टेंसर संकुचन: Difference between revisions

From Vigyanwiki
(Created page with "{{for|the module-theoretic construction of tensor fields and their contractions|tensor product of modules#Example from differential geometry: tensor field}} बहुरे...")
 
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{for|the module-theoretic construction of tensor fields and their contractions|tensor product of modules#Example from differential geometry: tensor field}}
[[बहुरेखीय बीजगणित]] में, '''टेंसर संकुचन''' टेंसर पर ऑपरेशन है जो परिमित-[[आयाम|आयामी]] सदिश समष्टि और इसकी [[दोहरी वेक्टर अंतरिक्ष|दोहरी]] की [[प्राकृतिक जोड़ी]] से उत्पन्न होता है। घटकों में, यह टेंसर (एस) के स्केलर घटकों के उत्पादों के योग के रूप में व्यक्त किया जाता है, जो डमी सूचकांक के लिए [[योग सम्मेलन]] को प्रारम्भ करने के कारण होता है जो अभिव्यक्ति में होते हैं। मिश्रित टेंसर का संकुचन तब होता है जब टेंसर के शाब्दिक सूचकांकों (एक सबस्क्रिप्ट, दूसरा सुपरस्क्रिप्ट) के बराबर स्थित की जाती है और इसका योग किया जाता है। [[आइंस्टीन संकेतन]] में इस योग को अंकन में बनाया गया है। परिणाम 2 से घटाए गए क्रम के साथ और टेंसर है।
 
[[बहुरेखीय बीजगणित]] में, एक [[टेन्सर]] संकुचन एक टेन्सर पर एक ऑपरेशन है जो एक परिमित-[[आयाम]]ी वेक्टर अंतरिक्ष और इसकी [[दोहरी वेक्टर अंतरिक्ष]] की [[प्राकृतिक जोड़ी]] से उत्पन्न होता है। घटकों में, यह टेन्सर (एस) के स्केलर घटकों के उत्पादों के योग के रूप में व्यक्त किया जाता है, जो डमी इंडेक्स की एक जोड़ी के लिए [[योग सम्मेलन]] को लागू करने के कारण होता है जो एक अभिव्यक्ति में एक दूसरे से बंधे होते हैं। एकल मिश्रित टेन्सर का संकुचन तब होता है जब टेन्सर के शाब्दिक सूचकांकों (एक सबस्क्रिप्ट, दूसरा सुपरस्क्रिप्ट) की एक जोड़ी एक दूसरे के बराबर सेट की जाती है और इसका योग किया जाता है। [[आइंस्टीन संकेतन]] में इस योग को नोटेशन में बनाया गया है। परिणाम 2 से घटाए गए क्रम के साथ एक और टेन्सर है।


टेंसर संकुचन को [[ट्रेस (रैखिक बीजगणित)]] के सामान्यीकरण के रूप में देखा जा सकता है।
टेंसर संकुचन को [[ट्रेस (रैखिक बीजगणित)]] के सामान्यीकरण के रूप में देखा जा सकता है।


== सार सूत्रीकरण ==
== सार सूत्रीकरण ==
मान लीजिए कि V [[क्षेत्र (गणित)]] k पर एक सदिश समष्टि है। संकुचन ऑपरेशन का मूल, और सबसे सरल मामला, वी की [[दोहरी जगह]] वी के साथ [[प्राकृतिक परिवर्तन]] जोड़ी है<sup>∗</sup>. युग्मन टेंसर के घटक-मुक्त उपचार से [[रैखिक परिवर्तन]] है # परिभाषा: इन दो स्थानों के वेक्टर रिक्त स्थान का टेन्सर उत्पाद k:
मान लीजिए कि V [[क्षेत्र (गणित)]] k पर सदिश समष्टि है। संकुचन ऑपरेशन का मूल, और सबसे सरल स्थितियां ,''V''  की [[दोहरी जगह|दोहरी  समष्टि]] ''V<sup>∗</sup>'' के साथ [[प्राकृतिक परिवर्तन]] जोड़ी है। युग्मन टेंसर इन दो समष्टिों के टेंसर उत्पाद से क्षेत्र k में  [[रैखिक परिवर्तन]] है  


: <math> C : V \otimes V^* \rightarrow k </math>
: <math> C : V \otimes V^* \rightarrow k </math>
Line 12: Line 10:


: <math> \langle f, v \rangle = f(v) </math>
: <math> \langle f, v \rangle = f(v) </math>
जहाँ f, V में है<sup>∗</sup> और v, V में है। मानचित्र C प्रकार के टेन्सर पर संकुचन संचालन को परिभाषित करता है {{nowrap|(1, 1)}}, जो का एक तत्व है <math>V^* \otimes V </math>. ध्यान दें कि परिणाम एक [[अदिश (गणित)]] (k का एक तत्व) है। के बीच प्राकृतिक समरूपता का उपयोग करना <math>V \otimes V^* </math> और वी से वी तक रैखिक परिवर्तनों का स्थान,<ref name="natural iso">Let {{nowrap|L(''V'', ''V'')}} be the space of linear transformations from ''V'' to ''V''. Then the natural map
जहाँ f, ''V''<sup>∗</sup> में है और v, V में है। मानचित्र Cप्रकार {{nowrap|(1, 1)}} के टेंसर पर संकुचन संचालन को परिभाषित करता है , जो तत्व है <math>V^* \otimes V </math> ध्यान दें कि परिणाम [[अदिश (गणित)]] (k का तत्व) है। ''k'' मध्य प्राकृतिक समरूपता का उपयोग करना <math>V \otimes V^* </math> और V से V तक रैखिक परिवर्तनों का समष्टि,<ref name="natural iso">Let {{nowrap|L(''V'', ''V'')}} be the space of linear transformations from ''V'' to ''V''. Then the natural map


: <math>V^* \otimes V \rightarrow L(V,V) </math>
:<math>V^* \otimes V \rightarrow L(V,V) </math>


is defined by
is defined by


: <math>f \otimes v \mapsto g ,</math>
:<math>f \otimes v \mapsto g ,</math>


where {{nowrap|1=''g''(''w'') = ''f''(''w'')''v''}}. Suppose that ''V'' is finite-dimensional. If {''v''<sub>''i''</sub>} is a basis of ''V'' and {''f''<sup>''i''</sup>} is the corresponding dual basis, then <math>f^i \otimes v_j</math> maps to the transformation whose matrix in this basis has only one nonzero entry, a 1 in the ''i'',''j'' position. This shows that the map is an isomorphism.</ref> एक ट्रेस (रैखिक बीजगणित) की आधार-मुक्त परिभाषा प्राप्त करता है।
where {{nowrap|1=''g''(''w'') = ''f''(''w'')''v''}}. Suppose that ''V'' is finite-dimensional. If {''v''<sub>''i''</sub>} is a basis of ''V'' and {''f''<sup>''i''</sup>} is the corresponding dual basis, then <math>f^i \otimes v_j</math> maps to the transformation whose matrix in this basis has only one nonzero entry, a 1 in the ''i'',''j'' position. This shows that the map is an isomorphism.</ref> ट्रेस (रैखिक बीजगणित) की आधार-स्वतंत्र परिभाषा प्राप्त करता है।


सामान्य तौर पर, प्रकार का एक टेंसर {{nowrap|(''m'', ''n'')}} (साथ {{nowrap|''m'' ≥ 1}} और {{nowrap|''n'' ≥ 1}}) सदिश स्थान का एक तत्व है
सामान्यतः, प्रकार {{nowrap|(''m'', ''n'')}} ( {{nowrap|''m'' ≥ 1}} और {{nowrap|''n'' ≥ 1}}) का टेंसर सदिश समष्टि का तत्व है


: <math>V \otimes \cdots \otimes V \otimes V^{*} \otimes \cdots \otimes V^{*}</math>
: <math>V \otimes \cdots \otimes V \otimes V^{*} \otimes \cdots \otimes V^{*}</math>
(जहां एम कारक वी और एन कारक वी हैं<sup>∗</sup>).<ref name="fulton_harris">{{cite book |first=William |last=Fulton |author-link=William Fulton (mathematician) |first2=Joe |last2=Harris |author-link2=Joe Harris (mathematician) |title=प्रतिनिधित्व सिद्धांत: एक पहला कोर्स|series=[[Graduate Texts in Mathematics|GTM]] |volume=129 |publisher=Springer |location=New York |year=1991 |isbn=0-387-97495-4 |pages=471–476 }}</ref><ref name="warner">{{cite book |first=Frank |last=Warner |title=डिफरेंशियल मैनिफोल्ड्स और लाई ग्रुप्स की नींव|series=[[Graduate Texts in Mathematics|GTM]] |volume=94 |publisher=Springer |location=New York |year=1993 |isbn=0-387-90894-3 |pages=54–56 }}</ref> kवें V कारक और lवें V के लिए प्राकृतिक युग्मन लागू करना<sup>∗</sup> कारक, और अन्य सभी कारकों पर पहचान का उपयोग करते हुए, (k, l) संकुचन संक्रिया को परिभाषित करता है, जो एक रेखीय मानचित्र है जो प्रकार का टेन्सर उत्पन्न करता है {{nowrap|(''m'' − 1, ''n'' − 1)}}.<ref name="fulton_harris"/>के साथ समानता से {{nowrap|(1, 1)}} केस, सामान्य संकुचन ऑपरेशन को कभी-कभी ट्रेस कहा जाता है।
(जहां ''m'' कारक ''V''  और ''n'' कारक ''V''  हैं<sup>∗</sup>).<ref name="fulton_harris">{{cite book |first=William |last=Fulton |author-link=William Fulton (mathematician) |first2=Joe |last2=Harris |author-link2=Joe Harris (mathematician) |title=प्रतिनिधित्व सिद्धांत: एक पहला कोर्स|series=[[Graduate Texts in Mathematics|GTM]] |volume=129 |publisher=Springer |location=New York |year=1991 |isbn=0-387-97495-4 |pages=471–476 }}</ref><ref name="warner">{{cite book |first=Frank |last=Warner |title=डिफरेंशियल मैनिफोल्ड्स और लाई ग्रुप्स की नींव|series=[[Graduate Texts in Mathematics|GTM]] |volume=94 |publisher=Springer |location=New York |year=1993 |isbn=0-387-90894-3 |pages=54–56 }}</ref> k वें  V कारक और lवें ''V<sup>∗</sup> कारक''  के लिए प्राकृतिक युग्मन प्रारम्भ करना, और अन्य सभी कारकों पर पहचान का उपयोग करते हुए, (k, l) संकुचन संक्रिया को परिभाषित करता है, जो रेखीय मानचित्र है जो प्रकार {{nowrap|(''m'' − 1, ''n'' − 1)}} का टेंसर उत्पन्न करता है .<ref name="fulton_harris"/>(1, 1) स्थिति के अनुरूप, सामान्य संकुचन ऑपरेशन को कभी-कभी ट्रेस कहा जाता है।


== इंडेक्स नोटेशन में संकुचन ==
== सूचकांक अंकन में संकुचन ==


[[टेंसर इंडेक्स नोटेशन]] में, वेक्टर और डुअल वेक्टर के मूल संकुचन को किसके द्वारा दर्शाया जाता है
[[टेंसर इंडेक्स नोटेशन|टेंसर सूचकांक अंकन]] में, वेक्टर और डुअल वेक्टर के मूल संकुचन को किसके द्वारा दर्शाया जाता है


: <math> \tilde f (\vec v) = f_\gamma v^\gamma </math>
: <math> \tilde f (\vec v) = f_\gamma v^\gamma </math>
जो स्पष्ट समन्वय योग के लिए आशुलिपि है<ref name="physics">In physics (and sometimes in mathematics), indices often start with zero instead of one. In four-dimensional spacetime, indices run from 0 to 3.</ref>
जो स्पष्ट समन्वय योग के लिए आशुलिपि है<ref name="physics">In physics (and sometimes in mathematics), indices often start with zero instead of one. In four-dimensional spacetime, indices run from 0 to 3.</ref>
: <math> f_\gamma v^\gamma = f_1 v^1 + f_2 v^2 + \cdots + f_n v^n </math>
: <math> f_\gamma v^\gamma = f_1 v^1 + f_2 v^2 + \cdots + f_n v^n </math>
(कहाँ {{math|''v''<sup>''i''</sup>}} के घटक हैं {{math|''v''}} एक विशेष आधार पर और {{math|''f''<sub>''i''</sub>}} के घटक हैं {{math|''f''}} इसी दोहरे आधार पर)।
(जहाँ {{math|''v''<sup>''i''</sup>}} विशेष आधार पर {{math|''v''}} और {{math|''f''<sub>''i''</sub>}} के घटक हैं इसी दोहरे आधार  में  {{math|''f''}} के घटक हैं  )।


चूंकि एक सामान्य मिश्रित [[डायडिक टेंसर]] फॉर्म के विघटनीय टेन्सर का एक रैखिक संयोजन है <math>f \otimes v</math>, डायडिक मामले के लिए स्पष्ट सूत्र इस प्रकार है: चलो
चूंकि सामान्य मिश्रित [[डायडिक टेंसर]] प्रपत्र के विघटनीय टेंसर का रैखिक संयोजन है <math>f \otimes v</math>, डायडिक स्थिति के लिए स्पष्ट सूत्र इस प्रकार है: मान लीजिए


: <math> \mathbf{T} = T_{j}^i \mathbf{e}_i \otimes \mathbf{e}^j </math>
: <math> \mathbf{T} = T_{j}^i \mathbf{e}_i \otimes \mathbf{e}^j </math>
एक मिश्रित डायाडिक टेंसर बनें। तब उसका संकुचन होता है
मिश्रित डायाडिक टेंसर बनें। तब उसका संकुचन होता है


: <math> T_{j}^i  \mathbf{e}_i \cdot \mathbf{e}^j = T_{j}^i  \delta_i {}^j
: <math> T_{j}^i  \mathbf{e}_i \cdot \mathbf{e}^j = T_{j}^i  \delta_i {}^j
= T_{j}^j= T_{1}^1 + \cdots + T_{n}^n </math>.
= T_{j}^j= T_{1}^1 + \cdots + T_{n}^n </math>.


एक सामान्य संकुचन को एक सहप्रसरण और सदिश सूचकांक के प्रतिप्रसरण और एक सहप्रसरण और सदिश सूचकांक के प्रतिप्रसरण को एक ही अक्षर से लेबल करके निरूपित किया जाता है, उस सूचकांक पर योग योग सम्मेलन द्वारा निहित किया जा रहा है। परिणामी अनुबंधित टेन्सर मूल टेन्सर के शेष सूचकांकों को इनहेरिट करता है। उदाहरण के लिए, टाइप (1,1) का एक नया टेंसर यू बनाने के लिए दूसरे और तीसरे इंडेक्स पर टाइप (2,2) के टेंसर टी को अनुबंधित करना इस प्रकार लिखा जाता है
सामान्य संकुचन सहसंयोजक सूचकांक और प्रतिपरिवर्ती सूचकांक को एक ही वर्ण से लेबलिंग करके निरूपित किया जाता है, उस सूचकांक पर योग योग सम्मेलन द्वारा निहित किया जा रहा है। परिणामी अनुबंधित टेंसर मूल टेंसर के शेष सूचकांकों को इनहेरिट करता है। उदाहरण के लिए, प्ररूप (1,1) का नवीन टेंसर ''U'' बनाने के लिए दूसरे और तीसरे सूचकांक पर प्ररूप (2,2) के टेंसर ''T''  को अनुबंधित करना इस प्रकार लिखा जाता है


: <math> T^{ab} {}_{bc} = \sum_{b}{T^{ab}{}_{bc}} = T^{a1} {}_{1c} + T^{a2} {}_{2c} + \cdots + T^{an} {}_{nc} = U^a {}_c .</math>
: <math> T^{ab} {}_{bc} = \sum_{b}{T^{ab}{}_{bc}} = T^{a1} {}_{1c} + T^{a2} {}_{2c} + \cdots + T^{an} {}_{nc} = U^a {}_c .</math>
Line 50: Line 48:


: <math> \mathbf{T} = \mathbf{e}^i \otimes \mathbf{e}^j </math>
: <math> \mathbf{T} = \mathbf{e}^i \otimes \mathbf{e}^j </math>
एक अमिश्रित डायाडिक टेंसर बनें। यह टेंसर अनुबंध नहीं करता है; यदि इसके आधार वैक्टर बिंदीदार हैं,{{clarification|What is "dotted" supposed to mean here? Since it is not a contraction, as is explicitly stated, then what is its definition? In particular, how is the tensor <math>g^{ij}</math> intended to be different from the tensor <math>\mathbf{T}</math>? Right now the difference only looks formal, i.e. different notation for what must otherwise be the same object.|date=May 2020}} परिणाम प्रतिपरिवर्ती [[मीट्रिक (गणित)]] है,
अमिश्रित डायाडिक टेंसर बनें। यह टेंसर अनुबंध नहीं करता है; यदि इसके आधार वैक्टर बिंदीदार हैं,{{clarification|What is "dotted" supposed to mean here? Since it is not a contraction, as is explicitly stated, then what is its definition? In particular, how is the tensor <math>g^{ij}</math> intended to be different from the tensor <math>\mathbf{T}</math>? Right now the difference only looks formal, i.e. different notation for what must otherwise be the same object.|date=May 2020}} परिणाम प्रतिपरिवर्ती [[मीट्रिक (गणित)]] टेंसर है,


: <math> g^{ij} = \mathbf{e}^i \cdot \mathbf{e}^j </math>,
: <math> g^{ij} = \mathbf{e}^i \cdot \mathbf{e}^j </math>,


जिसकी रैंक 2 है।
जिसकी श्रेणी 2 है।


== मीट्रिक संकुचन ==
== मीट्रिक संकुचन ==
{{see also|Raising and lowering indices#An example from Minkowski spacetime}}
{{see also|सूचकांकों को ऊपर उठाना और घटाना#मिन्कोव्स्की स्पेसटाइम से एक उदाहरण}}
जैसा कि पिछले उदाहरण में, सूचकांकों की एक जोड़ी पर संकुचन सामान्य रूप से संभव नहीं है जो या तो प्रतिपरिवर्ती या दोनों सहपरिवर्ती हैं। हालांकि, एक आंतरिक उत्पाद (जिसे [[मीट्रिक टेंसर]] के रूप में भी जाना जाता है) जी की उपस्थिति में, ऐसे संकुचन संभव हैं। कोई किसी एक सूचकांक को आवश्यकतानुसार बढ़ाने या घटाने के लिए मीट्रिक का उपयोग करता है, और फिर कोई संकुचन के सामान्य संचालन का उपयोग करता है। संयुक्त ऑपरेशन को [[मीट्रिक संकुचन]] के रूप में जाना जाता है।<ref name="o'neill">{{cite book |first=Barrett |last=O'Neill |title=सापेक्षता के अनुप्रयोगों के साथ अर्ध-रिमानियन ज्यामिति|publisher=Academic Press |year=1983 |page=86 |isbn=0-12-526740-1 }}</ref>
 
जैसा कि पिछले उदाहरण में, सूचकांकों की संकुचन सामान्य रूप से संभव नहीं है जो या तो प्रतिपरिवर्ती या दोनों सहपरिवर्ती हैं। चूँकि , आंतरिक उत्पाद ([[मीट्रिक टेंसर]] के रूप में भी जाना जाता है) ''g'' की उपस्थिति में, ऐसे संकुचन संभव हैं। कोई किसी सूचकांक को आवश्यकतानुसार बढ़ाने या घटाने के लिए मीट्रिक का उपयोग करता है, और कोई संकुचन के सामान्य संचालन का उपयोग करता है। संयुक्त ऑपरेशन को [[मीट्रिक संकुचन]] के रूप में जाना जाता है।<ref name="o'neill">{{cite book |first=Barrett |last=O'Neill |title=सापेक्षता के अनुप्रयोगों के साथ अर्ध-रिमानियन ज्यामिति|publisher=Academic Press |year=1983 |page=86 |isbn=0-12-526740-1 }}</ref>




== [[टेंसर फ़ील्ड]]्स के लिए आवेदन ==
== टेंसर क्षेत्र के लिए आवेदन ==


संकुचन अक्सर रिक्त स्थान पर टेंसर फ़ील्ड पर लागू होता है (उदाहरण के लिए [[ यूक्लिडियन अंतरिक्ष ]], [[कई गुना]], या स्कीम (गणित){{fact|date=April 2015}}). चूंकि संकुचन एक विशुद्ध रूप से बीजगणितीय संक्रिया है, इसे बिंदुवार एक टेन्सर क्षेत्र में लागू किया जा सकता है, उदा. यदि टी यूक्लिडियन अंतरिक्ष पर एक (1,1) टेंसर फ़ील्ड है, तो किसी भी निर्देशांक में, इसका संकुचन (एक स्केलर फ़ील्ड) यू बिंदु एक्स पर दिया जाता है
संकुचन अधिकांशतः रिक्त समष्टि पर टेंसर क्षेत्र पर प्रारम्भ होता है (उदाहरण के लिए यूक्लिडियन अंतरिक्ष, [[कई गुना|मैनिफोल्ड्स]], या स्कीम (गणित)) चूंकि संकुचन विशुद्ध रूप से बीजगणितीय संक्रिया है, इसे बिंदुवार टेंसर क्षेत्र में प्रारम्भ किया जा सकता है, उदाहरण. यदि ''T''  यूक्लिडियन अंतरिक्ष पर (1,1) टेंसर क्षेत्र है, तो किसी भी निर्देशांक में, इसका संकुचन (स्केलर क्षेत्र) ''U''  बिंदु ''x'' पर दिया जाता है


: <math>U(x) = \sum_{i} T^{i}_{i}(x)</math>
: <math>U(x) = \sum_{i} T^{i}_{i}(x)</math>
चूँकि x की भूमिका यहाँ जटिल नहीं है, इसे अक्सर दबा दिया जाता है, और टेन्सर क्षेत्रों के लिए संकेतन विशुद्ध रूप से बीजगणितीय टेन्सरों के समान हो जाता है।
चूँकि x की भूमिका यहाँ जटिल नहीं है, टेंसर क्षेत्रों के लिए संकेतन विशुद्ध रूप से बीजगणितीय टेंसरों के समान हो जाता है।


[[रीमैनियन कई गुना]] पर, एक मीट्रिक (आंतरिक उत्पादों का क्षेत्र) उपलब्ध है, और सिद्धांत के लिए मीट्रिक और गैर-मीट्रिक संकुचन दोनों महत्वपूर्ण हैं। उदाहरण के लिए, रिक्की टेन्सर [[रीमैन वक्रता टेन्सर]] का एक गैर-मीट्रिक संकुचन है, और स्केलर वक्रता [[रिक्की टेंसर]] का अद्वितीय मीट्रिक संकुचन है।
[[रीमैनियन कई गुना|रीमैनियन]] [[कई गुना|मैनिफोल्ड्स]] पर, मीट्रिक (आंतरिक उत्पादों का क्षेत्र) उपलब्ध है, और सिद्धांत के लिए मीट्रिक और गैर-मीट्रिक संकुचन दोनों महत्वपूर्ण हैं। उदाहरण के लिए, रिक्की टेंसर [[रीमैन वक्रता टेन्सर|रीमैन वक्रता टेंसर]] का गैर-मीट्रिक संकुचन है, और स्केलर वक्रता [[रिक्की टेंसर]] का अद्वितीय मीट्रिक संकुचन है।


कई गुना पर कार्यों की उपयुक्त अंगूठी पर मॉड्यूल के संदर्भ में एक टेन्सर क्षेत्र का संकुचन भी देख सकता है<ref name="o'neill"/>या संरचना शीफ ​​पर मॉड्यूल के ढेरों का संदर्भ;<ref name="hartshorne">{{cite book |first=Robin |last=Hartshorne |author-link=Robin Hartshorne |title=बीजगणितीय ज्यामिति|location=New York |publisher=Springer |year=1977 |isbn=0-387-90244-9 }}</ref> इस लेख के अंत में चर्चा देखें।
मैनिफोल्ड्स पर कार्यों की उपयुक्त वलय पर मॉड्यूल के संदर्भ में टेंसर क्षेत्र का संकुचन भी देख सकता है<ref name="o'neill"/>या संरचना शीफ ​​पर मॉड्यूल के ढेरों का संदर्भ;<ref name="hartshorne">{{cite book |first=Robin |last=Hartshorne |author-link=Robin Hartshorne |title=बीजगणितीय ज्यामिति|location=New York |publisher=Springer |year=1977 |isbn=0-387-90244-9 }}</ref> इस लेख के अंत में चर्चा देखें।


=== टेंसर विचलन ===
=== टेंसर विचलन ===


एक टेंसर क्षेत्र के संकुचन के एक अनुप्रयोग के रूप में, V को एक रिमेंनियन मैनिफोल्ड (उदाहरण के लिए, यूक्लिडियन स्पेस) पर एक [[वेक्टर क्षेत्र]] होने दें। होने देना <math> V^\alpha {}_{\beta}</math> V का सहसंयोजक व्युत्पन्न हो (निर्देशांक के कुछ विकल्प में)। यूक्लिडियन अंतरिक्ष में कार्टेशियन निर्देशांक के मामले में, कोई लिख सकता है
टेंसर क्षेत्र के संकुचन के अनुप्रयोग के रूप में, V को रिमेंनियन मैनिफोल्ड (उदाहरण के लिए, यूक्लिडियन स्पेस) पर [[वेक्टर क्षेत्र]] होता है । मान लो <math> V^\alpha {}_{\beta}</math> V का सहसंयोजक व्युत्पन्न हो (निर्देशांक के कुछ विकल्प में)। यूक्लिडियन अंतरिक्ष में कार्टेशियन निर्देशांक के स्थिति में, कोई लिख सकता है


: <math> V^\alpha {}_{\beta} = {\partial V^\alpha \over \partial x^\beta}. </math>
: <math> V^\alpha {}_{\beta} = {\partial V^\alpha \over \partial x^\beta}. </math>
फिर सूचकांक β को α में बदलने से सूचकांकों की जोड़ी एक-दूसरे से बंधी हो जाती है, ताकि निम्नलिखित योग प्राप्त करने के लिए व्युत्पन्न अनुबंध स्वयं के साथ हो:
सूचकांक β को α में बदलने से सूचकांकों की जोड़ी एक-दूसरे से बंधी हो जाती है, जिससे कि निम्नलिखित योग प्राप्त करने के लिए व्युत्पन्न अनुबंध स्वयं के साथ हो:


: <math> V^\alpha {}_{\alpha} = V^0 {}_{0} + \cdots + V^n {}_{n} </math>
: <math> V^\alpha {}_{\alpha} = V^0 {}_{0} + \cdots + V^n {}_{n} </math>
Line 83: Line 82:


: <math> \operatorname{div} V = V^\alpha {}_{\alpha} = 0 </math>
: <math> \operatorname{div} V = V^\alpha {}_{\alpha} = 0 </math>
V के लिए एक निरंतरता समीकरण है।
V के लिए निरंतरता समीकरण है।


सामान्य तौर पर, उच्च-श्रेणी के टेंसर क्षेत्रों पर विभिन्न विचलन संचालन को निम्नानुसार परिभाषित किया जा सकता है। यदि T कम से कम एक प्रतिपरिवर्ती सूचकांक वाला एक टेन्सर क्षेत्र है, तो सहपरिवर्ती अंतर को लेते हुए और चुने हुए प्रतिपरिवर्ती सूचकांक को नए सहपरिवर्ती सूचकांक के साथ अनुबंधित करते हुए अंतर के परिणामस्वरूप T की तुलना में एक कम रैंक के एक नए टेंसर का परिणाम होता है।<ref name="o'neill"/>
सामान्यतः, उच्च-श्रेणी के टेंसर क्षेत्रों पर विभिन्न विचलन संचालन को निम्नानुसार परिभाषित किया जा सकता है। यदि T प्रतिपरिवर्ती सूचकांक वाला टेंसर क्षेत्र है, सहपरिवर्ती भिन्नता को लेते हुए और चुने हुए प्रतिपरिवर्ती सूचकांक को नवीन सहपरिवर्ती सूचकांक के साथ अनुबंधित करते हुए भिन्नताके परिणामस्वरूप T की समानता में अल्प श्रेणी के नवीन टेंसर का परिणाम होता है।<ref name="o'neill"/>




== टेंसरों की एक जोड़ी का संकुचन ==
== टेंसरों की जोड़ी का संकुचन ==


टेंसर टी और यू की एक जोड़ी पर विचार करके कोर संकुचन ऑपरेशन (दोहरी वेक्टर वाला वेक्टर) को थोड़ा अलग तरीके से सामान्यीकृत किया जा सकता है। [[टेंसर उत्पाद]] <math>T \otimes U</math> एक नया टेन्सर है, जिसमें कम से कम एक कोवैरिएंट और एक कॉन्ट्रावैरिएंट इंडेक्स हो तो उसे कम किया जा सकता है। वह मामला जहां T एक सदिश है और U एक दोहरा सदिश है, इस लेख में सबसे पहले पेश किया गया कोर ऑपरेशन है।
टेंसर T और U की जोड़ी पर विचार करके कोर संकुचन ऑपरेशन (दोहरी वेक्टर वाला वेक्टर) को अल्प भिन्न विधि से सामान्यीकृत किया जा सकता है। [[टेंसर उत्पाद]] <math>T \otimes U</math> नवीन टेंसर होता है, जिसे, यदि उसके निकट सहपरिवर्ती और प्रतिपरिवर्ती सूचकांक हो, तो उसे अनुबंधित किया जा सकता है। वह स्थितियां  जहां T सदिश है और U दोहरा सदिश है, इस लेख में सबसे पूर्व प्रस्तुत किया गया कोर ऑपरेशन है।


टेंसर इंडेक्स नोटेशन में, एक दूसरे के साथ दो टेंसरों को अनुबंधित करने के लिए, एक ही शब्द के कारकों के रूप में उन्हें साथ-साथ रखा जाता है। यह टेंसर उत्पाद को लागू करता है, एक समग्र टेंसर उत्पन्न करता है। इस समग्र टेंसर में दो सूचकांकों को अनुबंधित करना दो टेंसरों के वांछित संकुचन को लागू करता है।
टेंसर सूचकांक अंकन में, एक दूसरे के साथ दो टेंसरों को अनुबंधित करने के लिए, एक ही शब्द के कारकों के रूप में उन्हें साथ-साथ रखा जाता है। यह टेंसर उत्पाद को प्रारम्भ करता है, समग्र टेंसर उत्पन्न करता है। इस समग्र टेंसर में दो सूचकांकों को अनुबंधित करना दो टेंसरों के वांछित संकुचन को प्रारम्भ करता है।


उदाहरण के लिए, आव्यूहों को प्रकार (1,1) के टेन्सर के रूप में दर्शाया जा सकता है, जिसमें पहला सूचकांक प्रतिपरिवर्ती और दूसरा सूचकांक सहपरिवर्ती होता है। होने देना <math> \Lambda^\alpha {}_\beta </math> एक मैट्रिक्स के घटक बनें और दें <math> \Mu^\beta {}_\gamma </math> दूसरे मैट्रिक्स के घटक बनें। फिर उनका गुणन निम्नलिखित संकुचन द्वारा दिया जाता है, टेंसरों की एक जोड़ी के संकुचन का एक उदाहरण:
उदाहरण के लिए, आव्यूहों को प्रकार (1,1) के टेंसर के रूप में दर्शाया जा सकता है, जिसमें प्रथम सूचकांक प्रतिपरिवर्ती और दूसरा सूचकांक सहपरिवर्ती होता है। मान <math> \Lambda^\alpha {}_\beta </math> मैट्रिक्स के घटक बनें और <math> \Mu^\beta {}_\gamma </math> दूसरे मैट्रिक्स के घटक बनें है।  उनका गुणन निम्नलिखित संकुचन द्वारा दिया जाता है, टेंसरों के संकुचन का उदाहरण:


: <math> \Lambda^\alpha {}_\beta \Mu^\beta {}_\gamma = \Nu^\alpha {}_\gamma </math>.
: <math> \Lambda^\alpha {}_\beta \Mu^\beta {}_\gamma = \Nu^\alpha {}_\gamma </math>.


इसके अलावा, एक अंतर रूप वाले वेक्टर का [[आंतरिक उत्पाद]] एक दूसरे के साथ दो टेंसरों के संकुचन का एक विशेष मामला है।
इसके अतिरिक्त, वेक्टर का [[आंतरिक उत्पाद]] के साथ दो टेंसरों के संकुचन की  विशेष स्थितियां  है।


== अधिक सामान्य बीजगणितीय संदर्भ ==
== अधिक सामान्य बीजगणितीय संदर्भ ==


आर को एक क्रमविनिमेय वलय होने दें और एम को आर के ऊपर एक परिमित मुक्त [[मॉड्यूल (गणित)]] होने दें। फिर संकुचन एम के पूर्ण (मिश्रित) टेन्सर बीजगणित पर ठीक उसी तरह से संचालित होता है जैसा कि एक क्षेत्र पर वेक्टर रिक्त स्थान के मामले में होता है। . (महत्वपूर्ण तथ्य यह है कि इस मामले में प्राकृतिक जोड़ी अभी भी सही है।)
''R''  क्रमविनिमेय वलय होता है और M को R पर परिमित स्वतंत्र [[मॉड्यूल (गणित)]] होता है। संकुचन M के पूर्ण (मिश्रित) टेंसर बीजगणित पर उचित उसी प्रकार से संचालित होता है जैसा कि क्षेत्र पर वेक्टर रिक्त समष्टि के स्थिति में होता है। (महत्वपूर्ण तथ्य यह है कि इस स्थिति  में प्राकृतिक जोड़ी सही है।)


अधिक आम तौर पर, चलो O<sub>X</sub> एक [[टोपोलॉजिकल स्पेस]] एक्स पर कम्यूटेटिव रिंग्स का एक [[शीफ (गणित)]] हो, उदा। हे<sub>X</sub> एक जटिल मैनिफोल्ड, [[विश्लेषणात्मक स्थान]], या योजना (गणित) का [[संरचना शीफ]] ​​हो सकता है। एम को पर मॉड्यूल का [[स्थानीय रूप से मुक्त शीफ]] होने दें<sub>X</sub> परिमित रैंक का। तब M का दोहरा अभी भी अच्छा व्यवहार करता है<ref name="hartshorne"/>और संकुचन संचालन इस संदर्भ में समझ में आता है।
सामान्यतः, O<sub>X</sub> को [[टोपोलॉजिकल स्पेस|स्थलीय समष्टि]] ''X''  पर [[शीफ (गणित)|क्रमविनिमेय]] वलयों का समूह होता है। ''O''<sub>X</sub> जटिल मैनिफोल्ड, [[विश्लेषणात्मक स्थान|विश्लेषणात्मक समष्टि]], या योजना (गणित) का [[संरचना शीफ]] ​​हो सकता है। ''M'' को ''O''<sub>X</sub> पर मॉड्यूल का [[स्थानीय रूप से मुक्त शीफ|समष्टिीय रूप से स्वतंत्र शीफ]] होता है। तब M का दोहरा उत्तम व्यवहार करता है और संकुचन संचालन इस संदर्भ में समझ में आता है।<ref name="hartshorne"/>


== यह भी देखें ==
== यह भी देखें ==
Line 125: Line 124:


{{tensors}}
{{tensors}}
[[Category: टेन्सर]]


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with unsourced statements from April 2015]]
[[Category:Collapse templates]]
[[Category:Created On 25/04/2023]]
[[Category:Created On 25/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles needing clarification from May 2020]]
[[Category:Wikipedia metatemplates]]
[[Category:टेन्सर]]

Latest revision as of 15:20, 30 October 2023

बहुरेखीय बीजगणित में, टेंसर संकुचन टेंसर पर ऑपरेशन है जो परिमित-आयामी सदिश समष्टि और इसकी दोहरी की प्राकृतिक जोड़ी से उत्पन्न होता है। घटकों में, यह टेंसर (एस) के स्केलर घटकों के उत्पादों के योग के रूप में व्यक्त किया जाता है, जो डमी सूचकांक के लिए योग सम्मेलन को प्रारम्भ करने के कारण होता है जो अभिव्यक्ति में होते हैं। मिश्रित टेंसर का संकुचन तब होता है जब टेंसर के शाब्दिक सूचकांकों (एक सबस्क्रिप्ट, दूसरा सुपरस्क्रिप्ट) के बराबर स्थित की जाती है और इसका योग किया जाता है। आइंस्टीन संकेतन में इस योग को अंकन में बनाया गया है। परिणाम 2 से घटाए गए क्रम के साथ और टेंसर है।

टेंसर संकुचन को ट्रेस (रैखिक बीजगणित) के सामान्यीकरण के रूप में देखा जा सकता है।

सार सूत्रीकरण

मान लीजिए कि V क्षेत्र (गणित) k पर सदिश समष्टि है। संकुचन ऑपरेशन का मूल, और सबसे सरल स्थितियां ,V की दोहरी समष्टि V के साथ प्राकृतिक परिवर्तन जोड़ी है। युग्मन टेंसर इन दो समष्टिों के टेंसर उत्पाद से क्षेत्र k में रैखिक परिवर्तन है

द्विरेखीय रूप के अनुरूप

जहाँ f, V में है और v, V में है। मानचित्र C, प्रकार (1, 1) के टेंसर पर संकुचन संचालन को परिभाषित करता है , जो तत्व है ध्यान दें कि परिणाम अदिश (गणित) (k का तत्व) है। k मध्य प्राकृतिक समरूपता का उपयोग करना और V से V तक रैखिक परिवर्तनों का समष्टि,[1] ट्रेस (रैखिक बीजगणित) की आधार-स्वतंत्र परिभाषा प्राप्त करता है।

सामान्यतः, प्रकार (m, n) ( m ≥ 1 और n ≥ 1) का टेंसर सदिश समष्टि का तत्व है

(जहां m कारक V और n कारक V हैं).[2][3] k वें V कारक और lवें V कारक के लिए प्राकृतिक युग्मन प्रारम्भ करना, और अन्य सभी कारकों पर पहचान का उपयोग करते हुए, (k, l) संकुचन संक्रिया को परिभाषित करता है, जो रेखीय मानचित्र है जो प्रकार (m − 1, n − 1) का टेंसर उत्पन्न करता है .[2](1, 1) स्थिति के अनुरूप, सामान्य संकुचन ऑपरेशन को कभी-कभी ट्रेस कहा जाता है।

सूचकांक अंकन में संकुचन

टेंसर सूचकांक अंकन में, वेक्टर और डुअल वेक्टर के मूल संकुचन को किसके द्वारा दर्शाया जाता है

जो स्पष्ट समन्वय योग के लिए आशुलिपि है[4]

(जहाँ vi विशेष आधार पर v और fi के घटक हैं इसी दोहरे आधार में f के घटक हैं )।

चूंकि सामान्य मिश्रित डायडिक टेंसर प्रपत्र के विघटनीय टेंसर का रैखिक संयोजन है , डायडिक स्थिति के लिए स्पष्ट सूत्र इस प्रकार है: मान लीजिए

मिश्रित डायाडिक टेंसर बनें। तब उसका संकुचन होता है

.

सामान्य संकुचन सहसंयोजक सूचकांक और प्रतिपरिवर्ती सूचकांक को एक ही वर्ण से लेबलिंग करके निरूपित किया जाता है, उस सूचकांक पर योग योग सम्मेलन द्वारा निहित किया जा रहा है। परिणामी अनुबंधित टेंसर मूल टेंसर के शेष सूचकांकों को इनहेरिट करता है। उदाहरण के लिए, प्ररूप (1,1) का नवीन टेंसर U बनाने के लिए दूसरे और तीसरे सूचकांक पर प्ररूप (2,2) के टेंसर T को अनुबंधित करना इस प्रकार लिखा जाता है

इसके विपरीत, चलो

अमिश्रित डायाडिक टेंसर बनें। यह टेंसर अनुबंध नहीं करता है; यदि इसके आधार वैक्टर बिंदीदार हैं,[clarification needed] परिणाम प्रतिपरिवर्ती मीट्रिक (गणित) टेंसर है,

,

जिसकी श्रेणी 2 है।

मीट्रिक संकुचन

जैसा कि पिछले उदाहरण में, सूचकांकों की संकुचन सामान्य रूप से संभव नहीं है जो या तो प्रतिपरिवर्ती या दोनों सहपरिवर्ती हैं। चूँकि , आंतरिक उत्पाद (मीट्रिक टेंसर के रूप में भी जाना जाता है) g की उपस्थिति में, ऐसे संकुचन संभव हैं। कोई किसी सूचकांक को आवश्यकतानुसार बढ़ाने या घटाने के लिए मीट्रिक का उपयोग करता है, और कोई संकुचन के सामान्य संचालन का उपयोग करता है। संयुक्त ऑपरेशन को मीट्रिक संकुचन के रूप में जाना जाता है।[5]


टेंसर क्षेत्र के लिए आवेदन

संकुचन अधिकांशतः रिक्त समष्टि पर टेंसर क्षेत्र पर प्रारम्भ होता है (उदाहरण के लिए यूक्लिडियन अंतरिक्ष, मैनिफोल्ड्स, या स्कीम (गणित)) चूंकि संकुचन विशुद्ध रूप से बीजगणितीय संक्रिया है, इसे बिंदुवार टेंसर क्षेत्र में प्रारम्भ किया जा सकता है, उदाहरण. यदि T यूक्लिडियन अंतरिक्ष पर (1,1) टेंसर क्षेत्र है, तो किसी भी निर्देशांक में, इसका संकुचन (स्केलर क्षेत्र) U बिंदु x पर दिया जाता है

चूँकि x की भूमिका यहाँ जटिल नहीं है, टेंसर क्षेत्रों के लिए संकेतन विशुद्ध रूप से बीजगणितीय टेंसरों के समान हो जाता है।

रीमैनियन मैनिफोल्ड्स पर, मीट्रिक (आंतरिक उत्पादों का क्षेत्र) उपलब्ध है, और सिद्धांत के लिए मीट्रिक और गैर-मीट्रिक संकुचन दोनों महत्वपूर्ण हैं। उदाहरण के लिए, रिक्की टेंसर रीमैन वक्रता टेंसर का गैर-मीट्रिक संकुचन है, और स्केलर वक्रता रिक्की टेंसर का अद्वितीय मीट्रिक संकुचन है।

मैनिफोल्ड्स पर कार्यों की उपयुक्त वलय पर मॉड्यूल के संदर्भ में टेंसर क्षेत्र का संकुचन भी देख सकता है[5]या संरचना शीफ ​​पर मॉड्यूल के ढेरों का संदर्भ;[6] इस लेख के अंत में चर्चा देखें।

टेंसर विचलन

टेंसर क्षेत्र के संकुचन के अनुप्रयोग के रूप में, V को रिमेंनियन मैनिफोल्ड (उदाहरण के लिए, यूक्लिडियन स्पेस) पर वेक्टर क्षेत्र होता है । मान लो V का सहसंयोजक व्युत्पन्न हो (निर्देशांक के कुछ विकल्प में)। यूक्लिडियन अंतरिक्ष में कार्टेशियन निर्देशांक के स्थिति में, कोई लिख सकता है

सूचकांक β को α में बदलने से सूचकांकों की जोड़ी एक-दूसरे से बंधी हो जाती है, जिससे कि निम्नलिखित योग प्राप्त करने के लिए व्युत्पन्न अनुबंध स्वयं के साथ हो:

जो विचलन div V है। फिर

V के लिए निरंतरता समीकरण है।

सामान्यतः, उच्च-श्रेणी के टेंसर क्षेत्रों पर विभिन्न विचलन संचालन को निम्नानुसार परिभाषित किया जा सकता है। यदि T प्रतिपरिवर्ती सूचकांक वाला टेंसर क्षेत्र है, सहपरिवर्ती भिन्नता को लेते हुए और चुने हुए प्रतिपरिवर्ती सूचकांक को नवीन सहपरिवर्ती सूचकांक के साथ अनुबंधित करते हुए भिन्नताके परिणामस्वरूप T की समानता में अल्प श्रेणी के नवीन टेंसर का परिणाम होता है।[5]


टेंसरों की जोड़ी का संकुचन

टेंसर T और U की जोड़ी पर विचार करके कोर संकुचन ऑपरेशन (दोहरी वेक्टर वाला वेक्टर) को अल्प भिन्न विधि से सामान्यीकृत किया जा सकता है। टेंसर उत्पाद नवीन टेंसर होता है, जिसे, यदि उसके निकट सहपरिवर्ती और प्रतिपरिवर्ती सूचकांक हो, तो उसे अनुबंधित किया जा सकता है। वह स्थितियां जहां T सदिश है और U दोहरा सदिश है, इस लेख में सबसे पूर्व प्रस्तुत किया गया कोर ऑपरेशन है।

टेंसर सूचकांक अंकन में, एक दूसरे के साथ दो टेंसरों को अनुबंधित करने के लिए, एक ही शब्द के कारकों के रूप में उन्हें साथ-साथ रखा जाता है। यह टेंसर उत्पाद को प्रारम्भ करता है, समग्र टेंसर उत्पन्न करता है। इस समग्र टेंसर में दो सूचकांकों को अनुबंधित करना दो टेंसरों के वांछित संकुचन को प्रारम्भ करता है।

उदाहरण के लिए, आव्यूहों को प्रकार (1,1) के टेंसर के रूप में दर्शाया जा सकता है, जिसमें प्रथम सूचकांक प्रतिपरिवर्ती और दूसरा सूचकांक सहपरिवर्ती होता है। मान मैट्रिक्स के घटक बनें और दूसरे मैट्रिक्स के घटक बनें है। उनका गुणन निम्नलिखित संकुचन द्वारा दिया जाता है, टेंसरों के संकुचन का उदाहरण:

.

इसके अतिरिक्त, वेक्टर का आंतरिक उत्पाद के साथ दो टेंसरों के संकुचन की विशेष स्थितियां है।

अधिक सामान्य बीजगणितीय संदर्भ

R क्रमविनिमेय वलय होता है और M को R पर परिमित स्वतंत्र मॉड्यूल (गणित) होता है। संकुचन M के पूर्ण (मिश्रित) टेंसर बीजगणित पर उचित उसी प्रकार से संचालित होता है जैसा कि क्षेत्र पर वेक्टर रिक्त समष्टि के स्थिति में होता है। (महत्वपूर्ण तथ्य यह है कि इस स्थिति में प्राकृतिक जोड़ी सही है।)

सामान्यतः, OX को स्थलीय समष्टि X पर क्रमविनिमेय वलयों का समूह होता है। OX जटिल मैनिफोल्ड, विश्लेषणात्मक समष्टि, या योजना (गणित) का संरचना शीफ ​​हो सकता है। M को OX पर मॉड्यूल का समष्टिीय रूप से स्वतंत्र शीफ होता है। तब M का दोहरा उत्तम व्यवहार करता है और संकुचन संचालन इस संदर्भ में समझ में आता है।[6]

यह भी देखें

टिप्पणियाँ

  1. Let L(V, V) be the space of linear transformations from V to V. Then the natural map
    is defined by
    where g(w) = f(w)v. Suppose that V is finite-dimensional. If {vi} is a basis of V and {fi} is the corresponding dual basis, then maps to the transformation whose matrix in this basis has only one nonzero entry, a 1 in the i,j position. This shows that the map is an isomorphism.
  2. 2.0 2.1 Fulton, William; Harris, Joe (1991). प्रतिनिधित्व सिद्धांत: एक पहला कोर्स. GTM. Vol. 129. New York: Springer. pp. 471–476. ISBN 0-387-97495-4.
  3. Warner, Frank (1993). डिफरेंशियल मैनिफोल्ड्स और लाई ग्रुप्स की नींव. GTM. Vol. 94. New York: Springer. pp. 54–56. ISBN 0-387-90894-3.
  4. In physics (and sometimes in mathematics), indices often start with zero instead of one. In four-dimensional spacetime, indices run from 0 to 3.
  5. 5.0 5.1 5.2 O'Neill, Barrett (1983). सापेक्षता के अनुप्रयोगों के साथ अर्ध-रिमानियन ज्यामिति. Academic Press. p. 86. ISBN 0-12-526740-1.
  6. 6.0 6.1 Hartshorne, Robin (1977). बीजगणितीय ज्यामिति. New York: Springer. ISBN 0-387-90244-9.


संदर्भ