लाई व्युत्पन्न: Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 85: Line 85:
अब हम एक बीजगणितीय परिभाषा देते हैं। प्रदिश क्षेत्र के लाई व्युत्पन्न के लिए बीजगणितीय परिभाषा निम्नलिखित चार स्वयंसिद्धों से होती है:
अब हम एक बीजगणितीय परिभाषा देते हैं। प्रदिश क्षेत्र के लाई व्युत्पन्न के लिए बीजगणितीय परिभाषा निम्नलिखित चार स्वयंसिद्धों से होती है:


: अभिगृहीत 1. किसी फलन का लाइ व्युत्पन्न फलन के दिशात्मक अवकलज के बराबर होता है। यह तथ्य प्रायः सूत्र द्वारा व्यक्त किया जाता है
: अभिगृहीत 1. किसी फलन का लाइ व्युत्पन्न फलन के दिशात्मक अवकलज के समान होता है। यह तथ्य प्रायः सूत्र द्वारा व्यक्त किया जाता है
::<math>\mathcal{L}_Yf=Y(f)</math>
::<math>\mathcal{L}_Yf=Y(f)</math>
: अभिगृहीत 2। लाई व्युत्पन्न लीबनिज के नियम के निम्नलिखित संस्करण का पालन करता है: किसी भी प्रदिश क्षेत्र ''S'' और ''T'' के लिए, हमारे पास है
: अभिगृहीत 2. लाई व्युत्पन्न लीबनिज के नियम के निम्नलिखित संस्करण का पालन करता है: किसी भी प्रदिश क्षेत्र ''S'' और ''T'' के लिए, हमारे पास है
::<math>\mathcal{L}_Y(S\otimes T)=(\mathcal{L}_YS)\otimes T+S\otimes (\mathcal{L}_YT).</math>
::<math>\mathcal{L}_Y(S\otimes T)=(\mathcal{L}_YS)\otimes T+S\otimes (\mathcal{L}_YT).</math>
: अभिगृहीत 3. लाइ व्युत्पन्न प्रदिश संकुचन के संबंध में लीबनिज नियम का पालन करता है:
: अभिगृहीत 3. लाइ व्युत्पन्न संकुचन के संबंध में लीबनिज नियम का पालन करता है:
::<math> \mathcal{L}_X (T(Y_1, \ldots, Y_n)) = (\mathcal{L}_X T)(Y_1,\ldots, Y_n) + T((\mathcal{L}_X Y_1), \ldots, Y_n) + \cdots + T(Y_1, \ldots, (\mathcal{L}_X Y_n)) </math>
::<math> \mathcal{L}_X (T(Y_1, \ldots, Y_n)) = (\mathcal{L}_X T)(Y_1,\ldots, Y_n) + T((\mathcal{L}_X Y_1), \ldots, Y_n) + \cdots + T(Y_1, \ldots, (\mathcal{L}_X Y_n)) </math>
: अभिगृहीत 4. लाइ व्युत्पन्न फलनों पर बाहरी व्युत्पन्न के साथ आवागमन करता है:
: अभिगृहीत 4. लाइ व्युत्पन्न फलनों पर बाहरी व्युत्पन्न के साथ परिवर्तित होता है:
::<math> [\mathcal{L}_X, d] = 0 </math>
::<math> [\mathcal{L}_X, d] = 0 </math>
यदि ये स्वयंसिद्ध धारण करते हैं, तो लाई व्युत्पन्न को लागू करना <math>\mathcal{L}_X</math> संबंध के लिए <math> df(Y) = Y(f) </math> पता चलता है कि
यदि ये अभिगृहीत मान्य हैं, तो तो संबंध <math> df(Y) = Y(f) </math> पर लाइ व्युत्पन्न <math>\mathcal{L}_X</math> को परिपालन करने से पता चलता है कि
::<math>\mathcal{L}_X Y (f) = X(Y(f)) - Y(X(f)),</math>
::<math>\mathcal{L}_X Y (f) = X(Y(f)) - Y(X(f)),</math>
जो सदिश क्षेत्रों के लाइ कोष्ठक के लिए मानक परिभाषाओं में से एक है।
जो लाइ कोष्ठक के लिए मानक परिभाषाओं में से एक है।


एक विभेदक रूप पर काम करने वाला लाई व्युत्पन्न बाहरी उत्पाद के साथ [[आंतरिक उत्पाद]] का कम्यूटेटर # रिंग सिद्धांत है। तो अगर α एक अवकल रूप है,
विभेदक रूप पर अभिनय करने वाला लाई व्युत्पन्न बाहरी गुणन के साथ आंतरिक गुणन का एंटीकोम्यूटेटर है। तो अगर α एक अवकल रूप है,
::<math>\mathcal{L}_Y\alpha=i_Yd\alpha+di_Y\alpha.</math>
::<math>\mathcal{L}_Y\alpha=i_Yd\alpha+di_Y\alpha.</math>
यह आसानी से जाँच कर पता चलता है कि अभिव्यक्ति बाहरी व्युत्पन्न के साथ चलती है, एक व्युत्पत्ति है (श्रेणीबद्ध व्युत्पत्तियों का एक एंटीकोम्यूटेटर होने के नाते) और फलनों पर सही काम करता है।
यह जाँच कर आसानी से अनुसरण करता है कि अभिव्यक्ति बाहरी व्युत्पन्न के साथ चलती है, एक व्युत्पत्ति है (श्रेणीबद्ध व्युत्पत्तियों का एक एंटीकोम्यूटेटर होने के नाते) और फलनों पर सही काम करता है।


स्पष्ट रूप से, T को प्रकार का एक प्रदिश क्षेत्र होने दें {{nowrap|(''p'', ''q'')}}. T को चिकने फंक्शन [[ अनुभाग (फाइबर बंडल) ]] α का एक अलग-अलग [[बहुरेखीय नक्शा]] माना जाता है<sup>1</सुप>, <sup>2</सुप>, ..., <sup>p</sup> कोटैंजेंट बंडल T का<sup>∗</sup>M और सेक्शन X का<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>q</sub> [[स्पर्शरेखा बंडल]] TM का, लिखा हुआ T(α<sup>1</सुप>, <sup>2</sup>, ..., एक्स<sub>1</sub>, एक्स<sub>2</sub>, ...) R में। सूत्र द्वारा ''Y'' के साथ ''T'' के लाई व्युत्पन्न को परिभाषित करें
स्पष्ट रूप से, T को {{nowrap|(''p'', ''q'')}} प्रकार का एक प्रदिश क्षेत्र होने दें। ''T'' को सह स्पर्शरेखा बंडल ''T''<sup>∗</sup>''M'' के समतल वर्गों ''α''<sup>1</sup>, ''α''<sup>2</sup>, ..., ''α<sup>p</sup>'' का एक अलग बहुरेखीय मानचित्र होने पर विचार करें और स्पर्शरेखा बंडल ''TM'' के ''X''<sub>1</sub>, ''X''<sub>2</sub>, ..., ''X''<sub>q</sub> वर्गों का ''T''(''α''<sup>1</sup>, ''α''<sup>2</sup>, ..., ''X''<sub>1</sub>, ''X''<sub>2</sub>, ...) को '''R''' में लिखा है।


:<math>(\mathcal{L}_Y T)(\alpha_1, \alpha_2, \ldots, X_1, X_2, \ldots) =Y(T(\alpha_1,\alpha_2,\ldots,X_1,X_2,\ldots))</math>
:<math>(\mathcal{L}_Y T)(\alpha_1, \alpha_2, \ldots, X_1, X_2, \ldots) =Y(T(\alpha_1,\alpha_2,\ldots,X_1,X_2,\ldots))</math>
Line 109: Line 109:
-  T(\alpha_1, \alpha_2, \ldots, X_1, \mathcal{L}_YX_2, \ldots) - \ldots
-  T(\alpha_1, \alpha_2, \ldots, X_1, \mathcal{L}_YX_2, \ldots) - \ldots
</math>
</math>
विश्लेषणात्मक और बीजगणितीय परिभाषाओं को पुशफॉरवर्ड के गुणों और भेदभाव के लिए सामान्य लीबनिज़ नियम का उपयोग करके समकक्ष साबित किया जा सकता है। लाई व्युत्पन्न संकुचन के साथ आवागमन करता है।
विश्लेषणात्मक और बीजगणितीय परिभाषाओं को विभेदीकरण के लिए  ज़ारी रखना और लीबनिज़ नियम का उपयोग करके समतुल्य सिद्ध किया जा सकता है। लाई व्युत्पन्न संकुचन के साथ आवागमन करता है।


=== एक अवकल रूप का लाइ व्युत्पन्न ===
=== एक अवकल रूप का लाई व्युत्पन्न ===
{{see also|Interior product}}
{{see also|आंतरिक उत्पाद}}
प्रदिश क्षेत्रों का एक विशेष रूप से महत्वपूर्ण वर्ग विभेदक रूपों का वर्ग है। विभेदक रूपों के स्थान पर लाई व्युत्पन्न का प्रतिबंध बाहरी व्युत्पन्न से निकटता से संबंधित है। लाई व्युत्पन्न और बाहरी व्युत्पन्न दोनों अलग-अलग तरीकों से व्युत्पन्न के विचार को पकड़ने का प्रयास करते हैं। एक आंतरिक उत्पाद के विचार को पेश करके इन अवकलों को पाटा जा सकता है, जिसके बाद संबंध एक पहचान के रूप में सामने आते हैं जिसे कार्टन के सूत्र के रूप में जाना जाता है। कार्टन के सूत्र का उपयोग अवकल रूपों के स्थान पर लाई व्युत्पन्न की परिभाषा के रूप में भी किया जा सकता है।


बता दें कि ''एम'' कई गुना है और ''एम'' पर ''एक्स'' एक सदिश क्षेत्र है। होने देना <math>\omega \in \Lambda^{k+1}(M)</math> एक हो {{nowrap|(''k'' + 1)}}-[[विभेदक रूप]], अर्थात प्रत्येक के लिए <math>p \in M</math>, <math>\omega(p)</math> से एक [[वैकल्पिक रूप]] बहुरेखीय मानचित्र है <math>(T_p M)^{k + 1}</math> वास्तविक संख्या के लिए। X और ω का आंतरिक उत्पाद k- रूप है <math>i_X\omega</math> के रूप में परिभाषित
प्रदिश क्षेत्रों का एक विशेष रूप से महत्वपूर्ण वर्ग विभेदक रूपों का वर्ग है। विभेदक रूपों के स्थान पर लाई व्युत्पन्न का प्रतिबंध बाहरी व्युत्पन्न से निकटता से संबंधित है। लाई व्युत्पन्न और बाहरी व्युत्पन्न दोनों अलग-अलग प्रकार से व्युत्पन्न के विचार को ग्रहण करने का प्रयास करते हैं। एक आंतरिक गुणन के विचार को प्रस्तुत करके इन भिन्नता को दूर किया जा सकता है, जिसके बाद संबंध एक पहचान के रूप में सामने आते हैं जिसे कार्टन के सूत्र के रूप में जाना जाता है। कार्टन के सूत्र का उपयोग अवकल रूपों के स्थान पर लाई व्युत्पन्न की परिभाषा के रूप में भी किया जा सकता है।
 
''M'' को बहुसंख्यक और ''X'' को ''M प''एक सदिश क्षेत्र होने दें। मान लीजिए <math>\omega \in \Lambda^{k+1}(M)</math> एक {{nowrap|(''k'' + 1)}}-[[विभेदक रूप|रूप है]], अर्थात प्रत्येक <math>p \in M</math> के लिए, <math>\omega(p)</math> वास्तविक संख्याओं के लिए <math>(T_p M)^{k + 1}</math> से एक वैकल्पिक बहुरेखीय मानचित्र है। X और ω का आंतरिक गुणन k- रूप <math>i_X\omega</math> के रूप में परिभाषित है। 


:<math>(i_X\omega) (X_1, \ldots, X_k) = \omega (X,X_1, \ldots, X_k)\,</math>
:<math>(i_X\omega) (X_1, \ldots, X_k) = \omega (X,X_1, \ldots, X_k)\,</math>
विभेदक रूप <math>i_X\omega</math> को ''X'' के साथ ''ω'' का संकुचन भी कहा जाता है, और
अवकल रूप <math>i_X\omega</math> को ''X'' के साथ ''ω'' का संकुचन भी कहा जाता है, और
:<math>i_X:\Lambda^{k+1}(M) \rightarrow \Lambda^k(M)</math>
:<math>i_X:\Lambda^{k+1}(M) \rightarrow \Lambda^k(M)</math>
एक बाह्य बीजगणित है | <math>\wedge</math>-[[व्युत्पत्ति (सार बीजगणित)|व्युत्पत्ति (अमूर्त बीजगणित)]] जहां बाहरी बीजगणित |<math>\wedge</math>बाहरी बीजगणित है। वह है, <math>i_X</math> आर-रैखिक है, और
एक <math>\wedge</math>-[[व्युत्पत्ति (सार बीजगणित)|प्रति व्युत्पत्ति]] अवकलन है जहाँ <math>\wedge</math> अवकल रूपों पर वैज गुणन है। अर्थात्, <math>i_X</math> R-रैखिक है, और


:<math>i_X (\omega \wedge \eta) = (i_X \omega) \wedge \eta + (-1)^k \omega \wedge (i_X \eta)</math>
:<math>i_X (\omega \wedge \eta) = (i_X \omega) \wedge \eta + (-1)^k \omega \wedge (i_X \eta)</math>
के लिए <math>\omega \in \Lambda^k(M)</math> और η एक और अवकल रूप। वो भी एक फलन के लिए <math>f \in \Lambda^0(M)</math>, यानी, एम पर एक वास्तविक- या जटिल-मूल्यवान फलन, एक है
<math>\omega \in \Lambda^k(M)</math> और η के लिए एक और अवकल रूप। इसके अलावा, एक फलन <math>f \in \Lambda^0(M)</math> के लिए, अर्थात, ''M'' पर एक वास्तविक- या जटिल-मूल्यवान फलन, एक के पास है


:<math>i_{fX} \omega = f\,i_X\omega</math>
:<math>i_{fX} \omega = f\,i_X\omega</math>
कहाँ <math>f X</math> एफ और एक्स के उत्पाद को दर्शाता है।
जहाँ <math>f X</math> ''f'' और ''X'' के गुणनफल को दर्शाता है। बाहरी व्युत्पन्न और लाई व्युत्पन्न के मध्य संबंध को संक्षेप में निम्नानुसार किया जा सकता है। सबसे पहले, क्योंकि सदिश क्षेत्र X के संबंध में एक फलन f का लाई व्युत्पन्न दिशात्मक व्युत्पन्न X(f) के समान है, यह ''X'' के साथ ''f'' के बाहरी व्युत्पन्न के संकुचन के समान भी है:
बाहरी व्युत्पन्न्स और लाई व्युत्पन्न्स के मध्य संबंध को संक्षेप में निम्नानुअमूर्त किया जा सकता है। सबसे पहले, चूंकि एक सदिश क्षेत्र X के संबंध में एक फलन f का लाई व्युत्पन्न दिशात्मक व्युत्पन्न X(f) के समान है, यह अवकल फॉर्म के समान भी है # एक्स के साथ f के बाहरी व्युत्पन्न के रूपों पर संचालन :


:<math>\mathcal{L}_Xf = i_X \, df</math>
:<math>\mathcal{L}_Xf = i_X \, df</math>
एक सामान्य अवकल रूप के लिए, लाइ व्युत्पन्न इसी तरह एक संकुचन है, एक्स में भिन्नता को ध्यान में रखते हुए:
एक सामान्य अवकल रूप के लिए, लाइ व्युत्पन्न इसी तरह एक संकुचन है, ''X'' में भिन्नता को ध्यान में रखते हुए:


:<math>\mathcal{L}_X\omega = i_Xd\omega + d(i_X \omega).</math>
:<math>\mathcal{L}_X\omega = i_Xd\omega + d(i_X \omega).</math>
इस पहचान को कार्टन सूत्र, कार्टन समरूपता सूत्र या कार्टन के जादुई सूत्र के रूप में जाना जाता है। विवरण के लिए आंतरिक उत्पाद देखें। कार्टन सूत्र का उपयोग विभेदक रूप के लाई व्युत्पन्न की परिभाषा के रूप में किया जा सकता है। कार्टन का सूत्र विशेष रूप से दर्शाता है कि
इस पहचान को कार्टन सूत्र, कार्टन समरूपता सूत्र या कार्टन के मैजिक सूत्र के रूप में जाना जाता है। विवरण के लिए आंतरिक गुणन देखें। कार्टन सूत्र का उपयोग विभेदक रूप के लाई व्युत्पन्न की परिभाषा के रूप में किया जा सकता है। कार्टन का सूत्र विशेष रूप से दर्शाता है कि


:<math>d\mathcal{L}_X\omega = \mathcal{L}_X(d\omega).</math>
:<math>d\mathcal{L}_X\omega = \mathcal{L}_X(d\omega).</math>
Line 215: Line 215:


:<math>\mathcal{L}_X(f\otimes Y) = (\mathcal{L}_Xf) \otimes Y + f\otimes \mathcal{L}_X Y</math>
:<math>\mathcal{L}_X(f\otimes Y) = (\mathcal{L}_Xf) \otimes Y + f\otimes \mathcal{L}_X Y</math>
जहां प्रदिश उत्पाद प्रतीक <math>\otimes</math> इस तथ्य पर जोर देने के लिए उपयोग किया जाता है कि एक सदिश क्षेत्र के फलन समय का गुणनफल पूरे कई गुना पर ले जाया जा रहा है।
जहां प्रदिश गुणन प्रतीक <math>\otimes</math> इस तथ्य पर जोर देने के लिए उपयोग किया जाता है कि एक सदिश क्षेत्र के फलन समय का गुणनफल पूरे कई गुना पर ले जाया जा रहा है।


अतिरिक्त गुण सदिश क्षेत्रों के लाइ कोष्ठक के अनुरूप हैं। इस प्रकार, उदाहरण के लिए, एक सदिश क्षेत्र पर एक व्युत्पत्ति के रूप में माना जाता है,
अतिरिक्त गुण सदिश क्षेत्रों के लाइ कोष्ठक के अनुरूप हैं। इस प्रकार, उदाहरण के लिए, एक सदिश क्षेत्र पर एक व्युत्पत्ति के रूप में माना जाता है,
Line 225: Line 225:
* <math>\mathcal{L}_X(\alpha\wedge\beta) = (\mathcal{L}_X\alpha) \wedge\beta + \alpha\wedge (\mathcal{L}_X\beta)</math>
* <math>\mathcal{L}_X(\alpha\wedge\beta) = (\mathcal{L}_X\alpha) \wedge\beta + \alpha\wedge (\mathcal{L}_X\beta)</math>
* <math>[\mathcal{L}_X,\mathcal{L}_Y]\alpha := \mathcal{L}_X\mathcal{L}_Y\alpha-\mathcal{L}_Y\mathcal{L}_X\alpha = \mathcal{L}_{[X,Y]}\alpha</math>
* <math>[\mathcal{L}_X,\mathcal{L}_Y]\alpha := \mathcal{L}_X\mathcal{L}_Y\alpha-\mathcal{L}_Y\mathcal{L}_X\alpha = \mathcal{L}_{[X,Y]}\alpha</math>
* <math>[\mathcal{L}_X,i_Y]\alpha = [i_X,\mathcal{L}_Y]\alpha = i_{[X,Y]}\alpha,</math> जहां मैं ऊपर परिभाषित आंतरिक उत्पाद को दर्शाता हूं और यह स्पष्ट है कि क्या [·,·] [[कम्यूटेटर]] या सदिश क्षेत्रों के लाइ कोष्ठक को दर्शाता है।
* <math>[\mathcal{L}_X,i_Y]\alpha = [i_X,\mathcal{L}_Y]\alpha = i_{[X,Y]}\alpha,</math> जहां मैं ऊपर परिभाषित आंतरिक गुणन को दर्शाता हूं और यह स्पष्ट है कि क्या [·,·] [[कम्यूटेटर]] या सदिश क्षेत्रों के लाइ कोष्ठक को दर्शाता है।


== सामान्यीकरण ==
== सामान्यीकरण ==
Line 231: Line 231:


=== एक [[स्पिनर]] क्षेत्र का लाइ व्युत्पन्न ===
=== एक [[स्पिनर]] क्षेत्र का लाइ व्युत्पन्न ===
जेनेरिक स्पेसटाइम सदिश क्षेत्र्स के साथ स्पिनरों के लाइ व्युत्पन्न्स के लिए एक परिभाषा, एक सामान्य (छद्म) रीमैनियन बहुरूपता पर आवश्यक रूप से [[हत्या वेक्टर क्षेत्र|हत्या सदिश क्षेत्र]] की परिभाषा पहले से ही 1971 में [[यवेटे कोस्मान-श्वार्जबैक]] द्वारा प्रस्तावित की गई थी।<ref name="autogenerated317">{{cite journal |last=Kosmann |first=Y. |author-link=Yvette Kosmann-Schwarzbach |year=1971 |title=Dérivées de Lie des spineurs |journal=[[Annali di Matematica Pura ed Applicata|Ann. Mat. Pura Appl.]] |volume=91 |issue=4 |pages=317–395 |doi=10.1007/BF02428822 |s2cid=121026516 }}</ref> बाद में, इसे एक ज्यामितीय ढांचा प्रदान किया गया जो [[फाइबर बंडल]]ों पर लाई व्युत्पन्न्स के सामान्य ढांचे के भीतर उसके तदर्थ नुस्खे को सही ठहराता है।<ref>{{cite book |last=Trautman |first=A. |year=1972 |chapter=Invariance of Lagrangian Systems |editor-first=L. |editor-last=O'Raifeartaigh |editor-link=Lochlainn O'Raifeartaigh |title=General Relativity: Papers in honour of J. L. Synge |publisher=Clarenden Press |location=Oxford |isbn=0-19-851126-4 |page=85 }}</ref> गेज प्राकृतिक बंडलों के स्पष्ट संदर्भ में जो क्षेत्र सिद्धांतों (गेज-सहसंयोजक) के लिए सबसे उपयुक्त क्षेत्र बन जाते हैं।<ref>{{cite book |last1=Fatibene |first1=L. |last2=Francaviglia |first2=M. |author-link2=Mauro Francaviglia |year=2003 |title=शास्त्रीय क्षेत्र सिद्धांतों के लिए प्राकृतिक और गेज प्राकृतिक औपचारिकता|publisher=Kluwer Academic |location=Dordrecht }}</ref>
जेनेरिक स्पेसटाइम सदिश क्षेत्र्स के साथ स्पिनरों के लाइ व्युत्पन्न के लिए एक परिभाषा, एक सामान्य (छद्म) रीमैनियन बहुरूपता पर आवश्यक रूप से [[हत्या वेक्टर क्षेत्र|हत्या सदिश क्षेत्र]] की परिभाषा पहले से ही 1971 में [[यवेटे कोस्मान-श्वार्जबैक]] द्वारा प्रस्तावित की गई थी।<ref name="autogenerated317">{{cite journal |last=Kosmann |first=Y. |author-link=Yvette Kosmann-Schwarzbach |year=1971 |title=Dérivées de Lie des spineurs |journal=[[Annali di Matematica Pura ed Applicata|Ann. Mat. Pura Appl.]] |volume=91 |issue=4 |pages=317–395 |doi=10.1007/BF02428822 |s2cid=121026516 }}</ref> बाद में, इसे एक ज्यामितीय ढांचा प्रदान किया गया जो [[फाइबर बंडल]]ों पर लाई व्युत्पन्न के सामान्य ढांचे के भीतर उसके तदर्थ नुस्खे को सही ठहराता है।<ref>{{cite book |last=Trautman |first=A. |year=1972 |chapter=Invariance of Lagrangian Systems |editor-first=L. |editor-last=O'Raifeartaigh |editor-link=Lochlainn O'Raifeartaigh |title=General Relativity: Papers in honour of J. L. Synge |publisher=Clarenden Press |location=Oxford |isbn=0-19-851126-4 |page=85 }}</ref> गेज प्राकृतिक बंडलों के स्पष्ट संदर्भ में जो क्षेत्र सिद्धांतों (गेज-सहसंयोजक) के लिए सबसे उपयुक्त क्षेत्र बन जाते हैं।<ref>{{cite book |last1=Fatibene |first1=L. |last2=Francaviglia |first2=M. |author-link2=Mauro Francaviglia |year=2003 |title=शास्त्रीय क्षेत्र सिद्धांतों के लिए प्राकृतिक और गेज प्राकृतिक औपचारिकता|publisher=Kluwer Academic |location=Dordrecht }}</ref>
किसी दिए गए [[स्पिन कई गुना]] में, जो कि रिमेंनियन बहुरूपता में है <math>(M,g)</math> एक [[स्पिन संरचना]] को स्वीकार करते हुए, एक स्पिनर क्षेत्र (गणित) के लाइ व्युत्पन्न <math>\psi</math> 1963 में दिए गए आंद्रे लिचनरोविक्ज़ की स्थानीय अभिव्यक्ति के माध्यम से पहले इसे असीम आइसोमेट्रीज़ (किलिंग सदिश क्षेत्र्स) के संबंध में परिभाषित करके परिभाषित किया जा सकता है:<ref>{{cite journal |last=Lichnerowicz |first=A. |year=1963 |title=हार्मोनिक स्पिनर|journal=C. R. Acad. Sci. Paris |volume=257 |pages=7–9 }}</ref>
किसी दिए गए [[स्पिन कई गुना]] में, जो कि रिमेंनियन बहुरूपता में है <math>(M,g)</math> एक [[स्पिन संरचना]] को स्वीकार करते हुए, एक स्पिनर क्षेत्र (गणित) के लाइ व्युत्पन्न <math>\psi</math> 1963 में दिए गए आंद्रे लिचनरोविक्ज़ की स्थानीय अभिव्यक्ति के माध्यम से पहले इसे असीम आइसोमेट्रीज़ (किलिंग सदिश क्षेत्र्स) के संबंध में परिभाषित करके परिभाषित किया जा सकता है:<ref>{{cite journal |last=Lichnerowicz |first=A. |year=1963 |title=हार्मोनिक स्पिनर|journal=C. R. Acad. Sci. Paris |volume=257 |pages=7–9 }}</ref>
:<math>\mathcal{L}_X \psi := X^{a}\nabla_{a}\psi - \frac14\nabla_{a}X_{b} \gamma^{a}\gamma^{b}\psi\, ,</math>
:<math>\mathcal{L}_X \psi := X^{a}\nabla_{a}\psi - \frac14\nabla_{a}X_{b} \gamma^{a}\gamma^{b}\psi\, ,</math>
Line 254: Line 254:
=== निजेनहुइस-लाइ व्युत्पन्न ===
=== निजेनहुइस-लाइ व्युत्पन्न ===


एक अन्य सामान्यीकरण, [[ अल्बर्ट न्येनहुइस ]] के कारण, बंडल Ω के किसी भी खंड के साथ एक विभेदक रूप के लाइ व्युत्पन्न को परिभाषित करने की अनुमति देता है।<sup>k</sup>(M, TM) स्पर्शरेखा बंडल में मानों के साथ अवकलन रूपों का। अगर के ∈ Ω<sup>k</sup>(M, TM) और α एक विभेदक p-रूप है, तो आंतरिक उत्पाद i को परिभाषित करना संभव है<sub>''K''</sub>के और α का α। Nijenhuis-Lie व्युत्पन्न तब आंतरिक उत्पाद और बाहरी व्युत्पन्न का एंटीकोम्यूटेटर है:
एक अन्य सामान्यीकरण, [[ अल्बर्ट न्येनहुइस ]] के कारण, बंडल Ω के किसी भी खंड के साथ एक विभेदक रूप के लाइ व्युत्पन्न को परिभाषित करने की अनुमति देता है।<sup>k</sup>(M, TM) स्पर्शरेखा बंडल में मानों के साथ अवकलन रूपों का। अगर के ∈ Ω<sup>k</sup>(M, TM) और α एक विभेदक p-रूप है, तो आंतरिक गुणन i को परिभाषित करना संभव है<sub>''K''</sub>के और α का α। Nijenhuis-Lie व्युत्पन्न तब आंतरिक गुणन और बाहरी व्युत्पन्न का एंटीकोम्यूटेटर है:
:<math>\mathcal{L}_K\alpha=[d,i_K]\alpha = di_K\alpha-(-1)^{k-1}i_K \, d\alpha.</math>
:<math>\mathcal{L}_K\alpha=[d,i_K]\alpha = di_K\alpha-(-1)^{k-1}i_K \, d\alpha.</math>
== इतिहास ==
== इतिहास ==

Revision as of 16:16, 2 April 2023

अवकल ज्यामिति में, लाइ व्युत्पन्न (/l/ LEE), जिसका नाम व्लाडिसलाव स्लेबोडज़िंस्की द्वारा सोफस लाइ के नाम पर रखा गया,[1][2] किसी अन्य सदिश क्षेत्र द्वारा परिभाषित प्रवाह के साथ एक प्रदिश क्षेत्र (अदिश फलन, सदिश क्षेत्र और एक-रूपों सहित) के परिवर्तन का मूल्यांकन करता है। यह परिवर्तन निर्देशांक अपरिवर्तनीय है और इसलिए लाई व्युत्पन्न को किसी भी अलग-अलग कई गुना पर परिभाषित किया गया है।

सदिश क्षेत्र के संबंध में फलन, प्रदिश क्षेत्र और रूपों को अलग किया जा सकता है। यदि T एक प्रदिश क्षेत्र है और X एक सदिश क्षेत्र है, तो X के संबंध में T का लाई व्युत्पन्न द्वारा निरूपित किया जाता है। अवकल संकारक अंतर्निहित बहुरूपता के प्रदिश क्षेत्रों के बीजगणित की व्युत्पत्ति है।

लाई व्युत्पन्न प्रदिश संकुचन के साथ संचार करता है और अवकल रूपों पर बाहरी व्युत्पन्न होता है।

यद्यपि विभेदक ज्यामिति में व्युत्पन्न लेने की कई अवधारणाएँ हैं, वे सभी सहम त हैं जब विभेदित किया जा रहा व्यंजक एक फलन या अदिश क्षेत्र है। इस प्रकार इस प्रकरण में ''लाइ'' शब्द को हटा दिया गया है, और एक फलन के व्युत्पन्न के बारे में बात करता है।

एक अन्य सदिश क्षेत्र X के संबंध में एक सदिश क्षेत्र Y का लाई व्युत्पन्न X और Y के ''लाई कोष्ठक'' के रूप में जाना जाता है, और प्रायः के बदले [X,Y] को निरूपित किया जाता है। सदिश क्षेत्रों का स्थान इस लाई कोष्ठक के संबंध में एक लाई बीजगणित बनाता है। लाइ व्युत्पन्न इस लाइ बीजगणित के अनंत-आयामी लाइ बीजगणित प्रतिनिधित्व का गठन करता है, पहचान के कारण

किसी भी सदिश क्षेत्र X और Y और किसी प्रदिश क्षेत्र T के लिए मान्य।

M पर सदिश क्षेत्रों को प्रवाह के अत्यणु जनक (अर्थात भिन्नता के एक-आयामी समूह) के रूप में मानते हुए, लाई व्युत्पन्न प्रदिश क्षेत्र पर डिफियोमोर्फिज्म समूह के प्रतिनिधित्व का अंतर है, लाई समूह सिद्धांत में समूह प्रतिनिधित्व से जुड़े अत्यल्प प्रतिनिधित्व के रूप में लाई बीजगणित अभ्यावेदन के अनुरूप है।

सामान्यीकरण स्पिनर क्षेत्रों, संयोजन के साथ फाइबर बंडलों और सदिश-मूल्यवान अवकल रूपों के लिए उपस्तिथ हैं।

प्रेरणा

एक सदिश क्षेत्र के संबंध में एक प्रदिश क्षेत्र के व्युत्पन्न को परिभाषित करने का एक 'नैवे' प्रयास, प्रदिश क्षेत्र के घटकों को लेना सदिश क्षेत्र के संबंध में प्रत्येक घटक के दिशात्मक व्युत्पन्न को लेना होगा। तथापि, यह परिभाषा अवांछनीय है क्योंकि यह समन्वय प्रणाली के परिवर्तनों के अंतर्गत अपरिवर्तनीय नहीं है, उदा. ध्रुवीय या गोलीय निर्देशांक में व्यक्त निष्क्रिय व्युत्पन्न कार्तीय निर्देशांक में घटकों के निष्क्रिय व्युत्पन्न से भिन्न होता है। एक अमूर्त बहुरूपता पर ऐसी परिभाषा अर्थहीन और गलत परिभाषित है। अवकल ज्योमेट्री में, प्रदिश क्षेत्रों के विभेदीकरण की तीन मुख्य निर्देशांक स्वतंत्र धारणाएँ हैं: लाइ व्युत्पन्न, संयोजन के संबंध में व्युत्पन्न, और पूरी तरह से प्रतिसममित (सहपरिवर्ती ) प्रदिश या अवकल रूपों के बाहरी व्युत्पन्न है। एक संयोजन के संबंध में लाई व्युत्पन्न और व्युत्पन्न के मध्य मुख्य अवकल यह है कि स्पर्श सदिश के संबंध में प्रदिश क्षेत्र का बाद वाला व्युत्पन्न अच्छी तरह से परिभाषित है, भले ही यह निर्दिष्ट न हो कि उस स्पर्श सदिश को सदिश क्षेत्र में कैसे बढ़ाया जाए। तथापि एक संयोजन के लिए बहुरूपता पर एक अतिरिक्त ज्यामितीय संरचना (उदाहरण के लिए एक रीमानी मीट्रिक या सिर्फ एक अमूर्त संयोजन) की आवश्यकता होती है। इसके विपरीत, लाई व्युत्पन्न लेते समय, बहुरूपता पर कोई अतिरिक्त संरचना की आवश्यकता नहीं होती है, लेकिन एक स्पर्श सदिश के संबंध में प्रदिश क्षेत्र के लाई व्युत्पन्न के बारे में बात करना असंभव है, क्योंकि बिंदु p एक सदिश क्षेत्र X के संबंध में सदिश क्षेत्र के लाई व्युत्पन्न का मान केवल p पर ही नहीं, बल्कि p के आसपास में X के मान पर निर्भर करता है। अंत में, विभेदक रूपों के बाहरी व्युत्पन्न को किसी भी अतिरिक्त विकल्प की आवश्यकता नहीं होती है, लेकिन केवल अवकल रूपों (फलनों सहित) का एक अच्छी तरह से परिभाषित व्युत्पन्न है।

परिभाषा

लाइ व्युत्पन्न को कई समान प्रकार से परिभाषित किया जा सकता है। वस्तुओ को सरल रखने के लिए, हम सामान्य प्रदिश की परिभाषा पर आगे बढ़ने से पहले, अदिश फलन और सदिश क्षेत्र पर लाई व्युत्पन्न अभिनय को परिभाषित करके आरंभ करते हैं।

(लाइ) किसी फलन का व्युत्पन्न

एक फलन के व्युत्पन्न को परिभाषित करना बहुरूपता पर समस्याग्रस्त है क्योंकि अवकल भागफल निर्धारित नहीं किया जा सकता है जबकि विस्थापन अपरिभाषित है।

एक बिंदु पर एक सदिश क्षेत्र के संबंध में फलन का लाइ व्युत्पन्न फलन है

जहां वह बिंदु है जिस पर सदिश क्षेत्र द्वारा परिभाषित प्रवाह बिंदु को उस समय तुरंत पर मानचित्र करता है के आसपास के क्षेत्र में, प्रणाली का अद्वितीयहल है

के साथ स्पर्शी समष्टि में प्रथम-क्रम स्वायत्त (यानी स्वतंत्र समय) अवकल समीकरण

कई गुना और पर एक समन्वय मानचित्र के लिए, को स्पर्शरेखा रैखिक मानचित्र होने दें। अवकल समीकरणों की उपरोक्त प्रणाली एक प्रणाली के रूप में अधिक स्पष्ट रूप से लिखी गई है

में, प्रारंभिक स्थिति होने के साथ। यह आसानी से सत्यापित किया जा सकता है कि समाधान समन्वय मानचित्र के चयन से स्वतंत्र है।

समायोजन किसी फलन के लाई व्युत्पन्न को दिशात्मक व्युत्पन्न के साथ पहचानता है।

सदिश क्षेत्र का लाइ व्युत्पन्न

यदि X और Y दोनों सदिश क्षेत्र हैं, तो X के संबंध में Y के लाई व्युत्पन्न को X और Y के लाई कोष्ठक के रूप में भी जाना जाता है, और कभी-कभी के रूप में दर्शाया जाता है। लाई कोष्ठक को परिभाषित करने के लिए कई दृष्टिकोण हैं, जिनमें से सभी समतुल्य हैं। हम यहां दो परिभाषाओं को सूचीबद्ध करते हैं, जो ऊपर दी गई सदिश क्षेत्र की दो परिभाषाओं के अनुरूप हैं:

  • p पर X और Y का लाई कोष्ठक सूत्र द्वारा स्थानीय निर्देशांक में दिया गया है
    जहां and क्रमशः X और Y के संबंध में दिशात्मक व्युत्पन्न लेने के संचालन को इंगित करते हैं। यहां हम n-विमीय समष्टि में एक सदिश को n-ट्यूपल के रूप में मान रहे हैं, ताकि इसका दिशात्मक व्युत्पन्न केवल इसके निर्देशांक के दिशात्मक व्युत्पन्न से युक्त ट्यूपल हो।हालांकि इस परिभाषा में दिखाई देने वाली अंतिम अभिव्यक्ति स्थानीय निर्देशांक की पसंद पर निर्भर नहीं करती है, अलग-अलग शब्द और निर्देशांक की पसंद पर निर्भर करते हैं।
  • यदि X और Y दूसरी परिभाषा के अनुसार कई गुना M पर सदिश क्षेत्र हैं, तो संचालक सूत्र द्वारा परिभाषित
    M के सुचारु फलन के बीजगणित के क्रम शून्य की व्युत्पत्ति है, अर्थात दूसरी परिभाषा के अनुसार यह संकारक एक सदिश क्षेत्र है।

प्रदिश क्षेत्र का लाइ व्युत्पन्न

प्रवाह के संदर्भ में परिभाषा

लाइ व्युत्पन्न वह गति है जिसके साथ प्रवाह के कारण होने वाले समष्टि विरूपण के अंतर्गत प्रदिश क्षेत्र बदलता है।

औपचारिक रूप से, एक समतल बहुरूपता पर एक अलग-अलग (समय-स्वतंत्र) सदिश क्षेत्र , अनुमान इसी स्थानीय प्रवाह और पहचान मानचित्र हो। क्योंकि एक स्थानीय भिन्नता है, प्रत्येक और के लिए, व्युत्क्रम

अवकल का विशिष्ट रूप से समरूपता तक विस्तार होता है

स्पर्शी समष्टि और के प्रदिश बीजगणित के मध्य इसी तरह, पुलबैक मानचित्र

एक अद्वितीय प्रदिश बीजगणित समरूपता के लिए लिफ्ट करता है

परिणामस्वरूप, प्रत्येक के लिए, के समान संयोजकता का एक प्रदिश क्षेत्र होता है।

अगर एक - या -प्रकार प्रदिश क्षेत्र है, तो सदिश क्षेत्र के साथ का लाइ व्युत्पन्न बिंदु पर परिभाषित किया गया है

परिणामी प्रदिश क्षेत्र की संयोजकता 's के समान है।

बीजगणितीय परिभाषा

अब हम एक बीजगणितीय परिभाषा देते हैं। प्रदिश क्षेत्र के लाई व्युत्पन्न के लिए बीजगणितीय परिभाषा निम्नलिखित चार स्वयंसिद्धों से होती है:

अभिगृहीत 1. किसी फलन का लाइ व्युत्पन्न फलन के दिशात्मक अवकलज के समान होता है। यह तथ्य प्रायः सूत्र द्वारा व्यक्त किया जाता है
अभिगृहीत 2. लाई व्युत्पन्न लीबनिज के नियम के निम्नलिखित संस्करण का पालन करता है: किसी भी प्रदिश क्षेत्र S और T के लिए, हमारे पास है
अभिगृहीत 3. लाइ व्युत्पन्न संकुचन के संबंध में लीबनिज नियम का पालन करता है:
अभिगृहीत 4. लाइ व्युत्पन्न फलनों पर बाहरी व्युत्पन्न के साथ परिवर्तित होता है:

यदि ये अभिगृहीत मान्य हैं, तो तो संबंध पर लाइ व्युत्पन्न को परिपालन करने से पता चलता है कि

जो लाइ कोष्ठक के लिए मानक परिभाषाओं में से एक है।

विभेदक रूप पर अभिनय करने वाला लाई व्युत्पन्न बाहरी गुणन के साथ आंतरिक गुणन का एंटीकोम्यूटेटर है। तो अगर α एक अवकल रूप है,

यह जाँच कर आसानी से अनुसरण करता है कि अभिव्यक्ति बाहरी व्युत्पन्न के साथ चलती है, एक व्युत्पत्ति है (श्रेणीबद्ध व्युत्पत्तियों का एक एंटीकोम्यूटेटर होने के नाते) और फलनों पर सही काम करता है।

स्पष्ट रूप से, T को (p, q) प्रकार का एक प्रदिश क्षेत्र होने दें। T को सह स्पर्शरेखा बंडल TM के समतल वर्गों α1, α2, ..., αp का एक अलग बहुरेखीय मानचित्र होने पर विचार करें और स्पर्शरेखा बंडल TM के X1, X2, ..., Xq वर्गों का T(α1, α2, ..., X1, X2, ...) को R में लिखा है।

विश्लेषणात्मक और बीजगणितीय परिभाषाओं को विभेदीकरण के लिए ज़ारी रखना और लीबनिज़ नियम का उपयोग करके समतुल्य सिद्ध किया जा सकता है। लाई व्युत्पन्न संकुचन के साथ आवागमन करता है।

एक अवकल रूप का लाई व्युत्पन्न

प्रदिश क्षेत्रों का एक विशेष रूप से महत्वपूर्ण वर्ग विभेदक रूपों का वर्ग है। विभेदक रूपों के स्थान पर लाई व्युत्पन्न का प्रतिबंध बाहरी व्युत्पन्न से निकटता से संबंधित है। लाई व्युत्पन्न और बाहरी व्युत्पन्न दोनों अलग-अलग प्रकार से व्युत्पन्न के विचार को ग्रहण करने का प्रयास करते हैं। एक आंतरिक गुणन के विचार को प्रस्तुत करके इन भिन्नता को दूर किया जा सकता है, जिसके बाद संबंध एक पहचान के रूप में सामने आते हैं जिसे कार्टन के सूत्र के रूप में जाना जाता है। कार्टन के सूत्र का उपयोग अवकल रूपों के स्थान पर लाई व्युत्पन्न की परिभाषा के रूप में भी किया जा सकता है।

M को बहुसंख्यक और X को M पर एक सदिश क्षेत्र होने दें। मान लीजिए एक (k + 1)-रूप है, अर्थात प्रत्येक के लिए, वास्तविक संख्याओं के लिए से एक वैकल्पिक बहुरेखीय मानचित्र है। X और ω का आंतरिक गुणन k- रूप के रूप में परिभाषित है।

अवकल रूप को X के साथ ω का संकुचन भी कहा जाता है, और

एक -प्रति व्युत्पत्ति अवकलन है जहाँ अवकल रूपों पर वैज गुणन है। अर्थात्, R-रैखिक है, और

और η के लिए एक और अवकल रूप। इसके अलावा, एक फलन के लिए, अर्थात, M पर एक वास्तविक- या जटिल-मूल्यवान फलन, एक के पास है

जहाँ f और X के गुणनफल को दर्शाता है। बाहरी व्युत्पन्न और लाई व्युत्पन्न के मध्य संबंध को संक्षेप में निम्नानुसार किया जा सकता है। सबसे पहले, क्योंकि सदिश क्षेत्र X के संबंध में एक फलन f का लाई व्युत्पन्न दिशात्मक व्युत्पन्न X(f) के समान है, यह X के साथ f के बाहरी व्युत्पन्न के संकुचन के समान भी है:

एक सामान्य अवकल रूप के लिए, लाइ व्युत्पन्न इसी तरह एक संकुचन है, X में भिन्नता को ध्यान में रखते हुए:

इस पहचान को कार्टन सूत्र, कार्टन समरूपता सूत्र या कार्टन के मैजिक सूत्र के रूप में जाना जाता है। विवरण के लिए आंतरिक गुणन देखें। कार्टन सूत्र का उपयोग विभेदक रूप के लाई व्युत्पन्न की परिभाषा के रूप में किया जा सकता है। कार्टन का सूत्र विशेष रूप से दर्शाता है कि

लाई व्युत्पन्न भी संबंध को संतुष्ट करता है

समन्वय भाव

Note: the Einstein summation convention of summing on repeated indices is used below.

स्थानीय समन्वय संकेतन में, एक प्रकार के लिए (r, s) प्रदिश क्षेत्र , लाइ व्युत्पन्न साथ है

यहाँ, अंकन का अर्थ समन्वय के संबंध में आंशिक व्युत्पन्न लेना है . वैकल्पिक रूप से, यदि हम मरोड़ (अवकल ज्योमेट्री) | मरोड़ मुक्त संयोजन (गणित) (जैसे, लाइट सिटी संयोजन ) का उपयोग कर रहे हैं, तो आंशिक व्युत्पन्न सहसंयोजक व्युत्पन्न के साथ प्रतिस्थापित किया जा सकता है जिसका अर्थ है प्रतिस्थापित करना के साथ (संकेतन के दुरुपयोग से) जहां क्रिस्टोफेल गुणांक हैं।

एक प्रदिश का लाई व्युत्पन्न उसी प्रकार का एक और प्रदिश है, यानी, भले ही अभिव्यक्ति में अलग-अलग शब्द समन्वय प्रणाली की पसंद पर निर्भर करते हैं, एक पूरे के रूप में अभिव्यक्ति एक प्रदिश में परिणाम देती है

जो किसी भी समन्वय प्रणाली से स्वतंत्र है और उसी प्रकार का है .

परिभाषा को आगे प्रदिश घनत्वों तक बढ़ाया जा सकता है। यदि टी कुछ वास्तविक संख्या मूल्यवान वजन डब्ल्यू (उदाहरण के लिए वजन 1 की मात्रा घनत्व) का प्रदिश घनत्व है, तो इसका लाई व्युत्पन्न उसी प्रकार और वजन का एक प्रदिश घनत्व है।

अभिव्यक्ति के अंत में नए शब्द पर ध्यान दें।

Affine संयोजन के लिए , लाइ व्युत्पन्न साथ है[3]

उदाहरण

स्पष्टता के लिए अब हम निम्नलिखित उदाहरण स्थानीय समन्वय संकेतन में दिखाते हैं।

एक अदिश क्षेत्र के लिए अपने पास:

.

इसलिए अदिश क्षेत्र के लिए और सदिश क्षेत्र संबंधित लाई व्युत्पन्न बन जाता है

उच्च रैंक अवकल फॉर्म के उदाहरण के लिए, 2-फॉर्म पर विचार करें और सदिश क्षेत्र पिछले उदाहरण से। तब,