लाई व्युत्पन्न: Difference between revisions
(TEXT) |
No edit summary |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|A derivative in Differential Geometry}} | {{Short description|A derivative in Differential Geometry}} | ||
[[अंतर ज्यामिति|अवकल ज्यामिति]] में, | [[अंतर ज्यामिति|अवकल ज्यामिति]] में, लाई व्युत्पन्न ({{IPAc-en|l|iː}} {{respell|LEE}}), जिसका नाम व्लाडिसलाव स्लेबोडज़िंस्की द्वारा[[ सोफस झूठ | सोफस लाई]] के नाम पर रखा गया,<ref>{{cite book |first=A. |last=Trautman |author-link=Andrzej Trautman |year=2008 |chapter=Remarks on the history of the notion of Lie differentiation |title=Variations, Geometry and Physics: In honour of Demeter Krupka's sixty-fifth birthday |editor1-first=O. |editor1-last=Krupková |editor2-first=D. J. |editor2-last=Saunders |location=New York |publisher=Nova Science |isbn=978-1-60456-920-9 |pages=297–302 }}</ref><ref>{{cite journal |last=Ślebodziński |first=W. |year=1931 |title=Sur les équations de Hamilton |journal=Bull. Acad. Roy. D. Belg. |volume=17 |issue=5 |pages=864–870 }}</ref> किसी अन्य सदिश क्षेत्र द्वारा परिभाषित [[प्रवाह (गणित)|प्रवाह]] के साथ एक प्रदिश क्षेत्र (अदिश फलन, [[वेक्टर क्षेत्र|सदिश क्षेत्र]] और एक-रूपों सहित) के परिवर्तन का मूल्यांकन करता है। यह परिवर्तन समन्वय अपरिवर्तनीय है और इसलिए लाई व्युत्पन्न को किसी भी भिन्न बहुसंख्यक पर परिभाषित किया गया है। | ||
सदिश क्षेत्र के संबंध में फलन, [[टेंसर क्षेत्र|प्रदिश क्षेत्र]] और रूपों को | सदिश क्षेत्र के संबंध में फलन, [[टेंसर क्षेत्र|प्रदिश क्षेत्र]] और रूपों को भिन्न किया जा सकता है। यदि ''T'' एक प्रदिश क्षेत्र है और ''X'' एक सदिश क्षेत्र है, तो ''X'' के संबंध में ''T'' का लाई व्युत्पन्न <math> \mathcal{L}_X(T)</math> द्वारा निरूपित किया जाता है। [[अंतर ऑपरेटर|अवकल संकारक]] <math> T \mapsto \mathcal{L}_X(T)</math> अंतर्निहित बहुसंख्यक के प्रदिश क्षेत्रों के बीजगणित की व्युत्पत्ति है। | ||
लाई व्युत्पन्न प्रदिश संकुचन के साथ संचार करता है और [[विभेदक रूप|अवकल]] [[विभेदक रूप|रूपों]] पर बाहरी व्युत्पन्न होता है। | लाई व्युत्पन्न प्रदिश संकुचन के साथ संचार करता है और [[विभेदक रूप|अवकल]] [[विभेदक रूप|रूपों]] पर बाहरी व्युत्पन्न होता है। | ||
यद्यपि विभेदक ज्यामिति में व्युत्पन्न लेने की कई अवधारणाएँ हैं, वे सभी | यद्यपि विभेदक ज्यामिति में व्युत्पन्न लेने की कई अवधारणाएँ हैं, वे सभी सहमत हैं जब विभेदित किया जा रहा व्यंजक एक फलन या [[अदिश क्षेत्र]] है। इस प्रकार प्रकरण में <nowiki>''लाई''</nowiki> शब्द को अलग कर दिया गया है, और एक फलन के व्युत्पन्न के बारे में बात करते है। | ||
एक अन्य सदिश क्षेत्र X के संबंध में | एक अन्य सदिश क्षेत्र X के संबंध में सदिश क्षेत्र Y का लाई व्युत्पन्न X और Y के <nowiki>''</nowiki>[[लाई कोष्ठक]]<nowiki>''</nowiki> के रूप में जाना जाता है, और प्रायः <math> \mathcal{L}_X(Y)</math> के बदले [X,Y] को निरूपित किया जाता है। सदिश क्षेत्रों का स्थान इस लाई कोष्ठक के संबंध में एक लाई बीजगणित बनाता है। लाई व्युत्पन्न [[झूठ बीजगणित|लाई बीजगणित]] के अनंत-आयामी [[झूठ बीजगणित प्रतिनिधित्व|लाई बीजगणित प्रतिनिधित्व]] का गठन करता है, पहचान के कारण | ||
:<math> \mathcal{L}_{[X,Y]} T = \mathcal{L}_X \mathcal{L}_{Y} T - \mathcal{L}_Y \mathcal{L}_X T,</math> | :<math> \mathcal{L}_{[X,Y]} T = \mathcal{L}_X \mathcal{L}_{Y} T - \mathcal{L}_Y \mathcal{L}_X T,</math> | ||
किसी भी सदिश क्षेत्र ''X'' और ''Y'' और किसी प्रदिश क्षेत्र ''T'' के लिए | किसी भी सदिश क्षेत्र ''X'' और ''Y'' और किसी प्रदिश क्षेत्र ''T'' के लिए मान्य है। | ||
''M'' पर सदिश क्षेत्रों को प्रवाह के अत्यणु | ''M'' पर सदिश क्षेत्रों को प्रवाह के अत्यणु जनित्र (अर्थात भिन्नता के एक-आयामी समूह) के रूप में मानते हुए, लाई व्युत्पन्न प्रदिश क्षेत्र पर डिफियोमोर्फिज्म समूह के प्रतिनिधित्व का अंतर है, लाई समूह सिद्धांत में [[समूह प्रतिनिधित्व]] से जुड़े अत्यणु प्रतिनिधित्व के रूप में लाई बीजगणित अभ्यावेदन के अनुरूप है। | ||
सामान्यीकरण [[spinor|स्पिनर]] क्षेत्रों, [[कनेक्शन (गणित)|संबंधन]] के साथ [[फाइबर बंडल|फाइबर बंडलों]] और सदिश-मूल्यवान अवकल रूपों के लिए उपस्तिथ हैं। | सामान्यीकरण [[spinor|स्पिनर]] क्षेत्रों, [[कनेक्शन (गणित)|संबंधन]] के साथ [[फाइबर बंडल|फाइबर बंडलों]] और सदिश-मूल्यवान अवकल रूपों के लिए उपस्तिथ हैं। | ||
== प्रेरणा == | == प्रेरणा == | ||
एक सदिश क्षेत्र के संबंध में एक प्रदिश क्षेत्र के व्युत्पन्न को परिभाषित करने का एक 'नैवे' प्रयास, प्रदिश क्षेत्र के घटकों को लेना सदिश क्षेत्र के संबंध में प्रत्येक घटक के [[दिशात्मक व्युत्पन्न]] को लेना होगा। तथापि, यह परिभाषा अवांछनीय है क्योंकि यह समन्वय प्रणाली के परिवर्तनों के अंतर्गत अपरिवर्तनीय नहीं है, उदा. [[ध्रुवीय समन्वय प्रणाली|ध्रुवीय]] या [[गोलाकार समन्वय प्रणाली|गोलीय समन्वय]] में व्यक्त निष्क्रिय व्युत्पन्न कार्तीय समन्वय में घटकों के निष्क्रिय व्युत्पन्न से भिन्न | एक सदिश क्षेत्र के संबंध में एक प्रदिश क्षेत्र के व्युत्पन्न को परिभाषित करने का एक 'नैवे' प्रयास, प्रदिश क्षेत्र के घटकों को लेना सदिश क्षेत्र के संबंध में प्रत्येक घटक के [[दिशात्मक व्युत्पन्न]] को लेना होगा। तथापि, यह परिभाषा अवांछनीय है क्योंकि यह समन्वय प्रणाली के परिवर्तनों के अंतर्गत अपरिवर्तनीय नहीं है, उदा. [[ध्रुवीय समन्वय प्रणाली|ध्रुवीय]] या [[गोलाकार समन्वय प्रणाली|गोलीय समन्वय]] में व्यक्त निष्क्रिय व्युत्पन्न कार्तीय समन्वय में घटकों के निष्क्रिय व्युत्पन्न से भिन्न होती है। एक अमूर्त [[कई गुना|बहुसंख्यक]] पर ऐसी परिभाषा अर्थहीन और गलत परिभाषित है। अवकल ज्यामितीय में, प्रदिश क्षेत्रों के विभेदीकरण की तीन मुख्य समन्वय स्वतंत्र धारणाएँ हैं: लाई व्युत्पन्न, संबंधन के संबंध में व्युत्पन्न, और पूरी तरह से प्रतिसममित (सहपरिवर्ती) प्रदिश या अवकल रूपों के बाहरी व्युत्पन्न है। एक संबंधन के संबंध में लाई व्युत्पन्न और व्युत्पन्न के मध्य मुख्य अवकल यह है कि [[स्पर्शरेखा स्थान|स्पर्श सदिश]] के संबंध में प्रदिश क्षेत्र के बाद वाला व्युत्पन्न अच्छी तरह से परिभाषित है, भले ही यह निर्दिष्ट न हो कि स्पर्श सदिश को सदिश क्षेत्र में कैसे बढ़ाया जाए। तथापि एक संबंधन के लिए बहुसंख्यक पर एक अतिरिक्त ज्यामितीय संरचना (उदाहरण के लिए एक [[रीमैनियन कई गुना|रीमानी मीट्रिक]] या सिर्फ एक अमूर्त संबंधन) की आवश्यकता होती है। इसके विपरीत, लाई व्युत्पन्न लेते समय, बहुसंख्यक पर कोई अतिरिक्त संरचना की आवश्यकता नहीं होती है, लेकिन एक स्पर्श सदिश के संबंध में प्रदिश क्षेत्र के लाई व्युत्पन्न के बारे में बात करना असंभव है, क्योंकि बिंदु ''p'' एक सदिश क्षेत्र ''X'' के संबंध में सदिश क्षेत्र के लाई व्युत्पन्न का मान केवल ''p'' पर ही नहीं, बल्कि ''p'' के आसपास में X के मान पर भी निर्भर करता है। अंत में, विभेदक रूपों के बाहरी व्युत्पन्न को किसी भी अतिरिक्त विकल्प की आवश्यकता नहीं होती है, लेकिन केवल अवकल रूपों (फलनों सहित) का अच्छी तरह से परिभाषित व्युत्पन्न है। | ||
== परिभाषा == | == परिभाषा == | ||
लाई व्युत्पन्न को कई समान प्रकार से परिभाषित किया जा सकता है। वस्तुओ को सरल रखने के लिए, हम सामान्य प्रदिश की परिभाषा पर आगे बढ़ने से पहले, अदिश फलन और सदिश क्षेत्र पर लाई व्युत्पन्न अभिनय को परिभाषित करके आरंभ करते हैं। | |||
=== ( | === (लाई) किसी फलन का व्युत्पन्न === | ||
एक फलन के व्युत्पन्न को परिभाषित करना <math>f\colon M \to {\mathbb R} </math> बहुसंख्यक पर समस्याग्रस्त है क्योंकि [[अंतर भागफल|अवकल भागफल]] <math>\textstyle (f(x+h)-f(x))/h </math> निर्धारित नहीं किया जा सकता है जबकि विस्थापन <math>x+h</math> अपरिभाषित है। | एक फलन के व्युत्पन्न को परिभाषित करना <math>f\colon M \to {\mathbb R} </math> बहुसंख्यक पर समस्याग्रस्त है क्योंकि [[अंतर भागफल|अवकल भागफल]] <math>\textstyle (f(x+h)-f(x))/h </math> निर्धारित नहीं किया जा सकता है जबकि विस्थापन <math>x+h</math> अपरिभाषित है। | ||
एक बिंदु <math>p \in M</math> पर एक सदिश क्षेत्र <math>X</math> के संबंध में फलन <math>f\colon M\to {\mathbb R}</math> का | एक बिंदु <math>p \in M</math> पर एक सदिश क्षेत्र <math>X</math> के संबंध में फलन <math>f\colon M\to {\mathbb R}</math> का लाई व्युत्पन्न फलन है। | ||
:<math>(\mathcal{L}_X f) (p) = \lim_{t\to 0} \frac{f(P(t,p)) - f(p)}{t}\colon M \to {\mathbb R},</math> | :<math>(\mathcal{L}_X f) (p) = \lim_{t\to 0} \frac{f(P(t,p)) - f(p)}{t}\colon M \to {\mathbb R},</math> | ||
जहां <math>P(t, p)</math> वह बिंदु है जिस पर सदिश क्षेत्र <math>X</math> द्वारा परिभाषित प्रवाह बिंदु <math>p</math> को | जहां <math>P(t, p)</math> वह बिंदु है जिस पर सदिश क्षेत्र <math>X</math> द्वारा परिभाषित प्रवाह बिंदु <math>p</math> को तात्क्षणिक <math>t</math> पर मानचित्र करता है। <math>t=0,</math> के आसपास के क्षेत्र में, <math>P(t, p)</math> प्रणाली का अद्वितीय हल है। | ||
:<math> | :<math> | ||
\frac{d}{dt} P(t, p) = X(P(t, p)) | \frac{d}{dt} P(t, p) = X(P(t, p)) | ||
</math> | </math> | ||
<math>P(0, p) = p</math> के साथ स्पर्शी समष्टि <math>T_{P(t,p)}M</math> में प्रथम-क्रम स्वायत्त (यानी स्वतंत्र समय) अवकल समीकरण | <math>P(0, p) = p</math> के साथ स्पर्शी समष्टि <math>T_{P(t,p)}M</math> में प्रथम-क्रम स्वायत्त (यानी स्वतंत्र समय) अवकल समीकरण है। | ||
बहुसंख्यक <math>M,</math> और <math>x \in U</math> पर एक समन्वय मानचित्र <math>(U,\varphi)</math> के लिए, <math>d\varphi_x\colon T_xU \to T_{\varphi(x)}{\mathbb R}^n \cong {\mathbb R}^n</math> को स्पर्शरेखा रेखीय मानचित्र होने दें। अवकल समीकरणों की उपरोक्त प्रणाली एक प्रणाली के रूप में अधिक स्पष्ट रूप से लिखी गई है। | |||
:<math> | :<math> | ||
\frac{d}{dt} \varphi(P(t, p)) = d\varphi_{P(t, p)} X(P(t, p)) | \frac{d}{dt} \varphi(P(t, p)) = d\varphi_{P(t, p)} X(P(t, p)) | ||
</math> | </math> | ||
<math>{\mathbb R}^n</math> में, प्रारंभिक स्थिति <math>\varphi(P(0, p)) = \varphi(p)</math> होने के | <math>{\mathbb R}^n</math> में, प्रारंभिक स्थिति <math>\varphi(P(0, p)) = \varphi(p)</math> होने के साथ है। यह आसानी से सत्यापित किया जा सकता है कि समाधान <math>P(t, p)</math> समन्वय मानचित्र के चयन से स्वतंत्र है। | ||
समायोजन <math>\mathcal{L}_X f = \nabla_X f</math> किसी फलन के लाई व्युत्पन्न को दिशात्मक व्युत्पन्न के साथ पहचानता है। | समायोजन <math>\mathcal{L}_X f = \nabla_X f</math> किसी फलन के लाई व्युत्पन्न को दिशात्मक व्युत्पन्न के साथ पहचानता है। | ||
=== सदिश क्षेत्र का | === सदिश क्षेत्र का लाई व्युत्पन्न === | ||
यदि X और Y दोनों सदिश क्षेत्र हैं, तो X के संबंध में Y के लाई व्युत्पन्न को X और Y के लाई कोष्ठक के रूप में भी जाना जाता है, और कभी-कभी <math>[X,Y]</math> के रूप में दर्शाया जाता है। लाई कोष्ठक को परिभाषित करने के लिए कई दृष्टिकोण हैं, जिनमें से सभी समतुल्य हैं। हम यहां दो परिभाषाओं को सूचीबद्ध करते हैं, जो ऊपर दी गई सदिश क्षेत्र की दो परिभाषाओं के अनुरूप हैं: | यदि X और Y दोनों सदिश क्षेत्र हैं, तो X के संबंध में Y के लाई व्युत्पन्न को X और Y के लाई कोष्ठक के रूप में भी जाना जाता है, और कभी-कभी <math>[X,Y]</math> के रूप में दर्शाया जाता है। लाई कोष्ठक को परिभाषित करने के लिए कई दृष्टिकोण हैं, जिनमें से सभी समतुल्य हैं। हम यहां दो परिभाषाओं को सूचीबद्ध करते हैं, जो ऊपर दी गई सदिश क्षेत्र की दो परिभाषाओं के अनुरूप हैं: | ||
Line 49: | Line 49: | ||
: <math>\mathcal{L}_X Y (p) = [X,Y](p) = \partial_X Y(p) - \partial_Y X(p),</math> | : <math>\mathcal{L}_X Y (p) = [X,Y](p) = \partial_X Y(p) - \partial_Y X(p),</math> | ||
जहां <math>\partial_X</math> | जहां <math>\partial_X</math> और <math>\partial_Y</math> क्रमशः X और Y के संबंध में दिशात्मक व्युत्पन्न लेने के संचालन को दर्शाता हैं। यहां हम n-विमीय समष्टि में एक सदिश को n-ट्यूपल के रूप में मान रहे हैं, ताकि इसका दिशात्मक व्युत्पन्न केवल इसके निर्देशांक के दिशात्मक व्युत्पन्न से युक्त ट्यूपल हो। हालांकि इस परिभाषा में दिखाई देने वाली अंतिम अभिव्यक्ति <math>\partial_X Y(p) - \partial_Y X(p)</math> स्थानीय निर्देशांक की पसंद पर निर्भर नहीं करती है, अलग-अलग शब्द <math>\partial_X Y(p)</math> और <math>\partial_Y X(p)</math> निर्देशांक की पसंद पर निर्भर करते हैं। | ||
|यदि X और Y दूसरी परिभाषा के अनुसार कई गुना M पर सदिश क्षेत्र हैं, तो संचालक <math>\mathcal{L}_X Y = [X,Y]</math> सूत्र द्वारा परिभाषित | |यदि X और Y दूसरी परिभाषा के अनुसार कई गुना M पर सदिश क्षेत्र हैं, तो संचालक <math>\mathcal{L}_X Y = [X,Y]</math> सूत्र द्वारा परिभाषित है। | ||
: <math>[X,Y]: C^\infty(M) \rightarrow C^\infty(M)</math> | : <math>[X,Y]: C^\infty(M) \rightarrow C^\infty(M)</math> | ||
: <math>[X,Y](f) = X(Y(f)) - Y(X(f))</math> | : <math>[X,Y](f) = X(Y(f)) - Y(X(f))</math> | ||
Line 57: | Line 57: | ||
}} | }} | ||
=== प्रदिश क्षेत्र का | === प्रदिश क्षेत्र का लाई व्युत्पन्न === | ||
==== प्रवाह के संदर्भ में परिभाषा ==== | ==== प्रवाह के संदर्भ में परिभाषा ==== | ||
लाई व्युत्पन्न वह गति है जिसके साथ प्रवाह के कारण होने वाले समष्टि विरूपण के अंतर्गत प्रदिश क्षेत्र बदलता है। | |||
औपचारिक रूप से, एक समतल बहुसंख्यक <math>M</math> पर | औपचारिक रूप से, एक समतल बहुसंख्यक <math>M</math> पर भिन्न (समय-स्वतंत्र) सदिश क्षेत्र <math>X</math>, अनुमान <math>\Gamma^t_X : M \to M</math> इसी स्थानीय प्रवाह और <math>\Gamma^0_X</math> पहचान मानचित्र है। क्योंकि <math>\Gamma^t_X</math> एक स्थानीय भिन्नता है, प्रत्येक <math>t</math> और <math>p \in M</math> के लिए, व्युत्क्रम | ||
:<math>\left(d_p\Gamma^t_X\right)^{-1} : T_{\Gamma^t_X(p)}M \to T_{p}M</math> | :<math>\left(d_p\Gamma^t_X\right)^{-1} : T_{\Gamma^t_X(p)}M \to T_{p}M</math> | ||
अवकल <math>\left(d_p\Gamma^t_X\right)</math> का विशिष्ट रूप से [[समरूपता]] तक विस्तार होता | अवकल <math>\left(d_p\Gamma^t_X\right)</math> का विशिष्ट रूप से [[समरूपता]] तक विस्तार होता है। | ||
:<math>h^t_p : T\left(T_{\Gamma^t_X(p)}M\right) \to T(T_{p}M)</math> | :<math>h^t_p : T\left(T_{\Gamma^t_X(p)}M\right) \to T(T_{p}M)</math> | ||
Line 71: | Line 71: | ||
:<math>\left(\Gamma^t_X\right)^*_p : T^*_{\Gamma^t_X(p)}M \to T^*_{p}M</math> | :<math>\left(\Gamma^t_X\right)^*_p : T^*_{\Gamma^t_X(p)}M \to T^*_{p}M</math> | ||
एक अद्वितीय प्रदिश बीजगणित समरूपता के लिए | एक अद्वितीय प्रदिश बीजगणित समरूपता के लिए उत्थापन करता है। | ||
:<math>h^t_p : T\left(T^*_{\Gamma^t_X(p)}M\right) \to T(T^*_{p}M).</math> | :<math>h^t_p : T\left(T^*_{\Gamma^t_X(p)}M\right) \to T(T^*_{p}M).</math> | ||
परिणामस्वरूप, प्रत्येक <math>t</math> के लिए, <math>Y</math> के समान संयोजकता का एक प्रदिश क्षेत्र <math>h^t_pY</math> होता है। | परिणामस्वरूप, प्रत्येक <math>t</math> के लिए, <math>Y</math> के समान संयोजकता का एक प्रदिश क्षेत्र <math>h^t_pY</math> होता है। | ||
अगर <math>Y</math> एक <math>(r,0)</math>- या <math>(0,s)</math>-प्रकार प्रदिश क्षेत्र है, तो सदिश क्षेत्र <math>X</math> के साथ <math>Y</math> का | अगर <math>Y</math> एक <math>(r,0)</math>- या <math>(0,s)</math>-प्रकार प्रदिश क्षेत्र है, तो सदिश क्षेत्र <math>X</math> के साथ <math>Y</math> का लाई व्युत्पन्न <math>{\cal L}_XY</math> बिंदु <math>p \in M</math> पर परिभाषित किया गया है। | ||
:<math>{\cal L}_XY(p) = \frac{d}{dt}\Biggl|_{t=0}\left(h^t_p\left[Y\left(\Gamma^t_X(p)\right)\right]\right) | :<math>{\cal L}_XY(p) = \frac{d}{dt}\Biggl|_{t=0}\left(h^t_p\left[Y\left(\Gamma^t_X(p)\right)\right]\right) | ||
= \lim_{t \to 0}\frac{h^t_p\left[Y\left(\Gamma^t_X(p)\right)\right] - Y(p)}{t}.</math> | = \lim_{t \to 0}\frac{h^t_p\left[Y\left(\Gamma^t_X(p)\right)\right] - Y(p)}{t}.</math> | ||
परिणामी प्रदिश क्षेत्र <math>{\cal L}_XY</math> की संयोजकता <math>Y</math> | परिणामी प्रदिश क्षेत्र <math>{\cal L}_XY</math> की संयोजकता <math>Y</math> के समान है। | ||
==== बीजगणितीय परिभाषा ==== | ==== बीजगणितीय परिभाषा ==== | ||
अब हम एक बीजगणितीय परिभाषा देते हैं। प्रदिश क्षेत्र के लाई व्युत्पन्न के लिए बीजगणितीय परिभाषा निम्नलिखित चार स्वयंसिद्धों से होती है: | अब हम एक बीजगणितीय परिभाषा देते हैं। प्रदिश क्षेत्र के लाई व्युत्पन्न के लिए बीजगणितीय परिभाषा निम्नलिखित चार स्वयंसिद्धों से होती है: | ||
: अभिगृहीत 1. किसी फलन का | : अभिगृहीत 1. किसी फलन का लाई व्युत्पन्न फलन के दिशात्मक अवकलज के समान होता है। यह तथ्य प्रायः सूत्र द्वारा व्यक्त किया जाता है। | ||
::<math>\mathcal{L}_Yf=Y(f)</math> | ::<math>\mathcal{L}_Yf=Y(f)</math> | ||
: अभिगृहीत 2. लाई व्युत्पन्न लीबनिज के नियम के निम्नलिखित संस्करण का पालन करता है: किसी भी प्रदिश क्षेत्र ''S'' और ''T'' के लिए, हमारे पास है | : अभिगृहीत 2. लाई व्युत्पन्न लीबनिज के नियम के निम्नलिखित संस्करण का पालन करता है: किसी भी प्रदिश क्षेत्र ''S'' और ''T'' के लिए, हमारे पास है: | ||
::<math>\mathcal{L}_Y(S\otimes T)=(\mathcal{L}_YS)\otimes T+S\otimes (\mathcal{L}_YT) | ::<math>\mathcal{L}_Y(S\otimes T)=(\mathcal{L}_YS)\otimes T+S\otimes (\mathcal{L}_YT)</math> | ||
: अभिगृहीत 3. | : अभिगृहीत 3. लाई व्युत्पन्न संकुचन के संबंध में लीबनिज नियम का पालन करता है: | ||
::<math> \mathcal{L}_X (T(Y_1, \ldots, Y_n)) = (\mathcal{L}_X T)(Y_1,\ldots, Y_n) + T((\mathcal{L}_X Y_1), \ldots, Y_n) + \cdots + T(Y_1, \ldots, (\mathcal{L}_X Y_n)) </math> | ::<math> \mathcal{L}_X (T(Y_1, \ldots, Y_n)) = (\mathcal{L}_X T)(Y_1,\ldots, Y_n) + T((\mathcal{L}_X Y_1), \ldots, Y_n) + \cdots + T(Y_1, \ldots, (\mathcal{L}_X Y_n)) </math> | ||
: अभिगृहीत 4. | : अभिगृहीत 4. लाई व्युत्पन्न फलनों पर बाहरी व्युत्पन्न के साथ परिवर्तित होता है: | ||
::<math> [\mathcal{L}_X, d] = 0 </math> | ::<math> [\mathcal{L}_X, d] = 0 </math> | ||
यदि ये अभिगृहीत मान्य हैं, | यदि ये अभिगृहीत मान्य हैं, तो संबंध <math> df(Y) = Y(f) </math> पर लाई व्युत्पन्न <math>\mathcal{L}_X</math> को परिपालन करने से पता चलता है कि | ||
::<math>\mathcal{L}_X Y (f) = X(Y(f)) - Y(X(f)),</math> | ::<math>\mathcal{L}_X Y (f) = X(Y(f)) - Y(X(f)),</math> | ||
जो | जो लाई कोष्ठक के लिए मानक परिभाषाओं में से एक है। | ||
विभेदक रूप पर अभिनय करने वाला लाई व्युत्पन्न बाहरी गुणन के साथ आंतरिक गुणन का एंटीकोम्यूटेटर है। तो अगर α एक अवकल रूप है, | विभेदक रूप पर अभिनय करने वाला लाई व्युत्पन्न बाहरी गुणन के साथ आंतरिक गुणन का एंटीकोम्यूटेटर है। तो अगर α एक अवकल रूप है, | ||
::<math>\mathcal{L}_Y\alpha=i_Yd\alpha+di_Y\alpha.</math> | ::<math>\mathcal{L}_Y\alpha=i_Yd\alpha+di_Y\alpha.</math> | ||
यह जाँच कर आसानी से अनुसरण | यह जाँच कर आसानी से अनुसरण करते है कि अभिव्यक्ति बाहरी व्युत्पन्न के साथ चलते है, एक व्युत्पत्ति (श्रेणीबद्ध व्युत्पत्तियों का एक एंटीकोम्यूटेटर होने के नाते) और फलनों पर सही काम करते है। | ||
स्पष्ट रूप से, T को {{nowrap|(''p'', ''q'')}} प्रकार का एक प्रदिश क्षेत्र होने दें। ''T'' को सह स्पर्शरेखा बंडल ''T''<sup>∗</sup>''M'' के समतल वर्गों ''α''<sup>1</sup>, ''α''<sup>2</sup>, ..., ''α<sup>p</sup>'' का एक | स्पष्ट रूप से, T को {{nowrap|(''p'', ''q'')}} प्रकार का एक प्रदिश क्षेत्र होने दें। ''T'' को सह स्पर्शरेखा बंडल ''T''<sup>∗</sup>''M'' के समतल वर्गों ''α''<sup>1</sup>, ''α''<sup>2</sup>, ..., ''α<sup>p</sup>'' का एक भिन्न बहुरेखीय मानचित्र होने पर विचार करें और स्पर्शरेखा बंडल ''TM'' के ''X''<sub>1</sub>, ''X''<sub>2</sub>, ..., ''X''<sub>q</sub> वर्गों ''T''(''α''<sup>1</sup>, ''α''<sup>2</sup>, ..., ''X''<sub>1</sub>, ''X''<sub>2</sub>, ...) को '''R''' में लिखा है। | ||
:<math>(\mathcal{L}_Y T)(\alpha_1, \alpha_2, \ldots, X_1, X_2, \ldots) =Y(T(\alpha_1,\alpha_2,\ldots,X_1,X_2,\ldots))</math> | :<math>(\mathcal{L}_Y T)(\alpha_1, \alpha_2, \ldots, X_1, X_2, \ldots) =Y(T(\alpha_1,\alpha_2,\ldots,X_1,X_2,\ldots))</math> | ||
Line 109: | Line 109: | ||
- T(\alpha_1, \alpha_2, \ldots, X_1, \mathcal{L}_YX_2, \ldots) - \ldots | - T(\alpha_1, \alpha_2, \ldots, X_1, \mathcal{L}_YX_2, \ldots) - \ldots | ||
</math> | </math> | ||
विश्लेषणात्मक और बीजगणितीय परिभाषाओं को विभेदीकरण के लिए | विश्लेषणात्मक और बीजगणितीय परिभाषाओं को विभेदीकरण के लिए ज़ारी रखना और लीबनिज़ नियम का उपयोग करके समतुल्य सिद्ध किया जा सकता है। लाई व्युत्पन्न संकुचन के साथ रूपान्तरित करता है। | ||
=== एक अवकल रूप का लाई व्युत्पन्न === | === एक अवकल रूप का लाई व्युत्पन्न === | ||
{{see also|आंतरिक उत्पाद}} | {{see also|आंतरिक उत्पाद}} | ||
प्रदिश क्षेत्रों का एक विशेष रूप से महत्वपूर्ण वर्ग विभेदक रूपों का वर्ग है। विभेदक रूपों के स्थान पर लाई व्युत्पन्न का प्रतिबंध बाहरी व्युत्पन्न | प्रदिश क्षेत्रों का एक विशेष रूप से महत्वपूर्ण वर्ग विभेदक रूपों का वर्ग है। विभेदक रूपों के स्थान पर लाई व्युत्पन्न का प्रतिबंध बाहरी व्युत्पन्न निकटता से संबंधित है। लाई व्युत्पन्न और बाहरी व्युत्पन्न दोनों भिन्न प्रकार से व्युत्पन्न के विचार को ग्रहण करने का प्रयास करते हैं। एक आंतरिक गुणन के विचार को प्रस्तुत करके भिन्नता को दूर किया जा सकता है, जिसके बाद संबंध एक पहचान के रूप में सामने आते हैं जिसे कार्टन के सूत्र के रूप में जाना जाता है। कार्टन के सूत्र का उपयोग अवकल रूपों के स्थान पर लाई व्युत्पन्न की परिभाषा के रूप में भी किया जा सकता है। | ||
''M'' को बहुसंख्यक और ''X'' को ''M | ''M'' को बहुसंख्यक और ''X'' को ''M'' पर एक सदिश क्षेत्र होने दें। मान लीजिए <math>\omega \in \Lambda^{k+1}(M)</math> एक {{nowrap|(''k'' + 1)}}-[[विभेदक रूप|रूप है]], अर्थात प्रत्येक <math>p \in M</math> के लिए, <math>\omega(p)</math> वास्तविक संख्याओं के लिए <math>(T_p M)^{k + 1}</math> से एक वैकल्पिक बहुरेखीय मानचित्र है। X और ω का आंतरिक गुणन k- रूप <math>i_X\omega</math> के रूप में परिभाषित है। | ||
:<math>(i_X\omega) (X_1, \ldots, X_k) = \omega (X,X_1, \ldots, X_k)\,</math> | :<math>(i_X\omega) (X_1, \ldots, X_k) = \omega (X,X_1, \ldots, X_k)\,</math> | ||
Line 124: | Line 124: | ||
:<math>i_X (\omega \wedge \eta) = (i_X \omega) \wedge \eta + (-1)^k \omega \wedge (i_X \eta)</math> | :<math>i_X (\omega \wedge \eta) = (i_X \omega) \wedge \eta + (-1)^k \omega \wedge (i_X \eta)</math> | ||
<math>\omega \in \Lambda^k(M)</math> और η के लिए एक और अवकल | <math>\omega \in \Lambda^k(M)</math> और η के लिए एक और अवकल रूप है। इसके अलावा, एक फलन <math>f \in \Lambda^0(M)</math> के लिए, अर्थात, ''M'' पर एक वास्तविक- या जटिल-मूल्यवान फलन, एक के पास है | ||
:<math>i_{fX} \omega = f\,i_X\omega</math> | :<math>i_{fX} \omega = f\,i_X\omega</math> | ||
जहाँ <math>f X</math> ''f'' और ''X'' के गुणनफल को दर्शाता है। बाहरी व्युत्पन्न और लाई व्युत्पन्न के मध्य संबंध को संक्षेप में निम्नानुसार किया जा सकता है। सबसे पहले, | जहाँ <math>f X</math> ''f'' और ''X'' के गुणनफल को दर्शाता है। बाहरी व्युत्पन्न और लाई व्युत्पन्न के मध्य संबंध को संक्षेप में निम्नानुसार किया जा सकता है। सबसे पहले, सदिश क्षेत्र ''X'' के संबंध में एक फलन ''f'' का लाई व्युत्पन्न दिशात्मक व्युत्पन्न X(f) के समान है, यह ''X'' के साथ ''f'' के बाहरी व्युत्पन्न के संकुचन के समान भी है: | ||
:<math>\mathcal{L}_Xf = i_X \, df</math> | :<math>\mathcal{L}_Xf = i_X \, df</math> | ||
एक सामान्य अवकल रूप के लिए, | एक सामान्य अवकल रूप के लिए, लाई व्युत्पन्न इसी तरह एक संकुचन है, ''X'' में भिन्नता को ध्यान में रखते हुए: | ||
:<math>\mathcal{L}_X\omega = i_Xd\omega + d(i_X \omega).</math> | :<math>\mathcal{L}_X\omega = i_Xd\omega + d(i_X \omega).</math> | ||
इस पहचान को कार्टन सूत्र, कार्टन समरूपता सूत्र या कार्टन के मैजिक सूत्र के रूप में जाना जाता है। विवरण के लिए आंतरिक गुणन देखें। कार्टन सूत्र का उपयोग विभेदक रूप के लाई व्युत्पन्न की परिभाषा के रूप में किया जा सकता है। कार्टन का सूत्र विशेष रूप से दर्शाता है कि | इस पहचान को कार्टन सूत्र, कार्टन समरूपता सूत्र या कार्टन के मैजिक सूत्र के रूप में जाना जाता है। विवरण के लिए आंतरिक गुणन देखें। कार्टन सूत्र का उपयोग विभेदक रूप के लाई व्युत्पन्न की परिभाषा के रूप में किया जा सकता है। कार्टन का सूत्र विशेष रूप से दर्शाता है कि | ||
:<math>d\mathcal{L}_X\omega = \mathcal{L}_X(d\omega).</math> | :<math>d\mathcal{L}_X\omega = \mathcal{L}_X(d\omega).</math> | ||
Line 140: | Line 140: | ||
:<math>\mathcal{L}_{fX}\omega = f\mathcal{L}_X\omega + df \wedge i_X \omega .</math> | :<math>\mathcal{L}_{fX}\omega = f\mathcal{L}_X\omega + df \wedge i_X \omega .</math> | ||
== समन्वय अभिव्यक्ति == | == समन्वय अभिव्यक्ति == | ||
स्थानीय समन्वय संकेतन में, एक प्रकार {{nowrap|(''r'', ''s'')}} प्रदिश क्षेत्र <math>T</math> के लिए, <math>X</math> के साथ लाई व्युत्पन्न है। | |||
स्थानीय समन्वय संकेतन में, एक प्रकार {{nowrap|(''r'', ''s'')}} प्रदिश क्षेत्र <math>T</math> के लिए, <math>X</math> के साथ लाई व्युत्पन्न | |||
:<math>\begin{align} | :<math>\begin{align} | ||
(\mathcal{L}_X T) ^{a_1 \ldots a_r}{}_{b_1 \ldots b_s} ={} | (\mathcal{L}_X T) ^{a_1 \ldots a_r}{}_{b_1 \ldots b_s} ={} | ||
Line 149: | Line 147: | ||
& + (\partial_{b_1} X^c) T ^{a_1 \ldots a_r}{}_{c b_2 \ldots b_s} + \ldots + (\partial_{b_s}X^c) T ^{a_1 \ldots a_r}{}_{b_1 \ldots b_{s-1} c} | & + (\partial_{b_1} X^c) T ^{a_1 \ldots a_r}{}_{c b_2 \ldots b_s} + \ldots + (\partial_{b_s}X^c) T ^{a_1 \ldots a_r}{}_{b_1 \ldots b_{s-1} c} | ||
\end{align}</math> | \end{align}</math> | ||
यहाँ, संकेतन <math>\partial_a = \frac{\partial}{\partial x^a}</math> का अर्थ समन्वय <math>x^a</math> के संबंध में आंशिक व्युत्पन्न लेना है। वैकल्पिक रूप से, यदि हम टोशन मुक्त संबंधन (उदाहरण के लिए, लेवी सिविटा संबंधन) का उपयोग कर रहे हैं, फिर आंशिक व्युत्पन्न <math>\partial_a</math> को सहसंयोजक व्युत्पन्न के साथ प्रतिस्थापित किया जा सकता है जिसका अर्थ है <math>\partial_a X^b</math> को प्रतिस्थापित | यहाँ, संकेतन <math>\partial_a = \frac{\partial}{\partial x^a}</math> का अर्थ समन्वय <math>x^a</math> के संबंध में आंशिक व्युत्पन्न लेना है। वैकल्पिक रूप से, यदि हम टोशन-मुक्त संबंधन (उदाहरण के लिए, लेवी सिविटा संबंधन) का उपयोग कर रहे हैं, फिर आंशिक व्युत्पन्न <math>\partial_a</math> को सहसंयोजक व्युत्पन्न के साथ प्रतिस्थापित किया जा सकता है जिसका अर्थ है <math>\partial_a X^b</math> को प्रतिस्थापित करने के साथ (संकेतन के दुरुपयोग से) <math>\nabla_a X^b = X^b_{;a} := (\nabla X)_a^{\ b} = \partial_a X^b + \Gamma^b_{ac}X^c</math> जहां <math>\Gamma^a_{bc} = \Gamma^a_{cb}</math> क्रिस्टोफेल गुणांक हैं। | ||
एक प्रदिश का लाई व्युत्पन्न उसी प्रकार का एक और प्रदिश है, अर्थात, | एक प्रदिश का लाई व्युत्पन्न उसी प्रकार का एक और प्रदिश है, अर्थात, अभिव्यक्ति में भिन्न शब्द समन्वय पद्धति के चयन पर निर्भर करते हैं, समग्र रूप से अभिव्यक्ति एक प्रदिश में परिणत होती है। | ||
:<math>(\mathcal{L}_X T) ^{a_1 \ldots a_r}{}_{b_1 \ldots b_s}\partial_{a_1}\otimes\cdots\otimes\partial_{a_r}\otimes dx^{b_1}\otimes\cdots\otimes dx^{b_s}</math> | :<math>(\mathcal{L}_X T) ^{a_1 \ldots a_r}{}_{b_1 \ldots b_s}\partial_{a_1}\otimes\cdots\otimes\partial_{a_r}\otimes dx^{b_1}\otimes\cdots\otimes dx^{b_s}</math> | ||
जो किसी भी समन्वय प्रणाली से स्वतंत्र है और <math>T</math> के समान प्रकार | जो किसी भी समन्वय प्रणाली से स्वतंत्र है और <math>T</math> के समान प्रकार है। | ||
परिभाषा को आगे प्रदिश घनत्वों तक बढ़ाया जा सकता है। यदि ''T'' कुछ वास्तविक संख्या मूल्यवान भार ''w'' (उदाहरण के लिए भार 1 का आयतन घनत्व) का [[टेंसर घनत्व|प्रदिश घनत्व]] है, तो इसका लाई व्युत्पन्न उसी प्रकार और भार का एक प्रदिश घनत्व है। | परिभाषा को आगे प्रदिश घनत्वों तक बढ़ाया जा सकता है। यदि ''T'' कुछ वास्तविक संख्या मूल्यवान भार ''w'' (उदाहरण के लिए भार 1 का आयतन घनत्व) का [[टेंसर घनत्व|प्रदिश घनत्व]] है, तो इसका लाई व्युत्पन्न उसी प्रकार और भार का एक प्रदिश घनत्व है। | ||
Line 163: | Line 161: | ||
अभिव्यक्ति के अंत में नए शब्द पर ध्यान दें। | अभिव्यक्ति के अंत में नए शब्द पर ध्यान दें। | ||
एक रैखिक संबंधन के लिए <math>\Gamma = ( \Gamma^{a}_{bc} )</math>, <math>X</math> के साथ लाई व्युत्पन्न | एक रैखिक संबंधन के लिए <math>\Gamma = ( \Gamma^{a}_{bc} )</math>, <math>X</math> के साथ लाई व्युत्पन्न है।<ref>{{cite book|author-link=Kentaro Yano (mathematician) |last=Yano |first=K. |title=The Theory of Lie Derivatives and its Applications | ||
|url=https://archive.org/details/theoryofliederiv029601mbp|publisher=North-Holland|year=1957|page=[https://archive.org/details/theoryofliederiv029601mbp/page/n25 8]|isbn=978-0-7204-2104-0}}</ref> | |url=https://archive.org/details/theoryofliederiv029601mbp|publisher=North-Holland|year=1957|page=[https://archive.org/details/theoryofliederiv029601mbp/page/n25 8]|isbn=978-0-7204-2104-0}}</ref> | ||
:<math> | :<math> | ||
Line 173: | Line 171: | ||
:<math> (\mathcal {L}_X \phi) = X(\phi) = X^a \partial_a \phi</math>. | :<math> (\mathcal {L}_X \phi) = X(\phi) = X^a \partial_a \phi</math>. | ||
इसलिए अदिश क्षेत्र <math>\phi(x,y) = x^2 - \sin(y)</math> और सदिश क्षेत्र <math>X = \sin(x)\partial_y - y^2\partial_x</math> के लिए संबंधित लाई व्युत्पन्न बन जाता | इसलिए अदिश क्षेत्र <math>\phi(x,y) = x^2 - \sin(y)</math> और सदिश क्षेत्र <math>X = \sin(x)\partial_y - y^2\partial_x</math> के लिए संबंधित लाई व्युत्पन्न बन जाता है। | ||
<math display="block">\begin{alignat}{3} | <math display="block">\begin{alignat}{3} | ||
\mathcal{L}_X\phi &= (\sin(x)\partial_y - y^2\partial_x)(x^2 - \sin(y))\\ | \mathcal{L}_X\phi &= (\sin(x)\partial_y - y^2\partial_x)(x^2 - \sin(y))\\ | ||
Line 189: | Line 187: | ||
:<math>\mathcal{L}_X (dx^b) = d i_X (dx^b) = d X^b = \partial_a X^b dx^a </math>. | :<math>\mathcal{L}_X (dx^b) = d i_X (dx^b) = d X^b = \partial_a X^b dx^a </math>. | ||
इसलिए | इसलिए एक संवहन क्षेत्र के लिए, अर्थात, एक अवकल रूप, <math>A = A_a(x^b)dx^a</math> हमारे पास है: | ||
:<math>\mathcal{L}_X A = X (A_a) dx^a + A_b \mathcal{L}_X (dx^b) = (X^b \partial_b A_a + A_b\partial_a (X^b))dx^a</math> | :<math>\mathcal{L}_X A = X (A_a) dx^a + A_b \mathcal{L}_X (dx^b) = (X^b \partial_b A_a + A_b\partial_a (X^b))dx^a</math> | ||
अंतिम अभिव्यक्ति का गुणांक लाई व्युत्पन्न की स्थानीय समन्वय अभिव्यक्ति है। | अंतिम अभिव्यक्ति का गुणांक लाई व्युत्पन्न की स्थानीय समन्वय अभिव्यक्ति है। | ||
Line 199: | Line 197: | ||
&= (X^c \partial_c T_{ab}+T_{cb}\partial_a X^c+T_{ac}\partial_b X^c)dx^a\otimes dx^b\\ | &= (X^c \partial_c T_{ab}+T_{cb}\partial_a X^c+T_{ac}\partial_b X^c)dx^a\otimes dx^b\\ | ||
\end{align}</math> | \end{align}</math> | ||
अगर <math>T = g</math> सममित | अगर <math>T = g</math> सममित मापीय प्रदिश है, तो यह [[लेवी-Civita कनेक्शन|लेवी-सीविटा संबंधन]] (उर्फ सहसंयोजक व्युत्पन्न) के संबंध में समानांतर है, और यह संबंधन का उपयोग करने के लिए उपयोगी हो जाता है। यह सभी व्युत्पन्न को सहसंयोजक व्युत्पन्न के साथ बदलने का प्रभाव देता है। | ||
:<math>(\mathcal {L}_X g) = (X^c g_{ab; c} + g_{cb}X^c_{;a} + g_{ac}X^c_{; b})dx^a\otimes dx^b = (X_{b;a} + X_{a;b}) dx^a\otimes dx^b</math> | :<math>(\mathcal {L}_X g) = (X^c g_{ab; c} + g_{cb}X^c_{;a} + g_{ac}X^c_{; b})dx^a\otimes dx^b = (X_{b;a} + X_{a;b}) dx^a\otimes dx^b</math> | ||
== गुण == | == गुण == | ||
लाई व्युत्पन्न में कई गुण होते हैं। बता दें कि <math>\mathcal{F}(M)</math> बहुसंख्यक ''M'' पर परिभाषित फलनों का बीजगणित है। फिर | |||
:<math>\mathcal{L}_X : \mathcal{F}(M) \rightarrow \mathcal{F}(M)</math> | :<math>\mathcal{L}_X : \mathcal{F}(M) \rightarrow \mathcal{F}(M)</math> | ||
Line 216: | Line 214: | ||
जहां प्रदिश गुणन प्रतीक <math>\otimes</math> इस तथ्य पर जोर देने के लिए उपयोग किया जाता है कि एक सदिश क्षेत्र के फलन के गुणनफल को संपूर्ण बहुसंख्यक पर ले जाया जा रहा है। | जहां प्रदिश गुणन प्रतीक <math>\otimes</math> इस तथ्य पर जोर देने के लिए उपयोग किया जाता है कि एक सदिश क्षेत्र के फलन के गुणनफल को संपूर्ण बहुसंख्यक पर ले जाया जा रहा है। | ||
अतिरिक्त गुण | अतिरिक्त गुण लाई कोष्ठक के अनुरूप हैं। इस प्रकार, उदाहरण के लिए, एक सदिश क्षेत्र पर एक व्युत्पत्ति के रूप में माना जाता है, | ||
:<math>\mathcal{L}_X [Y,Z] = [\mathcal{L}_X Y,Z] + [Y,\mathcal{L}_X Z]</math> | :<math>\mathcal{L}_X [Y,Z] = [\mathcal{L}_X Y,Z] + [Y,\mathcal{L}_X Z]</math> | ||
उपरोक्त को केवल [[जैकोबी पहचान]] के रूप में प्राप्त | उपरोक्त को केवल [[जैकोबी पहचान]] के रूप में प्राप्त किया जाता है। इस प्रकार, एक का महत्वपूर्ण परिणाम है कि M पर सदिश क्षेत्रों का स्थान, जो लाई कोष्ठक से सुसज्जित है, एक लाई बीजगणित बनाता है। | ||
अवकल रूपों पर फलन करते समय लाई व्युत्पन्न में भी महत्वपूर्ण गुण होते हैं। चलो α और β ''M'' पर दो | अवकल रूपों पर फलन करते समय लाई व्युत्पन्न में भी महत्वपूर्ण गुण होते हैं। चलो α और β ''M'' पर दो भिन्न रूप हैं, और ''X'' और ''Y'' को दो सदिश क्षेत्र होने दें। तब | ||
* <math>\mathcal{L}_X(\alpha\wedge\beta) = (\mathcal{L}_X\alpha) \wedge\beta + \alpha\wedge (\mathcal{L}_X\beta)</math> | * <math>\mathcal{L}_X(\alpha\wedge\beta) = (\mathcal{L}_X\alpha) \wedge\beta + \alpha\wedge (\mathcal{L}_X\beta)</math> | ||
* <math>[\mathcal{L}_X,\mathcal{L}_Y]\alpha := \mathcal{L}_X\mathcal{L}_Y\alpha-\mathcal{L}_Y\mathcal{L}_X\alpha = \mathcal{L}_{[X,Y]}\alpha</math> | * <math>[\mathcal{L}_X,\mathcal{L}_Y]\alpha := \mathcal{L}_X\mathcal{L}_Y\alpha-\mathcal{L}_Y\mathcal{L}_X\alpha = \mathcal{L}_{[X,Y]}\alpha</math> | ||
* <math>[\mathcal{L}_X,i_Y]\alpha = [i_X,\mathcal{L}_Y]\alpha = i_{[X,Y]}\alpha,</math> जहां ''i'' ऊपर परिभाषित आंतरिक गुणन को दर्शाता है और यह स्पष्ट है कि क्या [·,·] [[कम्यूटेटर|दिक्परिवर्तक]] या सदिश क्षेत्रों के | * <math>[\mathcal{L}_X,i_Y]\alpha = [i_X,\mathcal{L}_Y]\alpha = i_{[X,Y]}\alpha,</math> जहां ''i'' ऊपर परिभाषित आंतरिक गुणन को दर्शाता है और यह स्पष्ट है कि क्या [·,·] [[कम्यूटेटर|दिक्परिवर्तक]] या सदिश क्षेत्रों के लाई कोष्ठक को दर्शाता है। | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
लाई व्युत्पन्न के विभिन्न सामान्यीकरण अवकल ज्यामिति में महत्वपूर्ण भूमिका निभाते हैं। | |||
=== | === लाई एक [[स्पिनर]] क्षेत्र का व्युत्पन्न है === | ||
सामान्य समष्टि समय सदिश क्षेत्र के साथ स्पिनरों के | सामान्य समष्टि समय सदिश क्षेत्र के साथ स्पिनरों के लाई व्युत्पन्न के लिए एक परिभाषा, एक सामान्य (छद्म) रीमैनियन बहुसंख्यक पर आवश्यक रूप से [[हत्या वेक्टर क्षेत्र|घातक]] नहीं, पहले से ही 1971 में [[यवेटे कोस्मान-श्वार्जबैक]] द्वारा प्रस्तावित की गई थी।<ref name="autogenerated317">{{cite journal |last=Kosmann |first=Y. |author-link=Yvette Kosmann-Schwarzbach |year=1971 |title=Dérivées de Lie des spineurs |journal=[[Annali di Matematica Pura ed Applicata|Ann. Mat. Pura Appl.]] |volume=91 |issue=4 |pages=317–395 |doi=10.1007/BF02428822 |s2cid=121026516 }}</ref> बाद में, इसे एक ज्यामितीय संरचना प्रदान किया गया, जो [[फाइबर बंडल|प्रमापी]] प्राकृतिक बंडलों के स्पष्ट संदर्भ में फाइबर बंडलों पर लाई व्युत्पन्न के सामान्य संरचना के अंतर्गत उसके तदर्थ निदान को सही सिद्ध करता है, जो (प्रमापी-सहसंयोजक) क्षेत्र सिद्धांतों के लिए सबसे उपयुक्त क्षेत्र बन जाता है।।<ref>{{cite book |last=Trautman |first=A. |year=1972 |chapter=Invariance of Lagrangian Systems |editor-first=L. |editor-last=O'Raifeartaigh |editor-link=Lochlainn O'Raifeartaigh |title=General Relativity: Papers in honour of J. L. Synge |publisher=Clarenden Press |location=Oxford |isbn=0-19-851126-4 |page=85 }}</ref> <ref>{{cite book |last1=Fatibene |first1=L. |last2=Francaviglia |first2=M. |author-link2=Mauro Francaviglia |year=2003 |title=शास्त्रीय क्षेत्र सिद्धांतों के लिए प्राकृतिक और गेज प्राकृतिक औपचारिकता|publisher=Kluwer Academic |location=Dordrecht }}</ref> | ||
किसी दिए गए [[स्पिन कई गुना|स्पिन बहुसंख्यक]] में, जो कि रिमेंनियन बहुसंख्यक में है <math>(M,g)</math> एक [[स्पिन संरचना]] को स्वीकार करते हुए, एक स्पिनर क्षेत्र <math>\psi</math> के लाई व्युत्पन्न को पहली बार परिभाषित करके परिभाषित किया जा सकता है, जो 1963 में दिए गए आंद्रे लिचनरोविक्ज़ की स्थानीय अभिव्यक्ति के माध्यम से अत्यणु आइसोमेट्रीज़ (किलिंग सदिश क्षेत्र) के संबंध में परिभाषित किया गया था:<ref>{{cite journal |last=Lichnerowicz |first=A. |year=1963 |title=हार्मोनिक स्पिनर|journal=C. R. Acad. Sci. Paris |volume=257 |pages=7–9 }}</ref> | किसी दिए गए [[स्पिन कई गुना|स्पिन बहुसंख्यक]] में, जो कि रिमेंनियन बहुसंख्यक में है <math>(M,g)</math> एक [[स्पिन संरचना]] को स्वीकार करते हुए, एक स्पिनर क्षेत्र <math>\psi</math> के लाई व्युत्पन्न को पहली बार परिभाषित करके परिभाषित किया जा सकता है, जो 1963 में दिए गए आंद्रे लिचनरोविक्ज़ की स्थानीय अभिव्यक्ति के माध्यम से अत्यणु आइसोमेट्रीज़ (किलिंग सदिश क्षेत्र) के संबंध में परिभाषित किया गया था:<ref>{{cite journal |last=Lichnerowicz |first=A. |year=1963 |title=हार्मोनिक स्पिनर|journal=C. R. Acad. Sci. Paris |volume=257 |pages=7–9 }}</ref> | ||
Line 239: | Line 237: | ||
:<math>\mathcal{L}_X \psi := X^{a}\nabla_{a}\psi - \frac18\nabla_{[a}X_{b]}[\gamma^{a},\gamma^{b}]\psi\, = \nabla_X \psi - \frac14 (d X^\flat)\cdot \psi\, ,</math> | :<math>\mathcal{L}_X \psi := X^{a}\nabla_{a}\psi - \frac18\nabla_{[a}X_{b]}[\gamma^{a},\gamma^{b}]\psi\, = \nabla_X \psi - \frac14 (d X^\flat)\cdot \psi\, ,</math> | ||
जहाँ<math>[\gamma^{a},\gamma^{b}]= \gamma^a\gamma^b - \gamma^b\gamma^a</math> दिक्परिवर्तक है, <math>d</math> बाहरी व्युत्पन्न है, <math>X^\flat = g(X, -)</math> मेट्रिक के अंतर्गत <math>X</math> के अनुरूप दोहरी 1 रूप है (अर्थात कम सूचकांक के साथ) और <math> \cdot </math> क्लिफोर्ड गुणन है। | जहाँ <math>[\gamma^{a},\gamma^{b}]= \gamma^a\gamma^b - \gamma^b\gamma^a</math> दिक्परिवर्तक है, <math>d</math> बाहरी व्युत्पन्न है, <math>X^\flat = g(X, -)</math> मेट्रिक के अंतर्गत <math>X</math> के अनुरूप दोहरी 1 रूप है (अर्थात कम सूचकांक के साथ) और <math> \cdot </math> क्लिफोर्ड गुणन है। | ||
यह ध्यान देने योग्य है कि स्पिनर लाई व्युत्पन्न मीट्रिक से स्वतंत्र है, और इसलिए संबंधन का भी है। यह कोस्मान की स्थानीय अभिव्यक्ति के दाहिने हाथ की ओर से स्पष्ट नहीं है, क्योंकि दाएं हाथ की ओर स्पिन संबंधन (सहसंयोजक व्युत्पन्न) के माध्यम से मीट्रिक पर निर्भर करता है, सदिश क्षेत्रों का दोहरीकरण (सूचकांकों को कम करना) और क्लिफर्ड [[स्पिनर बंडल]] पर | यह ध्यान देने योग्य है कि स्पिनर लाई व्युत्पन्न मीट्रिक से स्वतंत्र है, और इसलिए संबंधन का भी है। यह कोस्मान की स्थानीय अभिव्यक्ति के दाहिने हाथ की ओर से स्पष्ट नहीं है, क्योंकि दाएं हाथ की ओर स्पिन संबंधन (सहसंयोजक व्युत्पन्न) के माध्यम से मीट्रिक पर निर्भर करता है, सदिश क्षेत्रों का दोहरीकरण (सूचकांकों को कम करना) और क्लिफर्ड [[स्पिनर बंडल]] पर गुणन है। ऐसा प्रकरण नहीं है: कोस्मान की स्थानीय अभिव्यक्ति के दाईं ओर की मात्राएँ इस तरह संयोजित होती हैं कि सभी मीट्रिक और संबंधन पर निर्भर नियम को निरसित कर दिया जा सके। | ||
स्पिनर क्षेत्र के लाई व्युत्पन्न की लंबे-विवाद वाले अवधारणा की बेहतर समझ प्राप्त करने के लिए मूल लेख का उल्लेख किया जा सकता है,<ref>{{cite book |last1=Fatibene |first1=L. |last2=Ferraris |first2=M. |last3=Francaviglia |first3=M. |last4=Godina |first4=M. |year=1996 |chapter=A geometric definition of Lie derivative for Spinor Fields |title=Proceedings of the 6th International Conference on Differential Geometry and Applications, August 28th–September 1st 1995 (Brno, Czech Republic) |editor-last=Janyska |editor-first=J. |editor2-last=Kolář |editor2-first=I. |editor3-last=Slovák |editor3-first=J. |publisher=Masaryk University |location=Brno |pages=549–558 |isbn=80-210-1369-9 |arxiv=gr-qc/9608003v1 |bibcode=1996gr.qc.....8003F }}</ref><ref>{{cite journal |last1=Godina |first1=M. |last2=Matteucci |first2=P. |year=2003 |title=रिडक्टिव जी-स्ट्रक्चर्स और लाई डेरिवेटिव|journal=[[Journal of Geometry and Physics]] |volume=47 |issue=1 |pages=66–86 |doi=10.1016/S0393-0440(02)00174-2 |arxiv=math/0201235 |bibcode=2003JGP....47...66G |s2cid=16408289 }}</ref> जहां स्पिनर क्षेत्रों के लाई व्युत्पन्न की परिभाषा को फाइबर बंडलों के अनुभागों के लाई व्युत्पन्न के सिद्धांत के अधिक सामान्य संरचना में रखा गया है और वाई. कोसमैन द्वारा स्पिनर प्रकरण के लिए प्रत्यक्ष दृष्टिकोण को प्राकृतिक बंडलों के रूप में गेज करने के लिए सामान्यीकृत किया गया है। [[ कोसमैन लिफ्ट |कोसमैन लिफ्ट]] नामक एक नई ज्यामितीय अवधारणा है। | |||
=== सहपरिवर्ती | === सहपरिवर्ती लाई व्युत्पन्न === | ||
यदि हमारे पास संरचना समूह के रूप में G के साथ | यदि हमारे पास संरचना समूह के रूप में G के साथ बहुसंख्यक M पर एक प्रमुख बंडल है, और हम X को मुख्य बंडल के स्पर्शी समष्टि के खंड के रूप में एक सहसंयोजक सदिश क्षेत्र के रूप में चयन करते हैं (अर्थात इसमें क्षैतिज और ऊर्ध्वाधर घटक हैं), तो सहपरिवर्ती लाई व्युत्पन्न मुख्य बंडल पर X के संबंध में सिर्फ लाई व्युत्पन्न है। | ||
अब, अगर हमें M के ऊपर एक सदिश क्षेत्र Y दिया गया है (लेकिन | अब, अगर हमें ''M'' के ऊपर एक सदिश क्षेत्र ''Y'' दिया गया है (लेकिन प्रमुख बंडल नहीं है) लेकिन हमारे पास मुख्य बंडल पर भी एक संबंध है, तो हम एक सदिश क्षेत्र ''X'' को मुख्य बंडल के ऊपर परिभाषित कर सकते हैं कि इसका क्षैतिज घटक ''Y'' से सामान होता है और इसका ऊर्ध्वाधर घटक संबंधन से सहमत है। यह सहपरिवर्ती लाई व्युत्पन्न है। | ||
अधिक विवरण के लिए [[कनेक्शन प्रपत्र|संबंधन प्रपत्र]] देखें। | अधिक विवरण के लिए [[कनेक्शन प्रपत्र|संबंधन प्रपत्र]] देखें। | ||
=== निजेनहुइस- | === निजेनहुइस-लाई व्युत्पन्न === | ||
एक अन्य सामान्यीकरण, [[ अल्बर्ट न्येनहुइस ]] के कारण, बंडल Ω के किसी भी खंड के साथ एक | एक अन्य सामान्यीकरण, [[ अल्बर्ट न्येनहुइस |अल्बर्ट न्येनहुइस]] के कारण, स्पर्शरेखा बंडल में मूल्यों के साथ अंतर रूपों के बंडल Ω<sup>''k''</sup>(''M'', T''M'') के किसी भी खंड के साथ एक अवकल रूप के लाई व्युत्पन्न को परिभाषित करने की अनुमति देती है। अगर ∈ Ω<sup>k</sup>(M, TM) और α एक अवकल p-रूप है, तो ''K'' और α के आंतरिक गुणनफल ''i<sub>K</sub>''α को परिभाषित करना संभव है। निजेनहुइस-लाई व्युत्पन्न तब आंतरिक गुणनफल और बाहरी व्युत्पन्न का एंटीकोम्यूटेटर है: | ||
:<math>\mathcal{L}_K\alpha=[d,i_K]\alpha = di_K\alpha-(-1)^{k-1}i_K \, d\alpha.</math> | :<math>\mathcal{L}_K\alpha=[d,i_K]\alpha = di_K\alpha-(-1)^{k-1}i_K \, d\alpha.</math> | ||
== इतिहास == | == इतिहास == | ||
1931 में, व्लाडिसलाव | 1931 में, व्लाडिसलाव स्लेबोडज़िंस्की ने एक नया अवकल प्रचालक प्रस्तावित किया, जिसे बाद में [[डेविड वैन डेंजिग]] ने लाई व्युत्पत्ति का नाम दिया, जिसे अदिश, सदिश, प्रदिश और एफाइन संबंधन पर उपयोजित किया जा सकता है और जो स्वसमाकृतिकता के समूहों के अध्ययन में एक शक्तिशाली उपकरण सिद्ध हुआ है। | ||
सामान्य ज्यामितीय वस्तुओं (अर्थात्, [[प्राकृतिक बंडल]] | सामान्य ज्यामितीय वस्तुओं (अर्थात्, [[प्राकृतिक बंडल|प्राकृतिक फाइबर बंडलों]] के खंड) के लाई व्युत्पन्न का अध्ययन ए. निजेनहुइस, वाई. ताशिरो और के. यानो द्वारा किया गया था। | ||
काफी लंबे समय से, गणितज्ञों के काम के संदर्भ के बिना, भौतिक विज्ञानी लाई व्युत्पन्न का उपयोग कर रहे थे। 1940 में, लियोन रोसेनफेल्ड<ref>{{cite journal |last=Rosenfeld |first=L. |year=1940 |title=Sur le tenseur d'impulsion-énergie |journal=Mémoires Acad. Roy. D. Belg. |volume=18 |issue=6 |pages=1–30 }}</ref>—और उससे पहले (1921 में<ref>Pauli's book on relativity.</ref>) [[वोल्फगैंग पाउली]]<ref>{{cite book |last=Pauli |first=W. |title=सापेक्षता के सिद्धांत|edition=First |year=1981 |publisher=Dover |location=New York |orig-year=1921 |isbn=978-0-486-64152-2 }} ''See section 23''</ref> | काफी लंबे समय से, गणितज्ञों के काम के संदर्भ के बिना, भौतिक विज्ञानी लाई व्युत्पन्न का उपयोग कर रहे थे। 1940 में, लियोन रोसेनफेल्ड<ref>{{cite journal |last=Rosenfeld |first=L. |year=1940 |title=Sur le tenseur d'impulsion-énergie |journal=Mémoires Acad. Roy. D. Belg. |volume=18 |issue=6 |pages=1–30 }}</ref>—और उससे पहले (1921 में<ref>Pauli's book on relativity.</ref>) [[वोल्फगैंग पाउली]]<ref>{{cite book |last=Pauli |first=W. |title=सापेक्षता के सिद्धांत|edition=First |year=1981 |publisher=Dover |location=New York |orig-year=1921 |isbn=978-0-486-64152-2 }} ''See section 23''</ref> ने एक ज्यामितीय वस्तु A के 'स्थानीय भिन्नता' <math>\delta^{\ast}A</math> को प्रस्तावित किया, जो सदिश क्षेत्र <math>X\,</math>द्वारा उत्पन्न निर्देशांकों के अतिसूक्ष्म परिवर्तन से प्रेरित है। प्रस्तावित एक ज्यामितीय वस्तु का <math>A\,</math> सदिश क्षेत्र द्वारा उत्पन्न समन्वयों के एक अतिसूक्ष्म परिवर्तन से प्रेरित है। कोई आसानी से सिद्ध कर सकता है कि उसका <math>\delta^{\ast}A</math> <math> - \mathcal{L}_X(A)\,</math>है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* सहपरिवर्ती व्युत्पन्न | * [[सहपरिवर्ती व्युत्पन्न]] | ||
* संबंधन (गणित) | * [[संबंधन (गणित)]] | ||
* फ्रोलिचर-निजेनहुइस कोष्ठक | * [[फ्रोलिचर-निजेनहुइस कोष्ठक]] | ||
* [[जियोडेसिक]] | * [[जियोडेसिक]] | ||
* | * [[घातक क्षेत्र]] | ||
* [[घातीय मानचित्र का व्युत्पन्न]] | * [[घातीय मानचित्र का व्युत्पन्न]] | ||
Line 288: | Line 286: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* {{springer|title=Lie derivative|id=p/l058560}} | * {{springer|title=Lie derivative|id=p/l058560}} | ||
{{Tensors}} | {{Tensors}} | ||
{{DEFAULTSORT:Lie Derivative}} | {{DEFAULTSORT:Lie Derivative}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Lie Derivative]] | ||
[[Category:Created On 24/03/2023]] | [[Category:Collapse templates|Lie Derivative]] | ||
[[Category:Created On 24/03/2023|Lie Derivative]] | |||
[[Category:Lua-based templates|Lie Derivative]] | |||
[[Category:Machine Translated Page|Lie Derivative]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Lie Derivative]] | |||
[[Category:Pages with script errors|Lie Derivative]] | |||
[[Category:Short description with empty Wikidata description|Lie Derivative]] | |||
[[Category:Sidebars with styles needing conversion|Lie Derivative]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi|Lie Derivative]] | |||
[[Category:Templates Vigyan Ready|Lie Derivative]] | |||
[[Category:Templates generating microformats|Lie Derivative]] | |||
[[Category:Templates that add a tracking category|Lie Derivative]] | |||
[[Category:Templates that are not mobile friendly|Lie Derivative]] | |||
[[Category:Templates that generate short descriptions|Lie Derivative]] | |||
[[Category:Templates using TemplateData|Lie Derivative]] | |||
[[Category:Wikipedia metatemplates|Lie Derivative]] | |||
[[Category:विभेदक ज्यामिति|Lie Derivative]] | |||
[[Category:विभेदक टोपोलॉजी|Lie Derivative]] | |||
[[Category:विभेदक संचालक|Lie Derivative]] | |||
[[Category:व्युत्पन्न के सामान्यीकरण|Lie Derivative]] |
Latest revision as of 15:57, 9 April 2023
अवकल ज्यामिति में, लाई व्युत्पन्न (/liː/ LEE), जिसका नाम व्लाडिसलाव स्लेबोडज़िंस्की द्वारा सोफस लाई के नाम पर रखा गया,[1][2] किसी अन्य सदिश क्षेत्र द्वारा परिभाषित प्रवाह के साथ एक प्रदिश क्षेत्र (अदिश फलन, सदिश क्षेत्र और एक-रूपों सहित) के परिवर्तन का मूल्यांकन करता है। यह परिवर्तन समन्वय अपरिवर्तनीय है और इसलिए लाई व्युत्पन्न को किसी भी भिन्न बहुसंख्यक पर परिभाषित किया गया है।
सदिश क्षेत्र के संबंध में फलन, प्रदिश क्षेत्र और रूपों को भिन्न किया जा सकता है। यदि T एक प्रदिश क्षेत्र है और X एक सदिश क्षेत्र है, तो X के संबंध में T का लाई व्युत्पन्न द्वारा निरूपित किया जाता है। अवकल संकारक अंतर्निहित बहुसंख्यक के प्रदिश क्षेत्रों के बीजगणित की व्युत्पत्ति है।
लाई व्युत्पन्न प्रदिश संकुचन के साथ संचार करता है और अवकल रूपों पर बाहरी व्युत्पन्न होता है।
यद्यपि विभेदक ज्यामिति में व्युत्पन्न लेने की कई अवधारणाएँ हैं, वे सभी सहमत हैं जब विभेदित किया जा रहा व्यंजक एक फलन या अदिश क्षेत्र है। इस प्रकार प्रकरण में ''लाई'' शब्द को अलग कर दिया गया है, और एक फलन के व्युत्पन्न के बारे में बात करते है।
एक अन्य सदिश क्षेत्र X के संबंध में सदिश क्षेत्र Y का लाई व्युत्पन्न X और Y के ''लाई कोष्ठक'' के रूप में जाना जाता है, और प्रायः के बदले [X,Y] को निरूपित किया जाता है। सदिश क्षेत्रों का स्थान इस लाई कोष्ठक के संबंध में एक लाई बीजगणित बनाता है। लाई व्युत्पन्न लाई बीजगणित के अनंत-आयामी लाई बीजगणित प्रतिनिधित्व का गठन करता है, पहचान के कारण
किसी भी सदिश क्षेत्र X और Y और किसी प्रदिश क्षेत्र T के लिए मान्य है।
M पर सदिश क्षेत्रों को प्रवाह के अत्यणु जनित्र (अर्थात भिन्नता के एक-आयामी समूह) के रूप में मानते हुए, लाई व्युत्पन्न प्रदिश क्षेत्र पर डिफियोमोर्फिज्म समूह के प्रतिनिधित्व का अंतर है, लाई समूह सिद्धांत में समूह प्रतिनिधित्व से जुड़े अत्यणु प्रतिनिधित्व के रूप में लाई बीजगणित अभ्यावेदन के अनुरूप है।
सामान्यीकरण स्पिनर क्षेत्रों, संबंधन के साथ फाइबर बंडलों और सदिश-मूल्यवान अवकल रूपों के लिए उपस्तिथ हैं।
प्रेरणा
एक सदिश क्षेत्र के संबंध में एक प्रदिश क्षेत्र के व्युत्पन्न को परिभाषित करने का एक 'नैवे' प्रयास, प्रदिश क्षेत्र के घटकों को लेना सदिश क्षेत्र के संबंध में प्रत्येक घटक के दिशात्मक व्युत्पन्न को लेना होगा। तथापि, यह परिभाषा अवांछनीय है क्योंकि यह समन्वय प्रणाली के परिवर्तनों के अंतर्गत अपरिवर्तनीय नहीं है, उदा. ध्रुवीय या गोलीय समन्वय में व्यक्त निष्क्रिय व्युत्पन्न कार्तीय समन्वय में घटकों के निष्क्रिय व्युत्पन्न से भिन्न होती है। एक अमूर्त बहुसंख्यक पर ऐसी परिभाषा अर्थहीन और गलत परिभाषित है। अवकल ज्यामितीय में, प्रदिश क्षेत्रों के विभेदीकरण की तीन मुख्य समन्वय स्वतंत्र धारणाएँ हैं: लाई व्युत्पन्न, संबंधन के संबंध में व्युत्पन्न, और पूरी तरह से प्रतिसममित (सहपरिवर्ती) प्रदिश या अवकल रूपों के बाहरी व्युत्पन्न है। एक संबंधन के संबंध में लाई व्युत्पन्न और व्युत्पन्न के मध्य मुख्य अवकल यह है कि स्पर्श सदिश के संबंध में प्रदिश क्षेत्र के बाद वाला व्युत्पन्न अच्छी तरह से परिभाषित है, भले ही यह निर्दिष्ट न हो कि स्पर्श सदिश को सदिश क्षेत्र में कैसे बढ़ाया जाए। तथापि एक संबंधन के लिए बहुसंख्यक पर एक अतिरिक्त ज्यामितीय संरचना (उदाहरण के लिए एक रीमानी मीट्रिक या सिर्फ एक अमूर्त संबंधन) की आवश्यकता होती है। इसके विपरीत, लाई व्युत्पन्न लेते समय, बहुसंख्यक पर कोई अतिरिक्त संरचना की आवश्यकता नहीं होती है, लेकिन एक स्पर्श सदिश के संबंध में प्रदिश क्षेत्र के लाई व्युत्पन्न के बारे में बात करना असंभव है, क्योंकि बिंदु p एक सदिश क्षेत्र X के संबंध में सदिश क्षेत्र के लाई व्युत्पन्न का मान केवल p पर ही नहीं, बल्कि p के आसपास में X के मान पर भी निर्भर करता है। अंत में, विभेदक रूपों के बाहरी व्युत्पन्न को किसी भी अतिरिक्त विकल्प की आवश्यकता नहीं होती है, लेकिन केवल अवकल रूपों (फलनों सहित) का अच्छी तरह से परिभाषित व्युत्पन्न है।
परिभाषा
लाई व्युत्पन्न को कई समान प्रकार से परिभाषित किया जा सकता है। वस्तुओ को सरल रखने के लिए, हम सामान्य प्रदिश की परिभाषा पर आगे बढ़ने से पहले, अदिश फलन और सदिश क्षेत्र पर लाई व्युत्पन्न अभिनय को परिभाषित करके आरंभ करते हैं।
(लाई) किसी फलन का व्युत्पन्न
एक फलन के व्युत्पन्न को परिभाषित करना बहुसंख्यक पर समस्याग्रस्त है क्योंकि अवकल भागफल निर्धारित नहीं किया जा सकता है जबकि विस्थापन अपरिभाषित है।
एक बिंदु पर एक सदिश क्षेत्र के संबंध में फलन का लाई व्युत्पन्न फलन है।
जहां वह बिंदु है जिस पर सदिश क्षेत्र द्वारा परिभाषित प्रवाह बिंदु को तात्क्षणिक पर मानचित्र करता है। के आसपास के क्षेत्र में, प्रणाली का अद्वितीय हल है।
के साथ स्पर्शी समष्टि में प्रथम-क्रम स्वायत्त (यानी स्वतंत्र समय) अवकल समीकरण है।
बहुसंख्यक और पर एक समन्वय मानचित्र के लिए, को स्पर्शरेखा रेखीय मानचित्र होने दें। अवकल समीकरणों की उपरोक्त प्रणाली एक प्रणाली के रूप में अधिक स्पष्ट रूप से लिखी गई है।
में, प्रारंभिक स्थिति होने के साथ है। यह आसानी से सत्यापित किया जा सकता है कि समाधान समन्वय मानचित्र के चयन से स्वतंत्र है।
समायोजन किसी फलन के लाई व्युत्पन्न को दिशात्मक व्युत्पन्न के साथ पहचानता है।
सदिश क्षेत्र का लाई व्युत्पन्न
यदि X और Y दोनों सदिश क्षेत्र हैं, तो X के संबंध में Y के लाई व्युत्पन्न को X और Y के लाई कोष्ठक के रूप में भी जाना जाता है, और कभी-कभी के रूप में दर्शाया जाता है। लाई कोष्ठक को परिभाषित करने के लिए कई दृष्टिकोण हैं, जिनमें से सभी समतुल्य हैं। हम यहां दो परिभाषाओं को सूचीबद्ध करते हैं, जो ऊपर दी गई सदिश क्षेत्र की दो परिभाषाओं के अनुरूप हैं:
- p पर X और Y का लाई कोष्ठक सूत्र द्वारा स्थानीय निर्देशांक में दिया गया है
- यदि X और Y दूसरी परिभाषा के अनुसार कई गुना M पर सदिश क्षेत्र हैं, तो संचालक सूत्र द्वारा परिभाषित है।
प्रदिश क्षेत्र का लाई व्युत्पन्न
प्रवाह के संदर्भ में परिभाषा
लाई व्युत्पन्न वह गति है जिसके साथ प्रवाह के कारण होने वाले समष्टि विरूपण के अंतर्गत प्रदिश क्षेत्र बदलता है।
औपचारिक रूप से, एक समतल बहुसंख्यक पर भिन्न (समय-स्वतंत्र) सदिश क्षेत्र , अनुमान इसी स्थानीय प्रवाह और पहचान मानचित्र है। क्योंकि एक स्थानीय भिन्नता है, प्रत्येक और के लिए, व्युत्क्रम
अवकल का विशिष्ट रूप से समरूपता तक विस्तार होता है।
स्पर्शी समष्टि और के प्रदिश बीजगणित के मध्य इसी तरह, पुलबैक मानचित्र
एक अद्वितीय प्रदिश बीजगणित समरूपता के लिए उत्थापन करता है।
परिणामस्वरूप, प्रत्येक के लिए, के समान संयोजकता का एक प्रदिश क्षेत्र होता है।
अगर एक - या -प्रकार प्रदिश क्षेत्र है, तो सदिश क्षेत्र के साथ का लाई व्युत्पन्न बिंदु पर परिभाषित किया गया है।
परिणामी प्रदिश क्षेत्र की संयोजकता के समान है।
बीजगणितीय परिभाषा
अब हम एक बीजगणितीय परिभाषा देते हैं। प्रदिश क्षेत्र के लाई व्युत्पन्न के लिए बीजगणितीय परिभाषा निम्नलिखित चार स्वयंसिद्धों से होती है:
- अभिगृहीत 1. किसी फलन का लाई व्युत्पन्न फलन के दिशात्मक अवकलज के समान होता है। यह तथ्य प्रायः सूत्र द्वारा व्यक्त किया जाता है।
- अभिगृहीत 2. लाई व्युत्पन्न लीबनिज के नियम के निम्नलिखित संस्करण का पालन करता है: किसी भी प्रदिश क्षेत्र S और T के लिए, हमारे पास है:
- अभिगृहीत 3. लाई व्युत्पन्न संकुचन के संबंध में लीबनिज नियम का पालन करता है:
- अभिगृहीत 4. लाई व्युत्पन्न फलनों पर बाहरी व्युत्पन्न के साथ परिवर्तित होता है:
यदि ये अभिगृहीत मान्य हैं, तो संबंध पर लाई व्युत्पन्न को परिपालन करने से पता चलता है कि
जो लाई कोष्ठक के लिए मानक परिभाषाओं में से एक है।
विभेदक रूप पर अभिनय करने वाला लाई व्युत्पन्न बाहरी गुणन के साथ आंतरिक गुणन का एंटीकोम्यूटेटर है। तो अगर α एक अवकल रूप है,
यह जाँच कर आसानी से अनुसरण करते है कि अभिव्यक्ति बाहरी व्युत्पन्न के साथ चलते है, एक व्युत्पत्ति (श्रेणीबद्ध व्युत्पत्तियों का एक एंटीकोम्यूटेटर होने के नाते) और फलनों पर सही काम करते है।
स्पष्ट रूप से, T को (p, q) प्रकार का एक प्रदिश क्षेत्र होने दें। T को सह स्पर्शरेखा बंडल T∗M के समतल वर्गों α1, α2, ..., αp का एक भिन्न बहुरेखीय मानचित्र होने पर विचार करें और स्पर्शरेखा बंडल TM के X1, X2, ..., Xq वर्गों T(α1, α2, ..., X1, X2, ...) को R में लिखा है।
विश्लेषणात्मक और बीजगणितीय परिभाषाओं को विभेदीकरण के लिए ज़ारी रखना और लीबनिज़ नियम का उपयोग करके समतुल्य सिद्ध किया जा सकता है। लाई व्युत्पन्न संकुचन के साथ रूपान्तरित करता है।
एक अवकल रूप का लाई व्युत्पन्न
प्रदिश क्षेत्रों का एक विशेष रूप से महत्वपूर्ण वर्ग विभेदक रूपों का वर्ग है। विभेदक रूपों के स्थान पर लाई व्युत्पन्न का प्रतिबंध बाहरी व्युत्पन्न निकटता से संबंधित है। लाई व्युत्पन्न और बाहरी व्युत्पन्न दोनों भिन्न प्रकार से व्युत्पन्न के विचार को ग्रहण करने का प्रयास करते हैं। एक आंतरिक गुणन के विचार को प्रस्तुत करके भिन्नता को दूर किया जा सकता है, जिसके बाद संबंध एक पहचान के रूप में सामने आते हैं जिसे कार्टन के सूत्र के रूप में जाना जाता है। कार्टन के सूत्र का उपयोग अवकल रूपों के स्थान पर लाई व्युत्पन्न की परिभाषा के रूप में भी किया जा सकता है।
M को बहुसंख्यक और X को M पर एक सदिश क्षेत्र होने दें। मान लीजिए एक (k + 1)-रूप है, अर्थात प्रत्येक के लिए, वास्तविक संख्याओं के लिए से एक वैकल्पिक बहुरेखीय मानचित्र है। X और ω का आंतरिक गुणन k- रूप के रूप में परिभाषित है।
अवकल रूप को X के साथ ω का संकुचन भी कहा जाता है, और
एक -प्रति व्युत्पत्ति अवकलन है जहाँ अवकल रूपों पर वैज गुणन है। अर्थात्, R-रैखिक है, और
और η के लिए एक और अवकल रूप है। इसके अलावा, एक फलन के लिए, अर्थात, M पर एक वास्तविक- या जटिल-मूल्यवान फलन, एक के पास है
जहाँ f और X के गुणनफल को दर्शाता है। बाहरी व्युत्पन्न और लाई व्युत्पन्न के मध्य संबंध को संक्षेप में निम्नानुसार किया जा सकता है। सबसे पहले, सदिश क्षेत्र X के संबंध में एक फलन f का लाई व्युत्पन्न दिशात्मक व्युत्पन्न X(f) के समान है, यह X के साथ f के बाहरी व्युत्पन्न के संकुचन के समान भी है:
एक सामान्य अवकल रूप के लिए, लाई व्युत्पन्न इसी तरह एक संकुचन है, X में भिन्नता को ध्यान में रखते हुए:
इस पहचान को कार्टन सूत्र, कार्टन समरूपता सूत्र या कार्टन के मैजिक सूत्र के रूप में जाना जाता है। विवरण के लिए आंतरिक गुणन देखें। कार्टन सूत्र का उपयोग विभेदक रूप के लाई व्युत्पन्न की परिभाषा के रूप में किया जा सकता है। कार्टन का सूत्र विशेष रूप से दर्शाता है कि
लाई व्युत्पन्न भी संबंध को संतुष्ट करता है
समन्वय अभिव्यक्ति
स्थानीय समन्वय संकेतन में, एक प्रकार (r, s) प्रदिश क्षेत्र के लिए, के साथ लाई व्युत्पन्न है।
यहाँ, संकेतन का अर्थ समन्वय के संबंध में आंशिक व्युत्पन्न लेना है। वैकल्पिक रूप से, यदि हम टोशन-मुक्त संबंधन (उदाहरण के लिए, लेवी सिविटा संबंधन) का उपयोग कर रहे हैं, फिर आंशिक व्युत्पन्न को सहसंयोजक व्युत्पन्न के साथ प्रतिस्थापित किया जा सकता है जिसका अर्थ है को प्रतिस्थापित करने के साथ (संकेतन के दुरुपयोग से) जहां क्रिस्टोफेल गुणांक हैं।
एक प्रदिश का लाई व्युत्पन्न उसी प्रकार का एक और प्रदिश है, अर्थात, अभिव्यक्ति में भिन्न शब्द समन्वय पद्धति के चयन पर निर्भर करते हैं, समग्र रूप से अभिव्यक्ति एक प्रदिश में परिणत होती है।
जो किसी भी समन्वय प्रणाली से स्वतंत्र है और के समान प्रकार है।
परिभाषा को आगे प्रदिश घनत्वों तक बढ़ाया जा सकता है। यदि T कुछ वास्तविक संख्या मूल्यवान भार w (उदाहरण के लिए भार 1 का आयतन घनत्व) का प्रदिश घनत्व है, तो इसका लाई व्युत्पन्न उसी प्रकार और भार का एक प्रदिश घनत्व है।
अभिव्यक्ति के अंत में नए शब्द पर ध्यान दें।
एक रैखिक संबंधन के लिए , के साथ लाई व्युत्पन्न है।[3]
उदाहरण
स्पष्टता के लिए अब हम निम्नलिखित उदाहरण स्थानीय समन्वय संकेतन में दिखाते हैं।
एक अदिश क्षेत्र के लिए हमारे पास है:
- .
इसलिए अदिश क्षेत्र और सदिश क्षेत्र के लिए संबंधित लाई व्युत्पन्न बन जाता है।
- .
इसलिए एक संवहन क्षेत्र के लिए, अर्थात, एक अवकल रूप, हमारे पास है:
अंतिम अभिव्यक्ति का गुणांक लाई व्युत्पन्न की स्थानीय समन्वय अभिव्यक्ति है।
एक सहसंयोजक श्रेणी 2 प्रदिश क्षेत्र के लिए हमारे पास है:
गुण
लाई व्युत्पन्न में कई गुण होते हैं। बता दें कि बहुसंख्यक M पर परिभाषित फलनों का बीजगणित है। फिर
बीजगणित पर एक व्युत्पत्ति है। अर्थात, R-रैखिक है और
इसी प्रकार, यह पर एक व्युत्पत्ति है जहां M पर सदिश क्षेत्रों का समुच्चय है (cf. लेख से प्रमेय 6: निचिता, FF एकीकरण सिद्धांत: नए परिणाम और उदाहरण। अभिगृहीत 2019, 8, 60):
जिसे समतुल्य संकेतन में भी लिखा जा सकता है
जहां प्रदिश गुणन प्रतीक इस तथ्य पर जोर देने के लिए उपयोग किया जाता है कि एक सदिश क्षेत्र के फलन के गुणनफल को संपूर्ण बहुसंख्यक पर ले जाया जा रहा है।
अतिरिक्त गुण लाई कोष्ठक के अनुरूप हैं। इस प्रकार, उदाहरण के लिए, एक सदिश क्षेत्र पर एक व्युत्पत्ति के रूप में माना जाता है,
उपरोक्त को केवल जैकोबी पहचान के रूप में प्राप्त किया जाता है। इस प्रकार, एक का महत्वपूर्ण परिणाम है कि M पर सदिश क्षेत्रों का स्थान, जो लाई कोष्ठक से सुसज्जित है, एक लाई बीजगणित बनाता है।
अवकल रूपों पर फलन करते समय लाई व्युत्पन्न में भी महत्वपूर्ण गुण होते हैं। चलो α और β M पर दो भिन्न रूप हैं, और X और Y को दो सदिश क्षेत्र होने दें। तब
- जहां i ऊपर परिभाषित आंतरिक गुणन को दर्शाता है और यह स्पष्ट है कि क्या [·,·] दिक्परिवर्तक या सदिश क्षेत्रों के लाई कोष्ठक को दर्शाता है।
सामान्यीकरण
लाई व्युत्पन्न के विभिन्न सामान्यीकरण अवकल ज्यामिति में महत्वपूर्ण भूमिका निभाते हैं।
लाई एक स्पिनर क्षेत्र का व्युत्पन्न है
सामान्य समष्टि समय सदिश क्षेत्र के साथ स्पिनरों के लाई व्युत्पन्न के लिए एक परिभाषा, एक सामान्य (छद्म) रीमैनियन बहुसंख्यक पर आवश्यक रूप से घातक नहीं, पहले से ही 1971 में यवेटे कोस्मान-श्वार्जबैक द्वारा प्रस्तावित की गई थी।[4] बाद में, इसे एक ज्यामितीय संरचना प्रदान किया गया, जो प्रमापी प्राकृतिक बंडलों के स्पष्ट संदर्भ में फाइबर बंडलों पर लाई व्युत्पन्न के सामान्य संरचना के अंतर्गत उसके तदर्थ निदान को सही सिद्ध करता है, जो (प्रमापी-सहसंयोजक) क्षेत्र सिद्धांतों के लिए सबसे उपयुक्त क्षेत्र बन जाता है।।[5] [6]
किसी दिए गए स्पिन बहुसंख्यक में, जो कि रिमेंनियन बहुसंख्यक में है एक स्पिन संरचना को स्वीकार करते हुए, एक स्पिनर क्षेत्र के लाई व्युत्पन्न को पहली बार परिभाषित करके परिभाषित किया जा सकता है, जो 1963 में दिए गए आंद्रे लिचनरोविक्ज़ की स्थानीय अभिव्यक्ति के माध्यम से अत्यणु आइसोमेट्रीज़ (किलिंग सदिश क्षेत्र) के संबंध में परिभाषित किया गया था:[7]
जहाँ , जैसा कि को एक घातक सदिश क्षेत्र माना जाता है, और डिराक मेट्रिसेस हैं।
एक सामान्य सदिश क्षेत्र के लिए लिचनरोविज़ की स्थानीय अभिव्यक्ति को बनाए रखते हुए लिचनरोविज़ की परिभाषा को सभी सदिश क्षेत्रों (सामान्य अत्यणु रूपांतरण) तक विस्तारित करना संभव है, लेकिन स्पष्ट रूप से केवल का प्रतिसममित भाग लेना हैं। [4]अधिक स्पष्ट रूप से, 1972 में दी गई कोसमैन की स्थानीय अभिव्यक्ति है:[4]
जहाँ दिक्परिवर्तक है, बाहरी व्युत्पन्न है, मेट्रिक के अंतर्गत के अनुरूप दोहरी 1 रूप है (अर्थात कम सूचकांक के साथ) और क्लिफोर्ड गुणन है।
यह ध्यान देने योग्य है कि स्पिनर लाई व्युत्पन्न मीट्रिक से स्वतंत्र है, और इसलिए संबंधन का भी है। यह कोस्मान की स्थानीय अभिव्यक्ति के दाहिने हाथ की ओर से स्पष्ट नहीं है, क्योंकि दाएं हाथ की ओर स्पिन संबंधन (सहसंयोजक व्युत्पन्न) के माध्यम से मीट्रिक पर निर्भर करता है, सदिश क्षेत्रों का दोहरीकरण (सूचकांकों को कम करना) और क्लिफर्ड स्पिनर बंडल पर गुणन है। ऐसा प्रकरण नहीं है: कोस्मान की स्थानीय अभिव्यक्ति के दाईं ओर की मात्राएँ इस तरह संयोजित होती हैं कि सभी मीट्रिक और संबंधन पर निर्भर नियम को निरसित कर दिया जा सके।
स्पिनर क्षेत्र के लाई व्युत्पन्न की लंबे-विवाद वाले अवधारणा की बेहतर समझ प्राप्त करने के लिए मूल लेख का उल्लेख किया जा सकता है,[8][9] जहां स्पिनर क्षेत्रों के लाई व्युत्पन्न की परिभाषा को फाइबर बंडलों के अनुभागों के लाई व्युत्पन्न के सिद्धांत के अधिक सामान्य संरचना में रखा गया है और वाई. कोसमैन द्वारा स्पिनर प्रकरण के लिए प्रत्यक्ष दृष्टिकोण को प्राकृतिक बंडलों के रूप में गेज करने के लिए सामान्यीकृत किया गया है। कोसमैन लिफ्ट नामक एक नई ज्यामितीय अवधारणा है।
सहपरिवर्ती लाई व्युत्पन्न
यदि हमारे पास संरचना समूह के रूप में G के साथ बहुसंख्यक M पर एक प्रमुख बंडल है, और हम X को मुख्य बंडल के स्पर्शी समष्टि के खंड के रूप में एक सहसंयोजक सदिश क्षेत्र के रूप में चयन करते हैं (अर्थात इसमें क्षैतिज और ऊर्ध्वाधर घटक हैं), तो सहपरिवर्ती लाई व्युत्पन्न मुख्य बंडल पर X के संबंध में सिर्फ लाई व्युत्पन्न है।
अब, अगर हमें M के ऊपर एक सदिश क्षेत्र Y दिया गया है (लेकिन प्रमुख बंडल नहीं है) लेकिन हमारे पास मुख्य बंडल पर भी एक संबंध है, तो हम एक सदिश क्षेत्र X को मुख्य बंडल के ऊपर परिभाषित कर सकते हैं कि इसका क्षैतिज घटक Y से सामान होता है और इसका ऊर्ध्वाधर घटक संबंधन से सहमत है। यह सहपरिवर्ती लाई व्युत्पन्न है।
अधिक विवरण के लिए संबंधन प्रपत्र देखें।
निजेनहुइस-लाई व्युत्पन्न
एक अन्य सामान्यीकरण, अल्बर्ट न्येनहुइस के कारण, स्पर्शरेखा बंडल में मूल्यों के साथ अंतर रूपों के बंडल Ωk(M, TM) के किसी भी खंड के साथ एक अवकल रूप के लाई व्युत्पन्न को परिभाषित करने की अनुमति देती है। अगर ∈ Ωk(M, TM) और α एक अवकल p-रूप है, तो K और α के आंतरिक गुणनफल iKα को परिभाषित करना संभव है। निजेनहुइस-लाई व्युत्पन्न तब आंतरिक गुणनफल और बाहरी व्युत्पन्न का एंटीकोम्यूटेटर है:
इतिहास
1931 में, व्लाडिसलाव स्लेबोडज़िंस्की ने एक नया अवकल प्रचालक प्रस्तावित किया, जिसे बाद में डेविड वैन डेंजिग ने लाई व्युत्पत्ति का नाम दिया, जिसे अदिश, सदिश, प्रदिश और एफाइन संबंधन पर उपयोजित किया जा सकता है और जो स्वसमाकृतिकता के समूहों के अध्ययन में एक शक्तिशाली उपकरण सिद्ध हुआ है।
सामान्य ज्यामितीय वस्तुओं (अर्थात्, प्राकृतिक फाइबर बंडलों के खंड) के लाई व्युत्पन्न का अध्ययन ए. निजेनहुइस, वाई. ताशिरो और के. यानो द्वारा किया गया था।
काफी लंबे समय से, गणितज्ञों के काम के संदर्भ के बिना, भौतिक विज्ञानी लाई व्युत्पन्न का उपयोग कर रहे थे। 1940 में, लियोन रोसेनफेल्ड[10]—और उससे पहले (1921 में[11]) वोल्फगैंग पाउली[12] ने एक ज्यामितीय वस्तु A के 'स्थानीय भिन्नता' को प्रस्तावित किया, जो सदिश क्षेत्र द्वारा उत्पन्न निर्देशांकों के अतिसूक्ष्म परिवर्तन से प्रेरित है। प्रस्तावित एक ज्यामितीय वस्तु का सदिश क्षेत्र द्वारा उत्पन्न समन्वयों के एक अतिसूक्ष्म परिवर्तन से प्रेरित है। कोई आसानी से सिद्ध कर सकता है कि उसका है।
यह भी देखें
- सहपरिवर्ती व्युत्पन्न
- संबंधन (गणित)
- फ्रोलिचर-निजेनहुइस कोष्ठक
- जियोडेसिक
- घातक क्षेत्र
- घातीय मानचित्र का व्युत्पन्न
टिप्पणियाँ
- ↑ Trautman, A. (2008). "Remarks on the history of the notion of Lie differentiation". In Krupková, O.; Saunders, D. J. (eds.). Variations, Geometry and Physics: In honour of Demeter Krupka's sixty-fifth birthday. New York: Nova Science. pp. 297–302. ISBN 978-1-60456-920-9.
- ↑ Ślebodziński, W. (1931). "Sur les équations de Hamilton". Bull. Acad. Roy. D. Belg. 17 (5): 864–870.
- ↑ Yano, K. (1957). The Theory of Lie Derivatives and its Applications. North-Holland. p. 8. ISBN 978-0-7204-2104-0.
- ↑ 4.0 4.1 4.2 Kosmann, Y. (1971). "Dérivées de Lie des spineurs". Ann. Mat. Pura Appl. 91 (4): 317–395. doi:10.1007/BF02428822. S2CID 121026516.
- ↑ Trautman, A. (1972). "Invariance of Lagrangian Systems". In O'Raifeartaigh, L. (ed.). General Relativity: Papers in honour of J. L. Synge. Oxford: Clarenden Press. p. 85. ISBN 0-19-851126-4.
- ↑ Fatibene, L.; Francaviglia, M. (2003). शास्त्रीय क्षेत्र सिद्धांतों के लिए प्राकृतिक और गेज प्राकृतिक औपचारिकता. Dordrecht: Kluwer Academic.
- ↑ Lichnerowicz, A. (1963). "हार्मोनिक स्पिनर". C. R. Acad. Sci. Paris. 257: 7–9.
- ↑ Fatibene, L.; Ferraris, M.; Francaviglia, M.; Godina, M. (1996). "A geometric definition of Lie derivative for Spinor Fields". In Janyska, J.; Kolář, I.; Slovák, J. (eds.). Proceedings of the 6th International Conference on Differential Geometry and Applications, August 28th–September 1st 1995 (Brno, Czech Republic). Brno: Masaryk University. pp. 549–558. arXiv:gr-qc/9608003v1. Bibcode:1996gr.qc.....8003F. ISBN 80-210-1369-9.
- ↑ Godina, M.; Matteucci, P. (2003). "रिडक्टिव जी-स्ट्रक्चर्स और लाई डेरिवेटिव". Journal of Geometry and Physics. 47 (1): 66–86. arXiv:math/0201235. Bibcode:2003JGP....47...66G. doi:10.1016/S0393-0440(02)00174-2. S2CID 16408289.
- ↑ Rosenfeld, L. (1940). "Sur le tenseur d'impulsion-énergie". Mémoires Acad. Roy. D. Belg. 18 (6): 1–30.
- ↑ Pauli's book on relativity.
- ↑ Pauli, W. (1981) [1921]. सापेक्षता के सिद्धांत (First ed.). New York: Dover. ISBN 978-0-486-64152-2. See section 23
संदर्भ
- Abraham, Ralph; Marsden, Jerrold E. (1978). Foundations of Mechanics. London: Benjamin-Cummings. ISBN 0-8053-0102-X. See section 2.2.
- Bleecker, David (1981). Gauge Theory and Variational Principles. Addison-Wesley. ISBN 0-201-10096-7. See Chapter 0.
- Jost, Jürgen (2002). Riemannian Geometry and Geometric Analysis. Berlin: Springer. ISBN 3-540-42627-2. See section 1.6.
- Kolář, I.; Michor, P.; Slovák, J. (1993). Natural operations in differential geometry. Springer-Verlag. ISBN 9783662029503. Extensive discussion of Lie brackets, and the general theory of Lie derivatives.
- Lang, S. (1995). Differential and Riemannian manifolds. Springer-Verlag. ISBN 978-0-387-94338-1. For generalizations to infinite dimensions.
- Lang, S. (1999). Fundamentals of Differential Geometry. Springer-Verlag. ISBN 978-0-387-98593-0. For generalizations to infinite dimensions.
- Yano, K. (1957). The Theory of Lie Derivatives and its Applications. North-Holland. ISBN 978-0-7204-2104-0. Classical approach using coordinates.
बाहरी संबंध
- "Lie derivative", Encyclopedia of Mathematics, EMS Press, 2001 [1994]