिक डेटा सिस्टम के बीच डेटा इंटरैक्शन की आवश्यकता होती है। डेटा आर्किटेक्चर, भाग में, व्यवसाय और उसके कंप्यूटर [[अनुप्रयोग सॉफ्टवेयर]] द्वारा उपयोग की जाने वाली [[डेटा संरचना]]ओं का वर्णन करता है। डेटा आर्किटेक्चर भंडारण में डेटा, उपयोग में डेटा और गति में डेटा को संबोधित करता है; डेटा स्टोर, डेटा समूह और डेटा आइटम का विवरण; और डेटा गुणों, अनुप्रयोगों, स्थानों, आदि के लिए उन डेटा कलाकृतियों की [[डेटा मैपिंग]]
डेटा आर्किटेक्चर का लक्ष्य अपने सभी डेटा प्रणाली के लिए डेटा मानकों को एक दृष्टि या उन डेटा प्रणाली के बीच अंतिम पारस्परिक प्रभाव के मॉडल के रूप में सेट करना है। [[डेटा एकीकरण]], उदाहरण के लिए, डेटा आर्किटेक्चर मानकों पर निर्भर होना चाहिए क्योंकि डेटा एकीकरण के लिए दो या दो से अधिक डेटा प्रणाली के बीच डेटा पारस्परिक प्रभाव की आवश्यकता होती है। डेटा आर्किटेक्चर, भाग में, व्यवसाय और उसके कंप्यूटर [[अनुप्रयोग सॉफ्टवेयर]] द्वारा उपयोग की जाने वाली [[डेटा संरचना]]ओं का वर्णन करता है। डेटा आर्किटेक्चर भंडारण में डेटा, उपयोग में डेटा और गति में डेटा; डेटा स्टोर, डेटा समूह और डेटा विषय का विवरण; और डेटा गुणों, अनुप्रयोगों, स्थानों, आदि के लिए उन डेटा कलाकृतियों की [[डेटा मैपिंग]] आदि में संबोधित करता है।


लक्ष्य स्थिति को साकार करने के लिए आवश्यक, डेटा आर्किटेक्चर बताता है कि [[सूचना प्रणाली]] में डेटा को कैसे संसाधित, संग्रहीत और उपयोग किया जाता है। यह [[डाटा प्रासेसिंग]] संचालन के लिए मानदंड प्रदान करता है ताकि [[डेटा प्रवाह]] को डिजाइन करना संभव हो सके और सिस्टम में डेटा के प्रवाह को नियंत्रित भी किया जा सके।
लक्ष्य स्थिति को साकार करने के लिए आवश्यक, डेटा आर्किटेक्चर बताता है कि [[सूचना प्रणाली]] में डेटा को कैसे संसाधित, संग्रहीत और उपयोग किया जाता है। यह [[डाटा प्रासेसिंग]] संचालन के लिए मानदंड प्रदान करता है जिससे [[डेटा प्रवाह]] को डिजाइन करना संभव हो सके और प्रणाली में डेटा के प्रवाह को नियंत्रित भी किया जा सके।  


[[डेटा वास्तुकार]] आमतौर पर लक्ष्य स्थिति को परिभाषित करने, विकास के दौरान संरेखित करने और फिर यह सुनिश्चित करने के लिए कि मूल ब्लूप्रिंट की भावना में वृद्धि की जाती है, के लिए जिम्मेदार है।
[[डेटा वास्तुकार|डेटा आर्किटेक्ट]] सामान्यतः पर विकास के दौरान लक्ष्य स्थिति को संरेखित करने के लिए जिम्मेदार होता है और फिर यह सुनिश्चित करने के लिए कि मूल रूपरेखा की भावना में वृद्धि की जाती है।


लक्ष्य स्थिति की परिभाषा के दौरान, डेटा आर्किटेक्चर किसी विषय को परमाणु स्तर तक तोड़ता है और फिर इसे वांछित रूप में वापस बनाता है। डेटा आर्किटेक्ट तीन पारंपरिक वास्तुशिल्प चरणों के माध्यम से विषय को तोड़ता है:
लक्ष्य स्थिति की परिभाषा के समय, डेटा आर्किटेक्चर किसी विषय को परमाणु स्तर तक तोड़ता है और फिर इसे वांछित रूप में वापस बनाता है। डेटा आर्किटेक्ट तीन पारंपरिक वास्तुशिल्प चरणों के माध्यम से विषय को तोड़ता है:
* वैचारिक - सभी Business_object का प्रतिनिधित्व करता है।
* वैचारिक - सभी व्यावसायिक संस्थाओं का प्रतिनिधित्व करता है।
* तार्किक - संस्थाओं के संबंध कैसे हैं, इसके तर्क का प्रतिनिधित्व करता है।
* तार्किक - संस्थाओं के संबंध कैसे हैं, इसके तर्क का प्रतिनिधित्व करता है।
* भौतिक - विशिष्ट प्रकार की कार्यक्षमता के लिए डेटा तंत्र की प्राप्ति।
* भौतिक - विशिष्ट प्रकार की कार्यक्षमता के लिए डेटा तंत्र की प्राप्ति।


एंटरप्राइज़ आर्किटेक्चर के लिए [[ज़चमन फ्रेमवर्क]] का डेटा कॉलम -
उद्योग आर्किटेक्चर के लिए [[ज़चमन फ्रेमवर्क]] का डेटा स्तंभ -


{| border=1
{| border=1
|'''Layer''' || '''View''' || '''Data (What)''' || '''Stakeholder'''
|'''स्तर''' ||               '''अवलोकन'''|| '''डेटा (क्या)''' || '''हितधारकों'''
|-
|-
|1||'''Scope/Contextual''' || List of things and architectural standards<ref>[https://web.archive.org/web/20160305023946/http://www.strins.com/data-architecture-standards.html Data Architecture Standards]</ref> important to the business || Planner
|1||'''कार्यक्षेत्र/प्रासंगिक''' || व्यापार के लिए महत्वपूर्ण चीजों और वास्तु मानकों<ref>[https://web.archive.org/web/20160305023946/http://www.strins.com/data-architecture-standards.html Data Architecture Standards]</ref> की सूची
| योजनाकर्ता
|-
|-
|2||'''Business Model/Conceptual'''  || Semantic model or [[Conceptual_schema|Conceptual]]/[[Enterprise data model]] || Owner
|2||'''व्यापार मॉडल / वैचारिक'''  || सिमेंटिक मॉडल या [[Conceptual_schema|वैचारिक]]/[[Enterprise data model|उद्यम डेटा मॉडल]]
| स्वामी
|-
|-
|3||'''System Model/Logical''' || Enterprise/[[Logical data model]] || Designer
|3||'''प्रणाली मॉडल / तार्किक''' || उद्यम/[[Logical data model|तार्किक डेटा मॉडल]]
| रूपकार
|-
|-
|4||'''Technology Model/Physical''' || [[Physical data model]] || Builder
|4||'''प्रौद्योगिकी मॉडल / भौतिक''' ||[[Physical data model|भौतिक डेटा मॉडल]]
| निर्माता
|-
|-
|5||'''Detailed Representations'''  ||  Actual [[database]]s || Developer
|5||'''विस्तृत प्रतिनिधित्व'''  ||  वास्तविक [[database|डेटाबेस]]
| विकासक
|}
|}
इस दूसरे, व्यापक अर्थ में, डेटा आर्किटेक्चर में संगठन के कार्यों, उपलब्ध तकनीकों और [[डेटा प्रकार]]ों के बीच संबंधों का पूर्ण विश्लेषण शामिल है।
इस दूसरे, विस्तृत अर्थ में, डेटा आर्किटेक्चर में संगठन के कार्यों, उपलब्ध विधियों और [[डेटा प्रकार|डेटा प्रकारों]] के बीच संबंधों का पूर्ण विश्लेषण सम्म्मिलित है।


डेटा आर्किटेक्चर को नए डेटा प्रोसेसिंग और स्टोरेज सिस्टम के डिजाइन के नियोजन चरण में परिभाषित किया जाना चाहिए। उद्यम का समर्थन करने के लिए आवश्यक प्रमुख प्रकार और डेटा के स्रोतों की पहचान इस तरह से की जानी चाहिए जो पूर्ण, सुसंगत और समझने योग्य हो। इस स्तर पर प्राथमिक आवश्यकता सभी प्रासंगिक डेटा संस्थाओं को परिभाषित करना है, न कि [[कंप्यूटर हार्डवेयर]] वस्तुओं को निर्दिष्ट करना। डेटा इकाई कोई वास्तविक या अमूर्त चीज है जिसके बारे में कोई संगठन या व्यक्ति डेटा स्टोर करना चाहता है।
डेटा आर्किटेक्चर को नए डेटा प्रसंस्करण और स्टोरेज प्रणाली के डिजाइन के नियोजन चरण में परिभाषित किया जाना चाहिए। उद्योग का समर्थन करने के लिए आवश्यक प्रमुख प्रकार और डेटा के स्रोतों की पहचान इस प्रकार से की जानी चाहिए जो पूर्ण, सुसंगत और समझने योग्य हो। इस स्तर पर प्राथमिक आवश्यकता सभी प्रासंगिक डेटा संस्थाओं को परिभाषित करना है, न कि [[कंप्यूटर हार्डवेयर]] वस्तुओं को निर्दिष्ट करते हैं। डेटा इकाई कोई वास्तविक या अमूर्त चीज है जिसके बारे में कोई संगठन या व्यक्ति डेटा स्टोर करना चाहता है।


== भौतिक डेटा आर्किटेक्चर ==
== भौतिक डेटा आर्किटेक्चर ==
सूचना प्रणाली का भौतिक डेटा आर्किटेक्चर [[प्रौद्योगिकी रोडमैपिंग]] का हिस्सा है। प्रौद्योगिकी योजना डेटा आर्किटेक्चर [[डिज़ाइन]] के कार्यान्वयन में उपयोग किए जाने वाले वास्तविक मूर्त [[तत्व (गणित)]] पर केंद्रित है। भौतिक डेटा आर्किटेक्चर में डेटाबेस आर्किटेक्चर शामिल है। डेटाबेस आर्किटेक्चर वास्तविक डेटाबेस तकनीक का [[मॉडल (सार)]] है जो डिज़ाइन किए गए डेटा आर्किटेक्चर का समर्थन करेगा।
सूचना प्रणाली का भौतिक डेटा आर्किटेक्चर [[प्रौद्योगिकी रोडमैपिंग]] का हिस्सा है। प्रौद्योगिकी योजना डेटा आर्किटेक्चर [[डिज़ाइन]] के कार्यान्वयन में उपयोग किए जाने वाले वास्तविक मूर्त [[तत्व (गणित)]] पर केंद्रित है। भौतिक डेटा आर्किटेक्चर में डेटाबेस आर्किटेक्चर सम्म्मिलित है। डेटाबेस आर्किटेक्चर वास्तविक डेटाबेस विधियों का [[मॉडल (सार)]] है जो डिज़ाइन किए गए डेटा आर्किटेक्चर का समर्थन करेगा।


== डेटा आर्किटेक्चर के तत्व ==
== डेटा आर्किटेक्चर के तत्व ==
डेटा आर्किटेक्चर स्कीमा के डिज़ाइन चरण के दौरान कुछ तत्वों को परिभाषित किया जाना चाहिए। उदाहरण के लिए, डेटा संसाधनों को प्रबंधित करने के लिए स्थापित की जाने वाली प्रशासनिक संरचना का वर्णन किया जाना चाहिए। साथ ही, डेटा को स्टोर करने के लिए नियोजित की जाने वाली कार्यप्रणाली को परिभाषित किया जाना चाहिए। इसके अलावा, उपयोग की जाने वाली डेटाबेस तकनीक का विवरण तैयार किया जाना चाहिए, साथ ही डेटा में हेरफेर करने वाली प्रक्रियाओं का विवरण भी तैयार किया जाना चाहिए। अन्य प्रणालियों द्वारा डेटा के लिए [[इंटरफ़ेस (कंप्यूटिंग)]] डिजाइन करना भी महत्वपूर्ण है, साथ ही बुनियादी ढांचे के लिए एक डिजाइन जो सामान्य डेटा संचालन (यानी आपातकालीन प्रक्रियाओं, [[डेटा आयात]], [[डेटा बैकअप]], बाहरी [[डेटा स्थानांतरण]]) का समर्थन करने के लिए है।
डेटा आर्किटेक्चर स्कीमा के डिज़ाइन चरण के समय कुछ तत्वों को परिभाषित किया जाना चाहिए। उदाहरण के लिए, डेटा संसाधनों को प्रबंधित करने के लिए स्थापित की जाने वाली प्रशासनिक संरचना का वर्णन किया जाना चाहिए। साथ ही, डेटा को स्टोर करने के लिए नियोजित की जाने वाली कार्यप्रणाली को परिभाषित किया जाना चाहिए। इसके अतिरिक्त, उपयोग की जाने वाली डेटाबेस विधियों का विवरण तैयार किया जाना चाहिए, साथ ही डेटा में हेरफेर करने वाली प्रक्रियाओं का विवरण भी तैयार किया जाना चाहिए। अन्य प्रणालियों द्वारा डेटा के लिए [[इंटरफ़ेस (कंप्यूटिंग)]] डिजाइन करना भी महत्वपूर्ण है, साथ ही मूलभूत संरचना के लिए एक डिजाइन जो सामान्य डेटा संचालन (अर्थात् आपातकालीन प्रक्रियाओं, [[डेटा आयात]], [[डेटा बैकअप]], बाहरी [[डेटा स्थानांतरण]]) का समर्थन करने के लिए है।


उचित रूप से कार्यान्वित डेटा आर्किटेक्चर डिज़ाइन के मार्गदर्शन के बिना, सामान्य डेटा संचालन को विभिन्न तरीकों से लागू किया जा सकता है, जिससे ऐसी प्रणालियों के भीतर डेटा के प्रवाह को समझना और नियंत्रित करना मुश्किल हो जाता है। संभावित बढ़ी हुई लागत और डेटा डिस्कनेक्ट शामिल होने के कारण इस प्रकार का विखंडन अवांछनीय है। इस तरह की कठिनाइयों का सामना तेजी से बढ़ते उद्यमों और उन उद्यमों के साथ भी हो सकता है जो [[व्यवसाय]] की विभिन्न श्रेणियों को सेवा प्रदान करते हैं।
उचित रूप से कार्यान्वित डेटा आर्किटेक्चर डिज़ाइन के मार्गदर्शन के बिना, सामान्य डेटा संचालन को विभिन्न विधियों से प्रायुक्त किया जा सकता है, जिससे ऐसी प्रणालियों के अन्दर डेटा के प्रवाह को समझना और नियंत्रित करना कठिन हो जाता है। संभावित बढ़ी हुई लागत और डेटा डिस्कनेक्ट सम्म्मिलित होने के कारण इस प्रकार का विखंडन अवांछनीय है। इस प्रकार की कठिनाइयों का सामना तेजी से बढ़ते उद्योगों और उन उद्योगों के साथ भी हो सकता है जो [[व्यवसाय]] की विभिन्न श्रेणियों को सेवा प्रदान करते हैं।


उचित रूप से क्रियान्वित, सूचना प्रणाली नियोजन का डेटा आर्किटेक्चर चरण एक संगठन को आंतरिक और बाहरी सूचना प्रवाह दोनों को निर्दिष्ट और वर्णित करने के लिए मजबूर करता है। ये ऐसे पैटर्न हैं जिनकी अवधारणा के लिए संगठन ने पहले समय नहीं लिया होगा। इसलिए इस स्तर पर महंगी जानकारी की कमी, विभागों के बीच डिस्कनेक्ट और संगठनात्मक प्रणालियों के बीच डिस्कनेक्ट की पहचान करना संभव है जो डेटा आर्किटेक्चर विश्लेषण से पहले स्पष्ट नहीं हो सकता है।<ref>{{cite book|last=Mittal|first=Prashant|title=लेखक|year=2009|publisher=Global India Publications|location=pg 256|isbn=978-93-8022-820-4|pages=314|url=https://books.google.com/books?id=BpkhYDj4tm0C}}</ref>
उचित रूप से क्रियान्वित, सूचना प्रणाली नियोजन का डेटा आर्किटेक्चर चरण एक संगठन को आंतरिक और बाहरी सूचना प्रवाह दोनों को निर्दिष्ट और वर्णित करने के लिए विवश करता है। ये ऐसे पैटर्न हैं जिनकी अवधारणा के लिए संगठन ने पहले समय नहीं लिया होगा। इसलिए इस स्तर पर महंगी जानकारी की कमी, विभागों के बीच डिस्कनेक्ट और संगठनात्मक प्रणालियों के बीच डिस्कनेक्ट की पहचान करना संभव है जो डेटा आर्किटेक्चर विश्लेषण से पहले स्पष्ट नहीं हो सकता है।<ref>{{cite book|last=Mittal|first=Prashant|title=लेखक|year=2009|publisher=Global India Publications|location=pg 256|isbn=978-93-8022-820-4|pages=314|url=https://books.google.com/books?id=BpkhYDj4tm0C}}</ref>




== बाधाएं और प्रभाव ==
== बाधाएं और प्रभाव ==
विभिन्न बाधाओं और प्रभावों का डेटा आर्किटेक्चर डिज़ाइन पर प्रभाव पड़ेगा। इनमें उद्यम आवश्यकताएं, प्रौद्योगिकी चालक, अर्थशास्त्र, व्यावसायिक नीतियां और डेटा प्रोसेसिंग आवश्यकताएं शामिल हैं।
विभिन्न बाधाओं और प्रभावों का डेटा आर्किटेक्चर डिज़ाइन पर प्रभाव पड़ेगा। इनमें उद्योग आवश्यकताएं, प्रौद्योगिकी चालक, अर्थशास्त्र, व्यावसायिक नीतियां और डेटा प्रसंस्करण आवश्यकताएं सम्म्मिलित हैं।


; एंटरप्राइज आवश्यकताएं: इनमें आम तौर पर किफायती और प्रभावी सिस्टम विस्तार, स्वीकार्य प्रदर्शन स्तर (विशेष रूप से सिस्टम एक्सेस स्पीड), वित्तीय लेनदेन विश्वसनीयता और पारदर्शी [[डेटा प्रबंधन]] जैसे तत्व शामिल होते हैं। इसके अलावा, [[डेटा वेयरहाउस]] जैसी सुविधाओं के माध्यम से लेनदेन [[रिकॉर्ड (कंप्यूटर विज्ञान)]] और [[छवि फ़ाइल]]ों जैसे कच्चे डेटा का अधिक उपयोगी सूचना रूपों में [[डेटा रूपांतरण]] भी सामान्य संगठनात्मक आवश्यकता है, क्योंकि यह प्रबंधकीय निर्णय लेने और अन्य संगठनात्मक प्रक्रियाओं को सक्षम बनाता है। आर्किटेक्चर तकनीकों में से एक लेनदेन डेटा और (मास्टर) [[संदर्भ डेटा]] के प्रबंधन के बीच विभाजन है। दूसरा डेटा रिट्रीवल सिस्टम से [[स्वचालित पहचान और डेटा कैप्चर]] को विभाजित कर रहा है (जैसा कि डेटा वेयरहाउस में किया जाता है)।
; एंटरप्राइज आवश्यकताएं: इनमें सामान्यतः लागत प्रभावी और प्रभावी प्रणाली विस्तार, स्वीकार्य प्रदर्शन स्तर (विशेष रूप से प्रणाली अभिगम गति), वित्तीय लेनदेन विश्वसनीयता और पारदर्शी [[डेटा प्रबंधन]] जैसे तत्व सम्म्मिलित होते हैं। इसके अतिरिक्त, [[डेटा वेयरहाउस|डेटा भाण्डागार]] जैसी सुविधाओं के माध्यम से लेनदेन [[रिकॉर्ड (कंप्यूटर विज्ञान)]] और [[छवि फ़ाइल|छवि फ़ाइलों]] जैसे कच्चे डेटा का अधिक उपयोगी सूचना रूपों में [[डेटा रूपांतरण]] भी सामान्य संगठनात्मक आवश्यकता है, क्योंकि यह प्रबंधकीय निर्णय लेने और अन्य संगठनात्मक प्रक्रियाओं को सक्षम बनाता है। आर्किटेक्चर विधियों में से एक लेनदेन डेटा और (मास्टर) [[संदर्भ डेटा]] के प्रबंधन के बीच विभाजन है। दूसरा डेटा पुनः प्राप्ति प्रणाली से [[स्वचालित पहचान और डेटा कैप्चर]] को विभाजित कर रहा है (जैसा कि डेटा भाण्डागार में किया जाता है)।


; प्रौद्योगिकी चालक: ये आमतौर पर पूर्ण डेटा आर्किटेक्चर और डेटाबेस आर्किटेक्चर डिज़ाइन द्वारा सुझाए जाते हैं। इसके अलावा, कुछ प्रौद्योगिकी ड्राइवर मौजूदा संगठनात्मक एकीकरण ढांचे और मानकों, संगठनात्मक अर्थशास्त्र और मौजूदा साइट संसाधनों (जैसे पहले खरीदे गए [[सॉफ्टवेयर लाइसेंसिंग]]) से प्राप्त होंगे। कई मामलों में, कई विरासत प्रणालियों के एकीकरण के लिए [[डेटा वर्चुअलाइजेशन]] तकनीकों के उपयोग की आवश्यकता होती है।
; प्रौद्योगिकी चालक: ये सामान्यतः पूर्ण डेटा आर्किटेक्चर और डेटाबेस आर्किटेक्चर डिज़ाइन द्वारा सुझाए जाते हैं। इसके अतिरिक्त, कुछ प्रौद्योगिकी ड्राइवर वर्तमान में संगठनात्मक एकीकरण संरचना और मानकों, संगठनात्मक अर्थशास्त्र और वर्तमान में साइट संसाधनों (जैसे पहले खरीदे गए [[सॉफ्टवेयर लाइसेंसिंग]]) से प्राप्त होंगे। कई स्थितियों में, कई विरासत प्रणालियों के एकीकरण के लिए [[डेटा वर्चुअलाइजेशन]] विधियों के उपयोग की आवश्यकता होती है।


; अर्थशास्त्र: ये भी महत्वपूर्ण कारक हैं जिन पर डेटा आर्किटेक्चर चरण के दौरान विचार किया जाना चाहिए। यह संभव है कि कुछ समाधान, सिद्धांत रूप में इष्टतम होते हुए भी, उनकी लागत के कारण संभावित उम्मीदवार नहीं हो सकते हैं। व्यापार चक्र, ब्याज दरों, बाजार की स्थितियों और [[कानून]]ी विचारों जैसे बाहरी कारकों का डेटा आर्किटेक्चर से संबंधित निर्णयों पर प्रभाव पड़ सकता है।
; अर्थशास्त्र: ये भी महत्वपूर्ण कारक हैं जिन पर डेटा आर्किटेक्चर चरण के समय विचार किया जाना चाहिए। यह संभव है कि सिद्धांत रूप में इष्टतम होते हुए भी कुछ समाधान उनकी लागत के कारण संभावित उम्मीदवार न हों। बाहरी कारक जैसे व्यापार चक्र ब्याज दरें बाजार की स्थिति और [[कानून|कानूनी]] विचार सभी डेटा आर्किटेक्चर से संबंधित निर्णयों पर प्रभाव डाल सकते हैं।


; व्यावसायिक नीतियां: व्यावसायिक नीतियां जो डेटा आर्किटेक्चर डिज़ाइन को भी संचालित करती हैं, उनमें आंतरिक संगठनात्मक नीतियां, नियामक एजेंसी के नियम, पेशेवर मानक और लागू सरकारी कानून शामिल हैं जो लागू सरकारी एजेंसी द्वारा भिन्न हो सकते हैं। ये नीतियां और नियम उस तरीके का वर्णन करते हैं जिसमें उद्यम अपने डेटा को संसाधित करना चाहता है।
; व्यावसायिक नीतियां: व्यावसायिक नीतियां जो डेटा आर्किटेक्चर डिज़ाइन को भी संचालित करती हैं, उनमें आंतरिक संगठनात्मक नीतियां, नियामक एजेंसी के नियम, कुशल मानक और प्रायुक्त सरकारी कानून सम्म्मिलित हैं जो प्रायुक्त सरकारी एजेंसी द्वारा भिन्न हो सकते हैं। ये नीतियां और नियम उस विधि का वर्णन करते हैं जिसमें उद्योग अपने डेटा को संसाधित करना चाहता है।


; डेटा प्रोसेसिंग की ज़रूरतें: इनमें उच्च मात्रा में किए गए सटीक और प्रतिलिपि प्रस्तुत करने योग्य [[डेटा लेनदेन]], प्रबंधन सूचना प्रणाली (और संभावित [[डेटा खनन]]) के समर्थन के लिए डेटा वेयरहाउसिंग, दोहराव वाली आवधिक [[डेटा रिपोर्टिंग]], तदर्थ रिपोर्टिंग, और आवश्यकतानुसार विभिन्न संगठनात्मक पहलों का समर्थन शामिल है ( यानी वार्षिक बजट, नया [[उत्पाद (व्यवसाय)]] विकास)
; डेटा प्रसंस्करण की आवश्यकता:इनमें उच्च मात्रा में किए गए त्रुटिहीन और प्रतिलिपि प्रस्तुत करने योग्य [[डेटा लेनदेन]], प्रबंधन सूचना प्रणाली (और संभावित [[डेटा खनन]]) के समर्थन के लिए डेटा भाण्डागार, दोहराव वाली आवधिक [[डेटा रिपोर्टिंग]], तदर्थ रिपोर्टिंग, और आवश्यकतानुसार विभिन्न संगठनात्मक पहलों का समर्थन (अर्थात् वार्षिक बजट, नया [[उत्पाद (व्यवसाय)]] विकास) सम्म्मिलित है।


== यह भी देखें ==
== यह भी देखें ==
Line 61: Line 66:
* डेटा मेश, डोमेन-ओरिएंटेड डेटा आर्किटेक्चर
* डेटा मेश, डोमेन-ओरिएंटेड डेटा आर्किटेक्चर
* [[अलग प्रणाली]]
* [[अलग प्रणाली]]
* [[उद्यम सूचना सुरक्षा वास्तुकला]] - (ईआईएसए) एंटरप्राइज इंफॉर्मेशन फ्रेमवर्क में डेटा सिक्योरिटी को पोजिशन करता है।
* [[उद्यम सूचना सुरक्षा वास्तुकला|उद्योग सूचना सुरक्षा वास्तुकला]] - (ईआईएसए) एंटरप्राइज इंफॉर्मेशन फ्रेमवर्क में डेटा सिक्योरिटी को पोजिशन करता है।
* [[एफडीआईसी एंटरप्राइज आर्किटेक्चर फ्रेमवर्क]]
* [[एफडीआईसी एंटरप्राइज आर्किटेक्चर फ्रेमवर्क]]
* [[सूचना साइलो]]
* [[सूचना साइलो]]
Line 84: Line 89:
* [https://www.technoblink.com/useful-guide-for-earning-the-open-group-togaf-9-certification/ TOGAF 9: Preparation Process]
* [https://www.technoblink.com/useful-guide-for-earning-the-open-group-togaf-9-certification/ TOGAF 9: Preparation Process]


{{Data model}}
[[Category:CS1 maint]]
[[Category: कंप्यूटर डेटा]] [[Category: डेटा प्रबंधन]] [[Category: उद्यम स्थापत्य]]
[[Category:Collapse templates]]
 
[[Category:Commons category link is locally defined]]
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 16/02/2023]]
[[Category:Created On 16/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Webarchive template wayback links]]

Latest revision as of 10:23, 24 February 2023

डेटा आर्किटेक्चर में मॉडल, नीतियां, नियम और मानक सम्म्मिलित होते हैं जो नियंत्रित करते हैं कि कौन सा डेटा एकत्र किया जाता है और इसे कैसे संग्रहीत, व्यवस्थित, एकीकृत और डेटा प्रणाली और संगठनों में उपयोग में लाया जाता है।[1] डेटा सामान्यतः कई आर्किटेक्चर डोमेन में से एक है जो उद्योग आर्किटेक्चर या समाधान आर्किटेक्चर के स्तंभों का निर्माण करता है।[2]


अवलोकन

डेटा आर्किटेक्चर का लक्ष्य अपने सभी डेटा प्रणाली के लिए डेटा मानकों को एक दृष्टि या उन डेटा प्रणाली के बीच अंतिम पारस्परिक प्रभाव के मॉडल के रूप में सेट करना है। डेटा एकीकरण, उदाहरण के लिए, डेटा आर्किटेक्चर मानकों पर निर्भर होना चाहिए क्योंकि डेटा एकीकरण के लिए दो या दो से अधिक डेटा प्रणाली के बीच डेटा पारस्परिक प्रभाव की आवश्यकता होती है। डेटा आर्किटेक्चर, भाग में, व्यवसाय और उसके कंप्यूटर अनुप्रयोग सॉफ्टवेयर द्वारा उपयोग की जाने वाली डेटा संरचनाओं का वर्णन करता है। डेटा आर्किटेक्चर भंडारण में डेटा, उपयोग में डेटा और गति में डेटा; डेटा स्टोर, डेटा समूह और डेटा विषय का विवरण; और डेटा गुणों, अनुप्रयोगों, स्थानों, आदि के लिए उन डेटा कलाकृतियों की डेटा मैपिंग आदि में संबोधित करता है।

लक्ष्य स्थिति को साकार करने के लिए आवश्यक, डेटा आर्किटेक्चर बताता है कि सूचना प्रणाली में डेटा को कैसे संसाधित, संग्रहीत और उपयोग किया जाता है। यह डाटा प्रासेसिंग संचालन के लिए मानदंड प्रदान करता है जिससे डेटा प्रवाह को डिजाइन करना संभव हो सके और प्रणाली में डेटा के प्रवाह को नियंत्रित भी किया जा सके।

डेटा आर्किटेक्ट सामान्यतः पर विकास के दौरान लक्ष्य स्थिति को संरेखित करने के लिए जिम्मेदार होता है और फिर यह सुनिश्चित करने के लिए कि मूल रूपरेखा की भावना में वृद्धि की जाती है।

लक्ष्य स्थिति की परिभाषा के समय, डेटा आर्किटेक्चर किसी विषय को परमाणु स्तर तक तोड़ता है और फिर इसे वांछित रूप में वापस बनाता है। डेटा आर्किटेक्ट तीन पारंपरिक वास्तुशिल्प चरणों के माध्यम से विषय को तोड़ता है:

  • वैचारिक - सभी व्यावसायिक संस्थाओं का प्रतिनिधित्व करता है।
  • तार्किक - संस्थाओं के संबंध कैसे हैं, इसके तर्क का प्रतिनिधित्व करता है।
  • भौतिक - विशिष्ट प्रकार की कार्यक्षमता के लिए डेटा तंत्र की प्राप्ति।

उद्योग आर्किटेक्चर के लिए ज़चमन फ्रेमवर्क का डेटा स्तंभ -

स्तर अवलोकन डेटा (क्या) हितधारकों
1 कार्यक्षेत्र/प्रासंगिक व्यापार के लिए महत्वपूर्ण चीजों और वास्तु मानकों[3] की सूची योजनाकर्ता
2 व्यापार मॉडल / वैचारिक सिमेंटिक मॉडल या वैचारिक/उद्यम डेटा मॉडल स्वामी
3 प्रणाली मॉडल / तार्किक उद्यम/तार्किक डेटा मॉडल रूपकार
4 प्रौद्योगिकी मॉडल / भौतिक भौतिक डेटा मॉडल निर्माता
5 विस्तृत प्रतिनिधित्व वास्तविक डेटाबेस विकासक

इस दूसरे, विस्तृत अर्थ में, डेटा आर्किटेक्चर में संगठन के कार्यों, उपलब्ध विधियों और डेटा प्रकारों के बीच संबंधों का पूर्ण विश्लेषण सम्म्मिलित है।

डेटा आर्किटेक्चर को नए डेटा प्रसंस्करण और स्टोरेज प्रणाली के डिजाइन के नियोजन चरण में परिभाषित किया जाना चाहिए। उद्योग का समर्थन करने के लिए आवश्यक प्रमुख प्रकार और डेटा के स्रोतों की पहचान इस प्रकार से की जानी चाहिए जो पूर्ण, सुसंगत और समझने योग्य हो। इस स्तर पर प्राथमिक आवश्यकता सभी प्रासंगिक डेटा संस्थाओं को परिभाषित करना है, न कि कंप्यूटर हार्डवेयर वस्तुओं को निर्दिष्ट करते हैं। डेटा इकाई कोई वास्तविक या अमूर्त चीज है जिसके बारे में कोई संगठन या व्यक्ति डेटा स्टोर करना चाहता है।

भौतिक डेटा आर्किटेक्चर

सूचना प्रणाली का भौतिक डेटा आर्किटेक्चर प्रौद्योगिकी रोडमैपिंग का हिस्सा है। प्रौद्योगिकी योजना डेटा आर्किटेक्चर डिज़ाइन के कार्यान्वयन में उपयोग किए जाने वाले वास्तविक मूर्त तत्व (गणित) पर केंद्रित है। भौतिक डेटा आर्किटेक्चर में डेटाबेस आर्किटेक्चर सम्म्मिलित है। डेटाबेस आर्किटेक्चर वास्तविक डेटाबेस विधियों का मॉडल (सार) है जो डिज़ाइन किए गए डेटा आर्किटेक्चर का समर्थन करेगा।

डेटा आर्किटेक्चर के तत्व

डेटा आर्किटेक्चर स्कीमा के डिज़ाइन चरण के समय कुछ तत्वों को परिभाषित किया जाना चाहिए। उदाहरण के लिए, डेटा संसाधनों को प्रबंधित करने के लिए स्थापित की जाने वाली प्रशासनिक संरचना का वर्णन किया जाना चाहिए। साथ ही, डेटा को स्टोर करने के लिए नियोजित की जाने वाली कार्यप्रणाली को परिभाषित किया जाना चाहिए। इसके अतिरिक्त, उपयोग की जाने वाली डेटाबेस विधियों का विवरण तैयार किया जाना चाहिए, साथ ही डेटा में हेरफेर करने वाली प्रक्रियाओं का विवरण भी तैयार किया जाना चाहिए। अन्य प्रणालियों द्वारा डेटा के लिए इंटरफ़ेस (कंप्यूटिंग) डिजाइन करना भी महत्वपूर्ण है, साथ ही मूलभूत संरचना के लिए एक डिजाइन जो सामान्य डेटा संचालन (अर्थात् आपातकालीन प्रक्रियाओं, डेटा आयात, डेटा बैकअप, बाहरी डेटा स्थानांतरण) का समर्थन करने के लिए है।

उचित रूप से कार्यान्वित डेटा आर्किटेक्चर डिज़ाइन के मार्गदर्शन के बिना, सामान्य डेटा संचालन को विभिन्न विधियों से प्रायुक्त किया जा सकता है, जिससे ऐसी प्रणालियों के अन्दर डेटा के प्रवाह को समझना और नियंत्रित करना कठिन हो जाता है। संभावित बढ़ी हुई लागत और डेटा डिस्कनेक्ट सम्म्मिलित होने के कारण इस प्रकार का विखंडन अवांछनीय है। इस प्रकार की कठिनाइयों का सामना तेजी से बढ़ते उद्योगों और उन उद्योगों के साथ भी हो सकता है जो व्यवसाय की विभिन्न श्रेणियों को सेवा प्रदान करते हैं।

उचित रूप से क्रियान्वित, सूचना प्रणाली नियोजन का डेटा आर्किटेक्चर चरण एक संगठन को आंतरिक और बाहरी सूचना प्रवाह दोनों को निर्दिष्ट और वर्णित करने के लिए विवश करता है। ये ऐसे पैटर्न हैं जिनकी अवधारणा के लिए संगठन ने पहले समय नहीं लिया होगा। इसलिए इस स्तर पर महंगी जानकारी की कमी, विभागों के बीच डिस्कनेक्ट और संगठनात्मक प्रणालियों के बीच डिस्कनेक्ट की पहचान करना संभव है जो डेटा आर्किटेक्चर विश्लेषण से पहले स्पष्ट नहीं हो सकता है।[4]


बाधाएं और प्रभाव

विभिन्न बाधाओं और प्रभावों का डेटा आर्किटेक्चर डिज़ाइन पर प्रभाव पड़ेगा। इनमें उद्योग आवश्यकताएं, प्रौद्योगिकी चालक, अर्थशास्त्र, व्यावसायिक नीतियां और डेटा प्रसंस्करण आवश्यकताएं सम्म्मिलित हैं।

एंटरप्राइज आवश्यकताएं
इनमें सामान्यतः लागत प्रभावी और प्रभावी प्रणाली विस्तार, स्वीकार्य प्रदर्शन स्तर (विशेष रूप से प्रणाली अभिगम गति), वित्तीय लेनदेन विश्वसनीयता और पारदर्शी डेटा प्रबंधन जैसे तत्व सम्म्मिलित होते हैं। इसके अतिरिक्त, डेटा भाण्डागार जैसी सुविधाओं के माध्यम से लेनदेन रिकॉर्ड (कंप्यूटर विज्ञान) और छवि फ़ाइलों जैसे कच्चे डेटा का अधिक उपयोगी सूचना रूपों में डेटा रूपांतरण भी सामान्य संगठनात्मक आवश्यकता है, क्योंकि यह प्रबंधकीय निर्णय लेने और अन्य संगठनात्मक प्रक्रियाओं को सक्षम बनाता है। आर्किटेक्चर विधियों में से एक लेनदेन डेटा और (मास्टर) संदर्भ डेटा के प्रबंधन के बीच विभाजन है। दूसरा डेटा पुनः प्राप्ति प्रणाली से स्वचालित पहचान और डेटा कैप्चर को विभाजित कर रहा है (जैसा कि डेटा भाण्डागार में किया जाता है)।
प्रौद्योगिकी चालक
ये सामान्यतः पूर्ण डेटा आर्किटेक्चर और डेटाबेस आर्किटेक्चर डिज़ाइन द्वारा सुझाए जाते हैं। इसके अतिरिक्त, कुछ प्रौद्योगिकी ड्राइवर वर्तमान में संगठनात्मक एकीकरण संरचना और मानकों, संगठनात्मक अर्थशास्त्र और वर्तमान में साइट संसाधनों (जैसे पहले खरीदे गए सॉफ्टवेयर लाइसेंसिंग) से प्राप्त होंगे। कई स्थितियों में, कई विरासत प्रणालियों के एकीकरण के लिए डेटा वर्चुअलाइजेशन विधियों के उपयोग की आवश्यकता होती है।
अर्थशास्त्र
ये भी महत्वपूर्ण कारक हैं जिन पर डेटा आर्किटेक्चर चरण के समय विचार किया जाना चाहिए। यह संभव है कि सिद्धांत रूप में इष्टतम होते हुए भी कुछ समाधान उनकी लागत के कारण संभावित उम्मीदवार न हों। बाहरी कारक जैसे व्यापार चक्र ब्याज दरें बाजार की स्थिति और कानूनी विचार सभी डेटा आर्किटेक्चर से संबंधित निर्णयों पर प्रभाव डाल सकते हैं।
व्यावसायिक नीतियां
व्यावसायिक नीतियां जो डेटा आर्किटेक्चर डिज़ाइन को भी संचालित करती हैं, उनमें आंतरिक संगठनात्मक नीतियां, नियामक एजेंसी के नियम, कुशल मानक और प्रायुक्त सरकारी कानून सम्म्मिलित हैं जो प्रायुक्त सरकारी एजेंसी द्वारा भिन्न हो सकते हैं। ये नीतियां और नियम उस विधि का वर्णन करते हैं जिसमें उद्योग अपने डेटा को संसाधित करना चाहता है।
डेटा प्रसंस्करण की आवश्यकता
इनमें उच्च मात्रा में किए गए त्रुटिहीन और प्रतिलिपि प्रस्तुत करने योग्य डेटा लेनदेन, प्रबंधन सूचना प्रणाली (और संभावित डेटा खनन) के समर्थन के लिए डेटा भाण्डागार, दोहराव वाली आवधिक डेटा रिपोर्टिंग, तदर्थ रिपोर्टिंग, और आवश्यकतानुसार विभिन्न संगठनात्मक पहलों का समर्थन (अर्थात् वार्षिक बजट, नया उत्पाद (व्यवसाय) विकास) सम्म्मिलित है।

यह भी देखें

संदर्भ

  1. Business Dictionary - Data Architecture Archived 2013-03-30 at the Wayback Machine; TOGAF 9.1 - Phase C: Information Systems Architectures - Data Architecture
  2. What is data architecture GeekInterview, 2008-01-28, accessed 2011-04-28
  3. Data Architecture Standards
  4. Mittal, Prashant (2009). लेखक. pg 256: Global India Publications. p. 314. ISBN 978-93-8022-820-4.{{cite book}}: CS1 maint: location (link)


अग्रिम पठन

  • Bass, L.; John, B.; & Kates, J. (2001). Achieving Usability Through Software Architecture, Carnegie Mellon University.
  • Lewis, G.; Comella-Dorda, S.; Place, P.; Plakosh, D.; & Seacord, R., (2001). Enterprise Information System Data Architecture Guide Carnegie Mellon University.
  • Adleman, S.; Moss, L.; Abai, M. (2005). Data Strategy Addison-Wesley Professional.


बाहरी संबंध