स्यूडोटेंसर: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Type of physical quantity}} {{Use American English|date=March 2019}}भौतिक विज्ञान और गणित में, एक स्...")
 
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Type of physical quantity}}
{{Short description|Type of physical quantity}}
{{Use American English|date=March 2019}}[[भौतिक विज्ञान]] और गणित में, एक स्यूडो[[टेन्सर]] आमतौर पर एक मात्रा है जो एक अभिविन्यास-संरक्षण [[समन्वय परिवर्तन]] (उदाहरण के लिए एक उचित रोटेशन) के तहत एक टेंसर की तरह रूपांतरित होता है, लेकिन इसके अतिरिक्त एक अभिविन्यास-उलटने वाले समन्वय परिवर्तन (जैसे, एक अनुचित रोटेशन) के तहत संकेत बदलता है, जो एक परिवर्तन है जिसे परावर्तन (गणित) के बाद एक [[उचित घुमाव]] के रूप में व्यक्त किया जा सकता है। यह एक [[ pseudovector ]] का सामान्यीकरण है। टेन्सर या स्यूडोटेन्सर चिह्न का मूल्यांकन करने के लिए, इसे कुछ सदिशों के साथ टेन्सर संकुचन होना चाहिए, जितना कि इसका टेन्सर (आंतरिक परिभाषा)#टेंसर रैंक है, उस स्थान से संबंधित है जहाँ टेन्सर निर्देशांक को अप्रभावित रखते हुए रोटेशन किया जाता है (अलग से) आधार परिवर्तन के मामले में कोई क्या करता है)। अनुचित रोटेशन के तहत एक ही रैंक के एक स्यूडोटेन्सर और एक उचित टेन्सर के अलग-अलग चिह्न होंगे जो रैंक पर समानता (गणित) होने पर निर्भर करता है। कभी-कभी कुल्हाड़ियों के व्युत्क्रमण का उपयोग स्यूडोटेन्सर के व्यवहार को देखने के लिए एक [[अनुचित घुमाव]] के उदाहरण के रूप में किया जाता है, लेकिन यह केवल तभी काम करता है जब सदिश अंतरिक्ष आयाम विषम हों अन्यथा व्युत्क्रम एक अतिरिक्त प्रतिबिंब के बिना एक उचित घुमाव है।
[[भौतिक विज्ञान]] और गणित में, एक स्यूडो [[टेन्सर]] सामान्यतः एक मात्रा है जो एक अभिविन्यास-संरक्षण [[समन्वय परिवर्तन]] (उदाहरण के लिए एक उचित घूर्णन ) के तहत एक टेंसर की तरह रूपांतरित होता है, किन्तु इसके अतिरिक्त एक अभिविन्यास-उलटने वाले समन्वय परिवर्तन (जैसे, एक अनुचित घूर्णन ) के तहत संकेत बदलता है, जो एक परिवर्तन है जिसे परावर्तन (गणित) के बाद एक [[उचित घुमाव]] के रूप में व्यक्त किया जा सकता है। यह एक [[ pseudovector |स्यूडोवेक्टर]] का सामान्यीकरण है। टेन्सर या स्यूडोटेन्सर चिह्न का मूल्यांकन करने के लिए, इसे कुछ सदिशों के साथ टेन्सर संकुचन होना चाहिए, जितना कि इसका टेन्सर (आंतरिक परिभाषा) या टेंसर पद है, उस स्थान से संबंधित है जहाँ टेन्सर निर्देशांक को अप्रभावित रखते हुए घूर्णन किया जाता है (अलग से) आधार परिवर्तन के स्थिति में कोई क्या करता है)। अनुचित घूर्णन के तहत एक ही पद के एक स्यूडोटेन्सर और एक उचित टेन्सर के अलग-अलग चिह्न होंगे जो पद पर समानता (गणित) होने पर निर्भर करता है। कभी-कभी अक्षो के व्युत्क्रमण का उपयोग स्यूडोटेन्सर के व्यवहार को देखने के लिए एक [[अनुचित घुमाव]] के उदाहरण के रूप में किया जाता है, किन्तु यह केवल तभी काम करता है जब सदिश अंतरिक्ष आयाम विषम हों अन्यथा व्युत्क्रम एक अतिरिक्त प्रतिबिंब के बिना एक उचित घुमाव है।


स्यूडोटेन्सर (और इसी तरह स्यूडोवेक्टर के लिए) के लिए एक दूसरा अर्थ है, जो [[सामान्य सापेक्षता]] तक सीमित है। टेन्सर सख्त परिवर्तन कानूनों का पालन करते हैं, लेकिन इस अर्थ में स्यूडोटेनर्स इतने विवश नहीं हैं। नतीजतन, एक स्यूडोटेन्सर का रूप, सामान्य रूप से, संदर्भ के फ्रेम के रूप में बदल जाएगा। स्यूडोटेन्सर्स वाला एक समीकरण जो एक फ्रेम में होल्ड करता है, जरूरी नहीं कि वह एक अलग फ्रेम में हो। यह सीमित प्रासंगिकता के स्यूडोटेनर्स बनाता है क्योंकि जिन समीकरणों में वे प्रकट होते हैं वे सहप्रसरण नहीं होते हैं और रूप में सदिशों के प्रतिप्रसरण होते हैं।
स्यूडोटेन्सर (और इसी तरह स्यूडोवेक्टर के लिए) के लिए एक दूसरा अर्थ है, जो [[सामान्य सापेक्षता]] तक सीमित है। टेन्सर सख्त परिवर्तन नियमो का पालन करते हैं, किन्तु इस अर्थ में स्यूडोटेनर्स इतने विवश नहीं हैं। नतीजतन एक स्यूडोटेन्सर का रूप, सामान्य रूप से, संदर्भ के फ्रेम के रूप में बदल जाएगा। स्यूडोटेन्सर्स वाला एक समीकरण जो एक फ्रेम में रोकता है, जरूरी नहीं कि वह एक अलग फ्रेम में हो। यह सीमित प्रासंगिकता के स्यूडोटेनर्स बनाता है क्योंकि जिन समीकरणों में वे प्रकट होते हैं वे सहप्रसरण नहीं होते हैं और रूप में सदिशों के प्रतिप्रसरण होते हैं।


== परिभाषा ==
== परिभाषा ==
दो अलग-अलग गणितीय वस्तुओं को अलग-अलग संदर्भों में स्यूडोटेन्सर कहा जाता है।
दो अलग-अलग गणितीय वस्तुओं को अलग-अलग संदर्भों में स्यूडोटेन्सर कहा जाता है।


पहला संदर्भ अनिवार्य रूप से एक अतिरिक्त संकेत कारक द्वारा गुणा किया गया एक टेंसर है, जैसे कि स्यूडोटेन्सर प्रतिबिंब के तहत साइन बदलता है जब एक सामान्य टेन्सर नहीं होता है। एक परिभाषा के अनुसार, प्रकार का एक स्यूडोटेन्सर P <math>(p, q)</math> एक ज्यामितीय वस्तु है जिसके घटकों को मनमाना आधार पर गणना की जाती है <math>(p + q)</math>सूचकांक और परिवर्तन नियम का पालन करें
पहला संदर्भ अनिवार्य रूप से एक अतिरिक्त संकेत कारक द्वारा गुणा किया गया एक टेंसर है, जैसे कि स्यूडोटेन्सर प्रतिबिंब के तहत साइन बदलता है जब एक सामान्य टेन्सर नहीं होता है। एक परिभाषा के अनुसार, <math>(p, q)</math> प्रकार का एक स्यूडोटेन्सर P एक ज्यामितीय वस्तु है जिसके घटकों को इच्छानुसार <math>(p + q)</math> सूचकांक और परिवर्तन नियम का पालन करता है
<math display=block>\hat{P}^{i_1\ldots i_q}_{\,j_1\ldots j_p} =
<math display=block>\hat{P}^{i_1\ldots i_q}_{\,j_1\ldots j_p} =
(-1)^A A^{i_1} {}_{k_1}\cdots A^{i_q} {}_{k_q}
(-1)^A A^{i_1} {}_{k_1}\cdots A^{i_q} {}_{k_q}
B^{l_1} {}_{j_1}\cdots B^{l_p} {}_{j_p}
B^{l_1} {}_{j_1}\cdots B^{l_p} {}_{j_p}
P^{k_1\ldots k_q}_{l_1\ldots l_p}</math> आधार परिवर्तन के तहत।<ref>Sharipov, R.A. (1996). Course of Differential Geometry, Ufa:Bashkir State University, Russia, p. 34, eq. 6.15. {{ISBN|5-7477-0129-0}}, {{arxiv|math/0412421v1}}</ref><ref>Lawden, Derek F. (1982). An Introduction to Tensor Calculus, Relativity and Cosmology. Chichester:John Wiley & Sons Ltd., p. 29, eq. 13.1. {{ISBN|0-471-10082-X}}</ref><ref>Borisenko, A. I. and Tarapov, I. E. (1968). Vector and Tensor Analysis with Applications, New York:Dover Publications, Inc., p. 124, eq. 3.34. {{ISBN|0-486-63833-2}}</ref>
P^{k_1\ldots k_q}_{l_1\ldots l_p}</math> आधार परिवर्तन के तहत।<ref>Sharipov, R.A. (1996). Course of Differential Geometry, Ufa:Bashkir State University, Russia, p. 34, eq. 6.15. {{ISBN|5-7477-0129-0}}, {{arxiv|math/0412421v1}}</ref><ref>Lawden, Derek F. (1982). An Introduction to Tensor Calculus, Relativity and Cosmology. Chichester:John Wiley & Sons Ltd., p. 29, eq. 13.1. {{ISBN|0-471-10082-X}}</ref><ref>Borisenko, A. I. and Tarapov, I. E. (1968). Vector and Tensor Analysis with Applications, New York:Dover Publications, Inc., p. 124, eq. 3.34. {{ISBN|0-486-63833-2}}</ref>                          
यहाँ <math>\hat{P}^{i_1 \ldots i_q}_{\,j_1 \ldots j_p}, P^{k_1 \ldots k_q}_{l_1 \ldots l_p}</math> क्रमशः नए और पुराने ठिकानों में स्यूडोटेन्सर के घटक हैं, <math>A^{i_q} {}_{k_q}</math> सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण के लिए संक्रमण मैट्रिक्स है, <math>B^{l_p} {}_{j_p}</math> [[सहप्रसरण]] सूचकांकों के लिए संक्रमण मैट्रिक्स है, और <math>(-1)^A = \mathrm{sign}\left(\det\left(A^{i_q} {}_{k_q}\right)\right) = \pm{1}.</math> यह परिवर्तन नियम केवल कारक की उपस्थिति से सामान्य टेन्सर के नियम से भिन्न होता है <math>(-1)^A.</math>
यहाँ <math>\hat{P}^{i_1 \ldots i_q}_{\,j_1 \ldots j_p}, P^{k_1 \ldots k_q}_{l_1 \ldots l_p}</math> नए और पुराने आधारों में स्यूडोटेंसर के घटक हैं, क्रमशः <math>A^{i_q} {}_{k_q}</math> प्रतिपरिवर्ती सूचकांकों के लिए संक्रमण आव्यूह है,<math>B^{l_p} {}_{j_p}</math> [[सहप्रसरण]] सूचकांकों के लिए संक्रमण आव्यूह है, और<math>(-1)^A = \mathrm{sign}\left(\det\left(A^{i_q} {}_{k_q}\right)\right) = \pm{1}.</math>यह परिवर्तन नियम केवल कारक <math>(-1)^A.</math> की उपस्थिति से सामान्य टेन्सर के नियम से भिन्न होता है।
दूसरा संदर्भ जहां स्यूडोटेन्सर शब्द का प्रयोग किया गया है वह सामान्य सापेक्षता है। उस सिद्धांत में, एक ऊर्जा-संवेग टेन्सर द्वारा गुरुत्वाकर्षण क्षेत्र की ऊर्जा और संवेग का वर्णन नहीं किया जा सकता है। इसके बजाय, कोई ऐसी वस्तुओं का परिचय देता है जो प्रतिबंधित समन्वय परिवर्तनों के संबंध में केवल टेंसर के रूप में व्यवहार करती हैं। कड़ाई से बोलते हुए, ऐसी वस्तुएं टेन्सर बिल्कुल नहीं होती हैं। ऐसे स्यूडोटेन्सर का एक प्रसिद्ध उदाहरण लैंडौ-लिफ्शिट्ज़ स्यूडोटेन्सर है।
 
दूसरा संदर्भ जहां स्यूडोटेन्सर शब्द का प्रयोग किया गया है वह सामान्य सापेक्षता है। उस सिद्धांत में, एक ऊर्जा-संवेग टेन्सर द्वारा गुरुत्वाकर्षण क्षेत्र की ऊर्जा और संवेग का वर्णन नहीं किया जा सकता है। इसके,अतिरिक्त कोई ऐसी वस्तुओं का परिचय देता है जो प्रतिबंधित समन्वय परिवर्तनों के संबंध में केवल टेंसर के रूप में व्यवहार करती हैं। कड़ाई से बोलते हुए, ऐसी वस्तुएं टेन्सर बिल्कुल नहीं होती हैं। ऐसे स्यूडोटेन्सर का एक प्रसिद्ध उदाहरण लैंडौ-लिफ्शिट्ज़ स्यूडोटेन्सर है।


== उदाहरण ==
== उदाहरण ==
[[समायोज्य कई गुना]] पर गैर-ओरिएंटेबल मैनिफोल्ड्स, गैर-ओरिएंटेबिलिटी के कारण विश्व स्तर पर एक [[वॉल्यूम फॉर्म]] को परिभाषित नहीं कर सकता है, लेकिन एक वॉल्यूम तत्व को परिभाषित कर सकता है, जो औपचारिक रूप से कई गुना घनत्व है, और इसे छद्म-वॉल्यूम फॉर्म भी कहा जा सकता है , अतिरिक्त साइन ट्विस्ट के कारण (साइन बंडल के साथ टेंसरिंग)। आयतन तत्व पहली परिभाषा के अनुसार एक स्यूडोटेन्सर घनत्व है।
[[समायोज्य कई गुना]] पर, गैर-उन्मुखता के कारण विश्व स्तर पर एक [[वॉल्यूम फॉर्म]] को परिभाषित नहीं कर सकता है, किन्तु एक आयतन तत्व को परिभाषित कर सकता है, जो औपचारिक रूप से कई गुना घनत्व है, और इसे छद्म-मात्रा प्रपत्र भी कहा जा सकता है,अतिरिक्त साइन ट्विस्ट के कारण (साइन बंडल के साथ टेंसरिंग)। आयतन तत्व पहली परिभाषा के अनुसार एक स्यूडोटेन्सर घनत्व है।
 
जैकबियन मैट्रिक्स और निर्धारक के निर्धारक के पूर्ण मूल्य के कारक के समावेश के माध्यम से बहु-आयामी एकीकरण में [[प्रतिस्थापन द्वारा एकीकरण]] प्राप्त किया जा सकता है। निरपेक्ष मूल्य का उपयोग एकीकरण (मात्रा) तत्व को सकारात्मक रखने के सम्मेलन की भरपाई के लिए अनुचित समन्वय परिवर्तनों के लिए एक संकेत परिवर्तन का परिचय देता है; इस प्रकार, पहली परिभाषा के अनुसार एक [[ एकीकृत ]] एक स्यूडोटेन्सर घनत्व का एक उदाहरण है।


मैनिफोल्ड पर एक [[affine कनेक्शन]] के क्रिस्टोफेल प्रतीकों को वेक्टर क्षेत्र के समन्वय अभिव्यक्ति के आंशिक डेरिवेटिव के लिए सुधार शर्तों के रूप में माना जा सकता है ताकि निर्देशांक के संबंध में इसे वेक्टर क्षेत्र के सहसंयोजक व्युत्पन्न के रूप में प्रस्तुत किया जा सके। जबकि एफ़िन कनेक्शन स्वयं निर्देशांक की पसंद पर निर्भर नहीं करता है, इसके क्रिस्टोफ़ेल प्रतीक करते हैं, जिससे उन्हें दूसरी परिभाषा के अनुसार एक स्यूडोटेन्सर मात्रा बना दिया जाता है।
जैकबियन आव्यूह और निर्धारक के निर्धारक के पूर्ण मान के कारक के समावेश के माध्यम से बहु-आयामी एकीकरण में [[प्रतिस्थापन द्वारा एकीकरण]] प्राप्त किया जा सकता है। निरपेक्ष मान का उपयोग एकीकरण (मात्रा) तत्व को सकारात्मक रखने के सम्मेलन की भरपाई के लिए अनुचित समन्वय परिवर्तनों के लिए एक संकेत परिवर्तन का परिचय देता है; इस प्रकार, पहली परिभाषा के अनुसार एक [[ एकीकृत |एकीकृत]] एक स्यूडोटेन्सर घनत्व का एक उदाहरण है।


== यह भी देखें ==
मैनिफोल्ड पर एक [[affine कनेक्शन|एफ़िन संबंध]] के क्रिस्टोफेल प्रतीकों को वेक्टर क्षेत्र के समन्वय अभिव्यक्ति के आंशिक व्युत्पन्न के लिए सुधार नियमो के रूप में माना जा सकता है जिससे निर्देशांक के संबंध में इसे वेक्टर क्षेत्र के सहसंयोजक व्युत्पन्न के रूप में प्रस्तुत किया जा सकता है। जबकि एफ़िन [[affine कनेक्शन|संबंध]] स्वयं निर्देशांक की पसंद पर निर्भर नहीं करता है, इसके क्रिस्टोफ़ेल प्रतीक करते हैं, जिससे उन्हें दूसरी परिभाषा के अनुसार एक स्यूडोटेन्सर मात्रा बना दिया जाता है।
== यह भी देखें                                                                                 ==


* {{annotated link|Action (physics)}}
* {{annotated link|क्रिया (भौतिकी)}}
* {{annotated link|Conservation law (physics)|Conservation law}}
* {{annotated link|संरक्षण नियम  (भौतिकी)|संरक्षण नियम  }}
* {{annotated link|General relativity}}
* {{annotated link|सामान्य सापेक्षता}}
* {{annotated link|Tensor}}
* {{annotated link|टेन्सर}}
* {{annotated link|Tensor density}}
* {{annotated link|टेंसर घनत्व}}
* {{annotated link|Tensor field}}
* {{annotated link|टेन्सर क्षेत्र}}
* {{annotated link|Noether's theorem}}
* {{annotated link|नोथेर की प्रमेय}}
* {{annotated link|Pseudovector}}
* {{annotated link|स्यूडोवेक्टर}}
* {{annotated link|Variational principle}}
* {{annotated link|परिवर्तनशील सिद्धांत}}


==संदर्भ==
==संदर्भ==
Line 45: Line 45:
{{Manifolds}}
{{Manifolds}}
{{Tensors}}
{{Tensors}}
[[Category: विभेदक ज्यामिति]] [[Category: टेन्सर]] [[Category: सामान्य सापेक्षता में टेन्सर]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 29/03/2023]]
[[Category:Created On 29/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:टेन्सर]]
[[Category:विभेदक ज्यामिति]]
[[Category:सामान्य सापेक्षता में टेन्सर]]

Latest revision as of 20:37, 16 May 2023

भौतिक विज्ञान और गणित में, एक स्यूडो टेन्सर सामान्यतः एक मात्रा है जो एक अभिविन्यास-संरक्षण समन्वय परिवर्तन (उदाहरण के लिए एक उचित घूर्णन ) के तहत एक टेंसर की तरह रूपांतरित होता है, किन्तु इसके अतिरिक्त एक अभिविन्यास-उलटने वाले समन्वय परिवर्तन (जैसे, एक अनुचित घूर्णन ) के तहत संकेत बदलता है, जो एक परिवर्तन है जिसे परावर्तन (गणित) के बाद एक उचित घुमाव के रूप में व्यक्त किया जा सकता है। यह एक स्यूडोवेक्टर का सामान्यीकरण है। टेन्सर या स्यूडोटेन्सर चिह्न का मूल्यांकन करने के लिए, इसे कुछ सदिशों के साथ टेन्सर संकुचन होना चाहिए, जितना कि इसका टेन्सर (आंतरिक परिभाषा) या टेंसर पद है, उस स्थान से संबंधित है जहाँ टेन्सर निर्देशांक को अप्रभावित रखते हुए घूर्णन किया जाता है (अलग से) आधार परिवर्तन के स्थिति में कोई क्या करता है)। अनुचित घूर्णन के तहत एक ही पद के एक स्यूडोटेन्सर और एक उचित टेन्सर के अलग-अलग चिह्न होंगे जो पद पर समानता (गणित) होने पर निर्भर करता है। कभी-कभी अक्षो के व्युत्क्रमण का उपयोग स्यूडोटेन्सर के व्यवहार को देखने के लिए एक अनुचित घुमाव के उदाहरण के रूप में किया जाता है, किन्तु यह केवल तभी काम करता है जब सदिश अंतरिक्ष आयाम विषम हों अन्यथा व्युत्क्रम एक अतिरिक्त प्रतिबिंब के बिना एक उचित घुमाव है।

स्यूडोटेन्सर (और इसी तरह स्यूडोवेक्टर के लिए) के लिए एक दूसरा अर्थ है, जो सामान्य सापेक्षता तक सीमित है। टेन्सर सख्त परिवर्तन नियमो का पालन करते हैं, किन्तु इस अर्थ में स्यूडोटेनर्स इतने विवश नहीं हैं। नतीजतन एक स्यूडोटेन्सर का रूप, सामान्य रूप से, संदर्भ के फ्रेम के रूप में बदल जाएगा। स्यूडोटेन्सर्स वाला एक समीकरण जो एक फ्रेम में रोकता है, जरूरी नहीं कि वह एक अलग फ्रेम में हो। यह सीमित प्रासंगिकता के स्यूडोटेनर्स बनाता है क्योंकि जिन समीकरणों में वे प्रकट होते हैं वे सहप्रसरण नहीं होते हैं और रूप में सदिशों के प्रतिप्रसरण होते हैं।

परिभाषा

दो अलग-अलग गणितीय वस्तुओं को अलग-अलग संदर्भों में स्यूडोटेन्सर कहा जाता है।

पहला संदर्भ अनिवार्य रूप से एक अतिरिक्त संकेत कारक द्वारा गुणा किया गया एक टेंसर है, जैसे कि स्यूडोटेन्सर प्रतिबिंब के तहत साइन बदलता है जब एक सामान्य टेन्सर नहीं होता है। एक परिभाषा के अनुसार, प्रकार का एक स्यूडोटेन्सर P एक ज्यामितीय वस्तु है जिसके घटकों को इच्छानुसार सूचकांक और परिवर्तन नियम का पालन करता है

आधार परिवर्तन के तहत।[1][2][3] यहाँ नए और पुराने आधारों में स्यूडोटेंसर के घटक हैं, क्रमशः प्रतिपरिवर्ती सूचकांकों के लिए संक्रमण आव्यूह है, सहप्रसरण सूचकांकों के लिए संक्रमण आव्यूह है, औरयह परिवर्तन नियम केवल कारक की उपस्थिति से सामान्य टेन्सर के नियम से भिन्न होता है।

दूसरा संदर्भ जहां स्यूडोटेन्सर शब्द का प्रयोग किया गया है वह सामान्य सापेक्षता है। उस सिद्धांत में, एक ऊर्जा-संवेग टेन्सर द्वारा गुरुत्वाकर्षण क्षेत्र की ऊर्जा और संवेग का वर्णन नहीं किया जा सकता है। इसके,अतिरिक्त कोई ऐसी वस्तुओं का परिचय देता है जो प्रतिबंधित समन्वय परिवर्तनों के संबंध में केवल टेंसर के रूप में व्यवहार करती हैं। कड़ाई से बोलते हुए, ऐसी वस्तुएं टेन्सर बिल्कुल नहीं होती हैं। ऐसे स्यूडोटेन्सर का एक प्रसिद्ध उदाहरण लैंडौ-लिफ्शिट्ज़ स्यूडोटेन्सर है।

उदाहरण

समायोज्य कई गुना पर, गैर-उन्मुखता के कारण विश्व स्तर पर एक वॉल्यूम फॉर्म को परिभाषित नहीं कर सकता है, किन्तु एक आयतन तत्व को परिभाषित कर सकता है, जो औपचारिक रूप से कई गुना घनत्व है, और इसे छद्म-मात्रा प्रपत्र भी कहा जा सकता है,अतिरिक्त साइन ट्विस्ट के कारण (साइन बंडल के साथ टेंसरिंग)। आयतन तत्व पहली परिभाषा के अनुसार एक स्यूडोटेन्सर घनत्व है।

जैकबियन आव्यूह और निर्धारक के निर्धारक के पूर्ण मान के कारक के समावेश के माध्यम से बहु-आयामी एकीकरण में प्रतिस्थापन द्वारा एकीकरण प्राप्त किया जा सकता है। निरपेक्ष मान का उपयोग एकीकरण (मात्रा) तत्व को सकारात्मक रखने के सम्मेलन की भरपाई के लिए अनुचित समन्वय परिवर्तनों के लिए एक संकेत परिवर्तन का परिचय देता है; इस प्रकार, पहली परिभाषा के अनुसार एक एकीकृत एक स्यूडोटेन्सर घनत्व का एक उदाहरण है।

मैनिफोल्ड पर एक एफ़िन संबंध के क्रिस्टोफेल प्रतीकों को वेक्टर क्षेत्र के समन्वय अभिव्यक्ति के आंशिक व्युत्पन्न के लिए सुधार नियमो के रूप में माना जा सकता है जिससे निर्देशांक के संबंध में इसे वेक्टर क्षेत्र के सहसंयोजक व्युत्पन्न के रूप में प्रस्तुत किया जा सकता है। जबकि एफ़िन संबंध स्वयं निर्देशांक की पसंद पर निर्भर नहीं करता है, इसके क्रिस्टोफ़ेल प्रतीक करते हैं, जिससे उन्हें दूसरी परिभाषा के अनुसार एक स्यूडोटेन्सर मात्रा बना दिया जाता है।

यह भी देखें

संदर्भ

  1. Sharipov, R.A. (1996). Course of Differential Geometry, Ufa:Bashkir State University, Russia, p. 34, eq. 6.15. ISBN 5-7477-0129-0, arXiv:math/0412421v1
  2. Lawden, Derek F. (1982). An Introduction to Tensor Calculus, Relativity and Cosmology. Chichester:John Wiley & Sons Ltd., p. 29, eq. 13.1. ISBN 0-471-10082-X
  3. Borisenko, A. I. and Tarapov, I. E. (1968). Vector and Tensor Analysis with Applications, New York:Dover Publications, Inc., p. 124, eq. 3.34. ISBN 0-486-63833-2


बाहरी संबंध