स्पर्शरेखा स्थान: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 174: Line 174:
{{Manifolds}}
{{Manifolds}}


{{DEFAULTSORT:Tangent Space}}[[Category: डिफरेंशियल टोपोलॉजी]]
{{DEFAULTSORT:Tangent Space}}
[[Category: डिफरेंशियल ज्योमेट्री]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Tangent Space]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates|Tangent Space]]
[[Category:Created On 11/11/2022]]
[[Category:Created On 11/11/2022|Tangent Space]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates|Tangent Space]]
[[Category:Machine Translated Page|Tangent Space]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Tangent Space]]
[[Category:Pages with script errors|Tangent Space]]
[[Category:Short description with empty Wikidata description|Tangent Space]]
[[Category:Sidebars with styles needing conversion|Tangent Space]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Tangent Space]]
[[Category:Templates generating microformats|Tangent Space]]
[[Category:Templates that add a tracking category|Tangent Space]]
[[Category:Templates that are not mobile friendly|Tangent Space]]
[[Category:Templates that generate short descriptions|Tangent Space]]
[[Category:Templates using TemplateData|Tangent Space]]
[[Category:Wikipedia metatemplates|Tangent Space]]
[[Category:डिफरेंशियल ज्योमेट्री|Tangent Space]]
[[Category:डिफरेंशियल टोपोलॉजी|Tangent Space]]

Latest revision as of 10:21, 4 August 2023

गणित में, मैनिफोल्ड का स्पर्शरेखा स्थान दो-आयामी स्पेस में वक्रों के लिए स्पर्शरेखा (ज्यामिति) रेखाओं और उच्च आयामों में त्रि-आयामी स्पेस में सतहों के स्पर्शरेखा तल का सामान्यीकरण है। भौतिकी के संदर्भ में किसी बिंदु पर मैनिफोल्ड के स्पर्शरेखा स्थान को मैनिफोल्ड पर गतिमान कण के लिए संभावित वेग के स्थान के रूप में देखा जा सकता है।

अनौपचारिक विवरण

एक बिंदु के स्पर्शरेखा स्थान का सचित्र प्रतिनिधित्व वृत्त पर। इस स्पर्शरेखा स्थान में सदिश संभावित वेग (वृत्त पर गतिमान किसी वस्तु का) को दर्शाता है . उस दिशा में पास के बिंदु पर जाने के पश्चात्, उस बिंदु के स्पर्शरेखा स्थान में सदिश द्वारा वेग दिया जाएगा - भिन्न स्पर्शरेखा स्थान जो नहीं दिखाया गया है।

अंतर ज्यामिति में, कोई व्यक्ति विभेदक मैनिफोल्ड के प्रत्येक बिंदु से स्पर्शरेखा स्थान जोड़ सकता है - वास्तविक सदिश स्थान जिसमें सहज रूप से संभावित दिशाएं सम्मिलित होती हैं जिसमें कोई स्पर्शरेखा से गुजर सकता है पर स्पर्शरेखा स्थान के तत्वों को पर स्पर्शरेखा सदिश स्थलकहा जाता है। यह यूक्लिडियन समिष्ट में दिए गए प्रारंभिक बिंदु के आधार पर सदिश (गणित और भौतिकी) की धारणा का सामान्यीकरण है। कनेक्टेड समिष्ट मैनिफोल्ड के प्रत्येक बिंदु पर स्पर्शरेखा स्थान का आयाम मैनिफोल्ड के समान ही होता है।

उदाहरण के लिए, यदि दिया गया मैनिफोल्ड a वृत्त है | तब कोई बिंदु पर स्पर्शरेखा स्थान को उस समतल के रूप में चित्रित कर सकता है जो उस बिंदु पर वृत्त को छूता है और बिंदु के माध्यम से वृत्त की त्रिज्या के लंबवत है। अधिक सामान्यतः, यदि किसी दिए गए मैनिफोल्ड को यूक्लिडियन समिष्ट के एम्बेडिंग सबमनिफोल्ड के रूप में माना जाता है, तब कोई इस शाब्दिक प्रचलन में स्पर्शरेखा स्थान को चित्रित कर सकता है। यह समानांतर परिवहन को परिभाषित करने का पारंपरिक दृष्टिकोण था। विभेदक ज्यामिति और सामान्य सापेक्षता में अनेकलेखक इसका उपयोग करते हैं।[1] [2] अधिक सख्ती से, यह एफ़िन स्पर्शरेखा स्थान को परिभाषित करता है, जो आधुनिक शब्दावली द्वारा वर्णित स्पर्शरेखा सदिश के स्थान से भिन्न है।

इसके विपरीत, बीजगणितीय ज्यामिति में, बीजगणितीय विविधता के बिंदु पर स्पर्शरेखा स्थान की आंतरिक परिभाषा होती है जो कम से कम के आयाम के साथ सदिश स्थान देती है। वे बिंदु जिन पर स्पर्शरेखा स्थान का आयाम बिल्कुल के समान है, गैर-एकवचन बिंदु कहलाते हैं; अन्य को एकवचन बिंदु कहा जाता है। उदाहरण के लिए, वक्र जो स्वयं को काटता है, उस बिंदु पर कोई अद्वितीय स्पर्श रेखा नहीं होती है। के विलक्षण बिंदु वे हैं जहां "अनेकगुना होने का परीक्षण" विफल हो जाता है। ज़ारिस्की स्पर्शरेखा स्थान देखें।

इसमें मैनिफोल्ड के स्पर्शरेखा रिक्त स्थान प्रस्तुत किए जाने के पश्चात्, कोई सदिश क्षेत्र को परिभाषित कर सकता है, जो स्पेस में घूमने वाले कणों के वेग क्षेत्र का सार है। सदिश क्षेत्र मैनिफोल्ड के प्रत्येक बिंदु पर उस बिंदु पर स्पर्शरेखा स्थान से सदिश को सहज विधियों से जोड़ता है। ऐसा सदिश क्षेत्र मैनिफोल्ड पर सामान्यीकृत साधारण अंतर समीकरण को परिभाषित करने का कार्य करता है | ऐसे अंतर समीकरण का समाधान मैनिफोल्ड पर अवकलनीय वक्र होता है जिसका किसी भी बिंदु पर व्युत्पन्न सदिश क्षेत्र द्वारा उस बिंदु से जुड़े स्पर्शरेखा सदिश के सामान्य होता है।

मैनिफोल्ड के सभी स्पर्शरेखा स्थानों को मूल मैनिफोल्ड के दोगुने आयाम के साथ नया विभेदक मैनिफोल्ड बनाने के लिए "एक साथ चिपकाया" जा सकता है, जिसे मैनिफोल्ड का स्पर्शरेखा बंडल कहा जाता है।

औपचारिक परिभाषाएं

उपरोक्त अनौपचारिक विवरण परिवेशी सदिश स्थान में एम्बेड होने की मैनिफोल्ड की क्षमता पर निर्भर करता है ताकि स्पर्शरेखा सदिश परिवेशीय स्पेस में मैनिफोल्ड से "बाहर चिपक" सकते हैं। चूँकि, स्पर्शरेखा स्थान की धारणा को सिर्फ मैनिफोल्ड के आधार पर परिभाषित करना अधिक सुविधाजनक है।[3]

मैनिफोल्ड के स्पर्शरेखा स्थानों को परिभाषित करने के विभिन्न समकक्ष विधियां होती हैं। जबकि वक्रों के वेग के माध्यम से यह परिभाषा सहज रूप से सबसे सरल होती है | इसके साथ कार्य करना सबसे भारी होता है। इसमें अधिक सुरुचिपूर्ण और अमूर्त दृष्टिकोण नीचे वर्णित होता हैं।

स्पर्शरेखा वक्रों के माध्यम से परिभाषा

एंबेडेड-मैनिफोल्ड चित्र में, बिंदु पर स्पर्शरेखा सदिश को बिंदु से गुजरने वाले वक्र के वेग के रूप में माना जाता है। इसलिए हम स्पर्शरेखा सदिश को पर दूसरे के स्पर्शरेखा होते हुए से गुजरने वाले वक्रों के समतुल्य वर्ग के रूप में परिभाषित कर सकते हैं।

मान लीजिए कि भिन्न -भिन्न मैनिफोल्ड है स्मूथ के साथ) और वह समन्वय चार्ट चुनें , जहां का खुला उपसमुच्चय है जिसमें है। आगे मान लें कि दो वक्र में के साथ ऐसे दिए गए हैं कि दोनों सामान्य अर्थों में भिन्न -भिन्न हैं (हम पर आरंभ किए गए इन भिन्न -भिन्न वक्रों को कहते हैं)। फिर और को पर समतुल्य कहा जाता है यदि और केवल यदि और के व्युत्पन्न पर संपाती होते हैं। यह (13) पर प्रारंभ किए गए सभी भिन्न-भिन्न वक्रों के समुच्चय पर तुल्यता संबंध को परिभाषित करता है और ऐसे वक्रों के तुल्यता वर्गों को पर के स्पर्शरेखा सदिश के रूप में जाना जाता है। ऐसे किसी भी वक्र के समतुल्य वर्ग को द्वारा दर्शाया जाता है। पर के स्पर्शरेखा स्थान को, द्वारा निरूपित किया जाता है, फिर सभी स्पर्शरेखाओं के समुच्चय के रूप में परिभाषित किया जाता है पर सदिश, यह निर्देशांक चार्ट की पसंद पर निर्भर नहीं करता है।

स्पर्शरेखा स्थान और स्पर्शरेखा सदिश , वक्र के माध्यम से यात्रा कर रहा है .

पर सदिश-स्पेस ऑपरेशंस को परिभाषित करने के लिए, हम चार्ट का उपयोग करते हैं और मानचित्र को से परिभाषित करते हैं जहां मानचित्र विशेषण बन जाता है और इसका उपयोग सदिश-स्पेस संचालन को से तक स्थानांतरित करने के लिए किया जा सकता है, इस प्रकार पश्चात् वाले समुच्चय को -आयामी वास्तविक सदिश स्पेस में परिवर्तित दिया जाता है। फिर, किसी को यह जांचने की आवश्यकता होती है कि यह निर्माण विशेष चार्ट और उपयोग किए जा रहे वक्र पर निर्भर नहीं है | और वास्तव में यह नहीं होता है।

व्युत्पत्तियों के माध्यम से परिभाषा

अब मान लीजिए कि मैनिफोल्ड होता है। वास्तविक-मूल्यवान फलन को से संबंधित माना जाता है यदि प्रत्येक समन्वय चार्ट के लिए, मानचित्र असीम रूप से भिन्न होता है। ध्यान दें कि बिंदुवार उत्पाद और कार्यों के योग और अदिश गुणन के संबंध में वास्तविक साहचर्य बीजगणित होता है।

पर व्युत्पत्ति (सार बीजगणित) को रेखीय मानचित्र के रूप में परिभाषित किया गया है जो लीबनिज पहचान को संतुष्ट करता है |

जो कलन के उत्पाद नियम पर आधारित होता है।

(प्रत्येक समान रूप से स्थिर फलन के लिए यह उस का अनुसरण करता है।)

सेटिंग पर सभी व्युत्पत्तियों के समुच्चय को निरूपित करें

  • तथा

को सदिश समष्टि में परिवर्तित कर देता है।

सामान्यीकरण

इस परिभाषा का सामान्यीकरण संभव है, उदाहरण के लिए, समष्टि मैनिफोल्ड और बीजगणितीय विविधता के लिए होता हैं। चूँकि, कार्यों के पूर्ण बीजगणित से व्युत्पत्तियों की जांच करने के अतिरिक्त, कार्यों के रोगाणु (गणित) के स्तर पर कार्य करना चाहिए। इसका कारण यह है कि संरचना शीफ ऐसी संरचनाओं के लिए सही नहीं हो सकता है। उदाहरण के लिए, मान लीजिए संरचना शीफ के साथ बीजगणितीय प्रकार है। फिर बिंदु पर ज़ारिस्की स्पर्शरेखा स्थान सभी -व्युत्पत्तियों का संग्रह है, जहां जमीनी क्षेत्र है और पर का आधार है।

परिभाषाओं की समानता

और विभेदक वक्र के लिए, जैसे कि को परिभाषित करता है (जहां व्युत्पन्न को सामान्य अर्थ में लिया जाता है क्योंकि से तक फलन है। कोई यह सुनिश्चित कर सकता है कि बिंदु पर व्युत्पत्ति होती है, और समतुल्य वक्र समान व्युत्पत्ति उत्पन्न करते हैं। इस प्रकार, तुल्यता वर्ग के लिए हम को परिभाषित कर सकते हैं जहां वक्र को इच्छानुसार चुना गया है। मानचित्र सदिश है समतुल्य वर्गों के स्थान और बिंदु पर व्युत्पत्तियों के मध्य स्पेस समरूपता होती हैं |

कोटैंजेंट रिक्त स्थान के माध्यम से परिभाषा

फिर से, हम a मैनिफोल्ड और बिंदु से शुरू करते हैं। के आदर्श पर विचार करें जिसमें अर्थात पर लुप्त होने वाले सभी सुचारु कार्य सम्मिलित हैं। तब और दोनों वास्तविक सदिश समष्टि हैं, और भागफल स्थान (रैखिक बीजगणित) समष्टि को टेलर के प्रमेय के उपयोग के माध्यम से कोटैंजेंट समष्टि के समाकृतिकता में दिखाया जा सकता है। फिर स्पर्शरेखा स्थान को के दोहरे स्थान के रूप में परिभाषित किया जा सकता है।

चूंकि यह परिभाषा सबसे अधिक सारगर्भित है, यह ऐसी परिभाषा भी है जिसे अन्य समायोजन में सबसे आसानी से स्थानांतरित किया जा सकता है, उदाहरण के लिए, बीजगणितीय ज्यामिति में बीजगणितीय विविधता के लिए माना जाता है।

यदि पर व्युत्पत्ति है, तब प्रत्येक के लिए होता हैं | जिसका अर्थ है कि रेखीय मानचित्र को उत्पन्न करता है। इसके विपरीत, यदि रेखीय मानचित्र है, तब पर व्युत्पत्ति को परिभाषित करता है। यह व्युत्पत्तियों के माध्यम से परिभाषित स्पर्शरेखा स्थानों और कोटैंजेंट स्थानों के माध्यम से परिभाषित स्पर्शरेखा स्थानों के मध्य तुल्यता उत्पन्न करता है।

गुण

यदि का खुला उपसमुच्चय है, तब प्राकृतिक विधियों से मैनिफोल्ड है | के विवर्त उपसमुच्चय पर पहचान मानचित्र के रूप में समन्वय चार्ट लिया जाता हैं | और स्पर्शरेखा रिक्त स्थान सभी स्वाभाविक रूप से के साथ पहचाने जाते हैं।

दिशात्मक व्युत्पन्न के रूप में स्पर्शरेखा सदिश

स्पर्शरेखा सदिशों के बारे में सोचने का दूसरा विधि दिशात्मक व्युत्पन्न है। में सदिश दिए जाने पर, बिंदु पर संबंधित दिशात्मक व्युत्पन्न को परिभाषित किया जाता है

यह मानचित्र स्वाभाविक रूप से पर व्युत्पत्ति है। इसके अतिरिक्त, में बिंदु पर प्रत्येक व्युत्पत्ति इस रूप की होती है। इसलिए, सदिशों (एक बिंदु पर स्पर्शरेखा सदिश के रूप में माना जाता है) और बिंदु पर व्युत्पत्तियों के मध्य वन-से-वन पत्राचार होता है।

चूंकि किसी बिंदु पर सामान्य मैनिफोल्ड के स्पर्शरेखा सदिशों को उस बिंदु पर व्युत्पत्तियों के रूप में परिभाषित किया जा सकता है, इसलिए उन्हें दिशात्मक व्युत्पत्तियों के रूप में सोचना स्वाभाविक है। विशेष रूप से, यदि बिंदु पर का स्पर्शरेखा सदिश है (व्युत्पत्ति के रूप में माना जाता है), तो दिशा में दिशात्मक व्युत्पन्न को परिभाषित करें ,

यदि हम को पर प्रारंभ किए गए अवकलनीय वक्र के प्रारंभिक वेग के रूप में सोचते हैं | अर्थात, , तो इसके अतिरिक्त, को परिभाषित करते हैं |

एक बिंदु पर स्पर्शरेखा स्थान का आधार

मैनिफोल्ड के लिए, यदि के साथ चार्ट दिया गया है, तो कोई के क्रमबद्ध आधार को परिभाषित कर सकता है |

फिर प्रत्येक स्पर्शरेखा सदिश के लिए होता हैं |

इसलिए यह सूत्र को समन्वय चार्ट द्वारा परिभाषित आधार स्पर्शरेखा सदिश के रैखिक संयोजन के रूप में व्यक्त करता है।[4]

मानचित्र का व्युत्पन्न

प्रत्येक स्मूथ (या भिन्न -भिन्न ) मानचित्र स्मूथ (या भिन्न -भिन्न ) मैनिफोल्ड्स के मध्य उनके संबंधित स्पर्शरेखा स्थानों के मध्य प्राकृतिक रैखिक मानचित्रों को प्रेरित करता है |

यदि स्पर्शरेखा स्थान को अवकलनीय वक्रों के माध्यम से परिभाषित किया जाता है, तब यह मानचित्र द्वारा परिभाषित किया जाता है

यदि, इसके अतिरिक्त, स्पर्शरेखा स्थान को व्युत्पत्तियों के माध्यम से परिभाषित किया जाता है, तब यह मानचित्र द्वारा परिभाषित किया जाता है

रेखीय मानचित्र को पर का विभिन्न प्रकार से व्युत्पन्न, कुल व्युत्पन्न, अंतर या पुशफॉरवर्ड कहा जाता है। इसे प्रायः अनेक अन्य नोटेशनों का उपयोग करके व्यक्त किया जाता है |

एक अर्थ में, व्युत्पन्न के निकट सबसे अच्छा रैखिक सन्निकटन है। ध्यान दें कि जब , तो मानचित्र फलन के अंतर की सामान्य धारणा के साथ मेल खाता है | इसमें स्थानीय निर्देशांक में का व्युत्पन्न जैकोबियन आव्यूह और निर्धारक द्वारा दिया जाता है।

व्युत्पन्न मानचित्र के संबंध में महत्वपूर्ण परिणाम निम्नलिखित है |

Theorem — यदि एक स्थानीय भिन्नता है in , तब एक रैखिक है समरूपता। इसके विपरीत, यदि निरंतर भिन्न है और एक समरूपता है, तो एक विवृत निकटतम है of ऐसा है कि मानचित्र इसकी छवि पर अलग-अलग रूप से।

यह मैनिफोल्ड्स के मध्य मानचित्रों के लिए व्युत्क्रम फलन प्रमेय का सामान्यीकरण है।

यह भी देखें

टिप्पणियाँ

  1. do Carmo, Manfredo P. (1976). वक्रों और सतहों की विभेदक ज्यामिति. Prentice-Hall.:
  2. Dirac, Paul A. M. (1996) [1975]. सापेक्षता का सामान्य सिद्धांत. Princeton University Press. ISBN 0-691-01146-X.
  3. Chris J. Isham (1 January 2002). भौतिकविदों के लिए आधुनिक विभेदक ज्यामिति. Allied Publishers. pp. 70–72. ISBN 978-81-7764-316-9.
  4. Lerman, Eugene. "डिफरेंशियल ज्योमेट्री का परिचय" (PDF). p. 12.


संदर्भ


इस पृष्ठ में अनुपलब्ध आंतरिक लिंक की सूची

  • अंक शास्त्र
  • वृत्त
  • भिन्न करने योग्य अनेकगुना
  • स्पर्शरेखा सदिश
  • एक सदिश स्पेस का आयाम
  • यूक्लिडियन समिष्ट
  • सीधा
  • बीजीय किस्म
  • मानचित्र (गणित)
  • द्विभाजित
  • साहचर्य बीजगणित
  • रैखिक मानचित्र
  • प्रॉडक्ट नियम
  • ग्राउंड फील्ड
  • आधार (शेफ)
  • आदर्श (अंगूठी सिद्धांत)
  • दोहरी जगह
  • पहचान समारोह
  • अंतर कलन)
  • उलटा कार्य प्रमेय
  • समन्वय प्रेरित आधार
  • वक्रों की विभेदक ज्यामिति

बाहरी संबंध