कनेक्शन प्रपत्र: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
ऐतिहासिक रूप से, एली कार्टन द्वारा 20 वीं शताब्दी के पहले छमाही में कनेक्शन प्रपत्र को प्रस्तुत किया गया था और इस प्रकार फ्रेम को स्थानांतरित करने की उनकी पद्धति के लिए प्रमुख प्रेरणाओं में से एक था। कनेक्शन प्रपत्र सामान्यतः [[फ्रेम बंडल|समन्वय फ्रेम]] की पसंद पर निर्भर करता है, और इसलिए यह एक तन्य वस्तु के रूप में नहीं होती है। कार्टन के प्रारंभिक काम के बाद कनेक्शन प्रपत्र के विभिन्न सामान्यीकरण और पुनर्व्याख्या तैयार की गई थी और इस प्रकार विशेष रूप से एक सिद्धांत बंडल पर एक [[प्रमुख बंडल|प्रमुख कनेक्शन]] एक तन्य वस्तु के रूप में कनेक्शन प्रपत्र की एक प्राकृतिक पुनर्व्याख्या के रूप में है। दूसरी ओर कनेक्शन प्रपत्र का लाभ है कि यह अलग-अलग मैनिफोल्ड पर परिभाषित एक अंतर के रूप में होते है और इसके अतिरिक्त ऊपर एक अमूर्त प्रमुख बंडल के रूप में होते है इसलिए इसकी तन्यता में कमी के अतिरिक्त उनके साथ गणना करने में अपेक्षाकृत आसानी के कारण कनेक्शन प्रपत्र का उपयोग जारी है।<ref>{{harvtxt|Griffiths|Harris|1978}}, {{harvtxt|Wells|1980}}, {{harvtxt|Spivak|1999a}}</ref> भौतिकी में, [[गेज सहसंयोजक व्युत्पन्न]] के माध्यम से [[गेज सिद्धांत]] के संदर्भ में कनेक्शन रूपों का भी व्यापक रूप से उपयोग किया जाता है। | ऐतिहासिक रूप से, एली कार्टन द्वारा 20 वीं शताब्दी के पहले छमाही में कनेक्शन प्रपत्र को प्रस्तुत किया गया था और इस प्रकार फ्रेम को स्थानांतरित करने की उनकी पद्धति के लिए प्रमुख प्रेरणाओं में से एक था। कनेक्शन प्रपत्र सामान्यतः [[फ्रेम बंडल|समन्वय फ्रेम]] की पसंद पर निर्भर करता है, और इसलिए यह एक तन्य वस्तु के रूप में नहीं होती है। कार्टन के प्रारंभिक काम के बाद कनेक्शन प्रपत्र के विभिन्न सामान्यीकरण और पुनर्व्याख्या तैयार की गई थी और इस प्रकार विशेष रूप से एक सिद्धांत बंडल पर एक [[प्रमुख बंडल|प्रमुख कनेक्शन]] एक तन्य वस्तु के रूप में कनेक्शन प्रपत्र की एक प्राकृतिक पुनर्व्याख्या के रूप में है। दूसरी ओर कनेक्शन प्रपत्र का लाभ है कि यह अलग-अलग मैनिफोल्ड पर परिभाषित एक अंतर के रूप में होते है और इसके अतिरिक्त ऊपर एक अमूर्त प्रमुख बंडल के रूप में होते है इसलिए इसकी तन्यता में कमी के अतिरिक्त उनके साथ गणना करने में अपेक्षाकृत आसानी के कारण कनेक्शन प्रपत्र का उपयोग जारी है।<ref>{{harvtxt|Griffiths|Harris|1978}}, {{harvtxt|Wells|1980}}, {{harvtxt|Spivak|1999a}}</ref> भौतिकी में, [[गेज सहसंयोजक व्युत्पन्न]] के माध्यम से [[गेज सिद्धांत]] के संदर्भ में कनेक्शन रूपों का भी व्यापक रूप से उपयोग किया जाता है। | ||
एक कनेक्शन प्रपत्र एक सदिश बंडल के प्रत्येक आधार से भिन्न रूपों के एक [[मैट्रिक्स (गणित)]] को जोड़ता है। कनेक्शन प्रपत्र टेन्सोरियल के रूप में नहीं है क्योंकि आधार के परिवर्तन के अनुसार कनेक्शन प्रपत्र इस तरह से परिवर्तित हो जाता है जिसमें एटलस (टोपोलॉजी) ट्रांज़िशन मैप्स के बाहरी | एक कनेक्शन प्रपत्र एक सदिश बंडल के प्रत्येक आधार से भिन्न रूपों के एक [[मैट्रिक्स (गणित)]] को जोड़ता है। कनेक्शन प्रपत्र टेन्सोरियल के रूप में नहीं है क्योंकि आधार के परिवर्तन के अनुसार कनेक्शन प्रपत्र इस तरह से परिवर्तित हो जाता है जिसमें एटलस (टोपोलॉजी) ट्रांज़िशन मैप्स के बाहरी व्युत्पन्न के रूप में सम्मलित होते हैं, वैसे ही जैसे [[ लेवी-Civita कनेक्शन |लेवी-सिविटा कनेक्शन]] के लिए क्रिस्टोफेल प्रतीक कनेक्शन प्रपत्र का मुख्य टेन्सोरियल इनवेरिएंट इसका [[वक्रता रूप]] है। और इस प्रकार [[स्पर्शरेखा बंडल]] के साथ [[वेक्टर बंडल]] की पहचान करने वाले [[सोल्डर फॉर्म|सोल्डर]] प्रपत्र की उपस्थिति में, एक अतिरिक्त अपरिवर्तनीय [[मरोड़ (अंतर ज्यामिति)|आक्षेप (अंतर ज्यामिति)]] के रूप में है। और इस प्रकार कई स्थितियों में अतिरिक्त संरचना वाले वेक्टर बंडलों पर कनेक्शन प्रपत्रों पर विचार किया जाता है जो लाइ समूह के साथ एक [[फाइबर बंडल]] के रूप में होते हैं। | ||
== वेक्टर बंडल == | == वेक्टर बंडल == | ||
{{see also| | {{see also|कनेक्शन (वेक्टर बंडल)}} | ||
=== वेक्टर बंडल पर फ्रेम === | === वेक्टर बंडल पर फ्रेम === | ||
{{main| | {{main|फ्रेम बंडल}} | ||
बता दें कि ई एक अलग-अलग कई गुना एम पर फाइबर आयाम k एक वेक्टर बंडल के रूप में है। ई के लिए एक 'स्थानीय फ्रेम' ई के खंड के वेक्टर का एक क्रमबद्ध आधार के रूप में है। स्थानीय फ्रेम का निर्माण करना अधिकांशता संभव होता है और इस प्रकार सदिश बंडलों को अधिकांशता स्थानीय निरर्थकता के संदर्भ में परिभाषित किया जाता है और कई गुना [[एटलस (टोपोलॉजी)]] के अनुरूप होते है। यदि बेस मैनिफोल्ड एम पर कोई बिंदु एक्स दिया गया है, वह एक खुला निकटतम ''U'' ⊂ ''M'' एक्स के रूप में उपस्थित है जिसके लिए यू पर वेक्टर बंडल के क्षेत्र ''U'' × ''R<sup>k</sup>'' के लिए समरूप होते है यह स्थानीय तुच्छीकरण के रूप में है। और ''R<sup>k</sup>'' पर वेक्टर स्पेस संरचना को इस प्रकार संपूर्ण स्थानीय तुच्छीकरण तक बढ़ाया जा सकता है और R<sup>k</sup> के आधार को बढ़ाया जा सकता है और यह स्थानीय फ्रेम को परिभाषित करता है। यहाँ, R का आशय वास्तविक संख्याओं से है <math>\mathbb{R}</math>, चूंकि यहां अधिकांश विकास सामान्य रूप से छल्ले पर मॉड्यूल और जटिल संख्याओं <math>\mathbb{C}</math> पर वेक्टर रिक्त स्थान तक विशेष रूप से बढ़ाया जा सकता है। | |||
यहाँ '''e''' = (''e<sub>α</sub>'')<sub>''α''=1,2,...,''k''</sub> पर एक स्थानीय फ्रेम E के रूप में होते है। इस फ्रेम का उपयोग स्थानीय रूप से E के किसी भी खंड को व्यक्त करने के लिए किया जा सकता है। उदाहरण के लिए मान लीजिए कि ξ एक स्थानीय खंड है, जिसे उसी खुले समुच्चय पर फ्रेम 'ई' के रूप में परिभाषित किया गया है। तब यह इस प्रकार दिखाया जाता है। | |||
:<math>\xi = \sum_{\alpha=1}^k e_\alpha \xi^\alpha(\mathbf e)</math> | :<math>\xi = \sum_{\alpha=1}^k e_\alpha \xi^\alpha(\mathbf e)</math> | ||
जहां ξ<sup>α</sup>(e) फ्रेम e में ''ξ'' के ''घटकों'' को दर्शाता है। मैट्रिक्स समीकरण के रूप में | जहां ξ<sup>α</sup>(e) फ्रेम e में ''ξ'' के ''घटकों'' को दर्शाता है। मैट्रिक्स समीकरण के रूप में यह पढ़ा जा सकता है। | ||
:<math>\xi = {\mathbf e} | :<math>\xi = {\mathbf e} | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 24: | Line 25: | ||
{\mathbf e}\, \xi(\mathbf e) | {\mathbf e}\, \xi(\mathbf e) | ||
</math> | </math> | ||
[[सामान्य सापेक्षता]] में, ऐसे फ्रेम क्षेत्रों को [[टेट्राद औपचारिकता]] कहा जाता है। टेट्रैड विशेष रूप से स्थानीय फ्रेम को बेस मैनिफोल्ड | [[सामान्य सापेक्षता]] में, ऐसे फ्रेम क्षेत्रों को [[टेट्राद औपचारिकता]] कहा जाता है। टेट्रैड विशेष रूप से स्थानीय फ्रेम को बेस मैनिफोल्ड एम पर समन्वय प्रणाली एटलस द्वारा स्थापित किया जाता है और इस प्रकार यह एक स्पष्ट समन्वय प्रणाली से संबंधित है। | ||
=== बाहरी कनेक्शन === | === बाहरी कनेक्शन === | ||
{{main| | {{main|बाहरी सहसंयोजक व्युत्पन्न}} | ||
E में एक [[कनेक्शन (वेक्टर बंडल)]] एक प्रकार का [[अंतर ऑपरेटर]] के रूप में होता है | |||
:<math>D : \Gamma(E) \rightarrow \Gamma(E\otimes\Omega^1M)</math> | :<math>D : \Gamma(E) \rightarrow \Gamma(E\otimes\Omega^1M)</math> | ||
जहां Γ वेक्टर बंडल के स्थानीय [[खंड (फाइबर बंडल)]] के [[शीफ (गणित)]] को दर्शाता है | जहां Γ वेक्टर बंडल के स्थानीय [[खंड (फाइबर बंडल)]] के [[शीफ (गणित)]] को दर्शाता है और Ω<sup>1</sup>M, M पर अवकलन 1-फॉर्म्स का बंडल के रूप में है। और इस प्रकार D के लिए एक कनेक्शन होने के लिए इसे बाहरी व्युत्पन्न के साथ सही ढंग से जोड़ा जाना चाहिए। विशेष रूप से यदि v E का एक स्थानीय खंड के रूप में है और f एक सहज फलन के रूप में है, तो यह इस प्रकार दिखाया जाता है | ||
:<math>D(fv) = v\otimes (df) + fDv</math> | :<math>D(fv) = v\otimes (df) + fDv</math> | ||
जहाँ df, f का बाह्य व्युत्पन्न है। | जहाँ df, f का बाह्य व्युत्पन्न है। | ||
कभी-कभी डी की परिभाषा को | कभी-कभी डी की परिभाषा को यादृच्छिक ढंग से सदिश मान अवकलन प्रपत्र ई-वैल्यूड प्रपत्र में विस्तारित करना सुविधाजनक होता है, इस प्रकार इसे ई के टेंसर उत्पाद पर अवकलन प्रपत्र के पूर्ण [[बाहरी बीजगणित]] के साथ एक अवकलन ऑपरेटर के रूप में माना जाता है। इस संगतता गुणधर्म को संतुष्ट करने वाले बाहरी कनेक्शन डी को देखते हुए, डी का एक अनूठा विस्तार के रूप में उपस्थित होता है | ||
:<math>D : \Gamma(E\otimes\Omega^*M) \rightarrow \Gamma(E\otimes\Omega^*M)</math> | :<math>D : \Gamma(E\otimes\Omega^*M) \rightarrow \Gamma(E\otimes\Omega^*M)</math> | ||
ऐसा है कि | ऐसा है कि | ||
:<math> D(v\wedge\alpha) = (Dv)\wedge\alpha + (-1)^{\text{deg}\, v}v\wedge d\alpha</math> | :<math> D(v\wedge\alpha) = (Dv)\wedge\alpha + (-1)^{\text{deg}\, v}v\wedge d\alpha</math> | ||
जहाँ v | जहाँ v घात deg v का सजातीय रूप है। दूसरे शब्दों में, D ग्रेडेड मॉड्यूल Γ(E ⊗ Ω<sup>*</sup>म).के शीफ पर एक [[व्युत्पत्ति (सार बीजगणित)|व्युत्पत्ति सार बीजगणित]] के रूप में होते है | ||
=== कनेक्शन प्रपत्र === | === कनेक्शन प्रपत्र === | ||
कनेक्शन प्रपत्र तब उत्पन्न होता है जब बाहरी कनेक्शन को किसी विशेष फ्रेम में लागू किया जाता है। '' | कनेक्शन प्रपत्र तब उत्पन्न होता है जब बाहरी कनेक्शन को किसी विशेष फ्रेम में लागू किया जाता है। ''e<sub>α</sub>'' के बाहरी कनेक्शन को लागू करने पर यह अद्वितीय k × k मैट्रिक्स (ω<sub>''α''</sub><sup>β</sup>) M पर एक रूप इस प्रकार है, | ||
:<math>D e_\alpha = \sum_{\beta=1}^k e_\beta\otimes\omega^\beta_\alpha.</math> | :<math>D e_\alpha = \sum_{\beta=1}^k e_\beta\otimes\omega^\beta_\alpha.</math> | ||
कनेक्शन प्रपत्र के संदर्भ में, | कनेक्शन प्रपत्र के संदर्भ में, E के किसी भी खंड के बाहरी कनेक्शन को अब व्यक्त किया जा सकता है। उदाहरण के लिए मान लीजिए कि ξ = Σ<sub>''α''</sub> e<sub>''α''</sub>ξ<sup>α</sup>. तब | ||
:<math>D\xi = \sum_{\alpha=1}^k D(e_\alpha\xi^\alpha(\mathbf e)) = \sum_{\alpha=1}^k e_\alpha\otimes d\xi^\alpha(\mathbf e) + \sum_{\alpha=1}^k\sum_{\beta=1}^k e_\beta\otimes\omega^\beta_\alpha \xi^\alpha(\mathbf e).</math> | :<math>D\xi = \sum_{\alpha=1}^k D(e_\alpha\xi^\alpha(\mathbf e)) = \sum_{\alpha=1}^k e_\alpha\otimes d\xi^\alpha(\mathbf e) + \sum_{\alpha=1}^k\sum_{\beta=1}^k e_\beta\otimes\omega^\beta_\alpha \xi^\alpha(\mathbf e).</math> | ||
दोनों पक्षों पर घटकों को लेना, | दोनों पक्षों पर घटकों को लेना, | ||
:<math>D\xi(\mathbf e) = d\xi(\mathbf e)+\omega \xi(\mathbf e) = (d+\omega)\xi(\mathbf e)</math> | :<math>D\xi(\mathbf e) = d\xi(\mathbf e)+\omega \xi(\mathbf e) = (d+\omega)\xi(\mathbf e)</math> | ||
जहां यह समझा जाता है कि डी और ω फ्रेम ' | जहां यह समझा जाता है कि डी और ω फ्रेम 'E' के संबंध में घटक-वार व्युत्पन्न का संदर्भ देते हैं और क्रमशः 1-रूपों का मैट्रिक्स, ξ के घटकों पर फलन के रूप में होते है। और इसके विपरीत, 1-प्रपत्र ω का एक मैट्रिक्स खुले समुच्चय पर स्थानीय रूप से कनेक्शन को पूरी तरह से निर्धारित करने के लिए पर्याप्त प्राथमिकता देते है, जिस पर खंड 'ई' का आधार परिभाषित किया गया है। | ||
==== फ्रेम का परिवर्तन ==== | ==== फ्रेम का परिवर्तन ==== | ||
एक उपयुक्त वैश्विक वस्तु के लिए ω का विस्तार करने के लिए | एक उपयुक्त वैश्विक वस्तु के लिए ω का विस्तार करने के लिए यह जांचना आवश्यक है कि जब E के मौलिक वर्गों का एक अलग विकल्प चुना जाता है तो यह कैसा व्यवहार करता है। और इस प्रकार ''ω<sub>α</sub><sup>β</sup>'' = ''ω<sub>α</sub><sup>β</sup>''('''e''')'e' के विकल्प पर निर्भरता को इंगित करने के लिए होते है। | ||
मान लीजिए कि ' | मान लीजिए कि 'e{{prime}} स्थानीय आधार का एक अलग विकल्प के रूप में है। फिर फलन g का एक व्युत्क्रमणीय k × k मैट्रिक्स होता है जैसे कि दिखाया जाता है | ||
:<math>{\mathbf e}' = {\mathbf e}\, g,\quad \text{i.e., }\,e'_\alpha = \sum_\beta e_\beta g^\beta_\alpha.</math> | :<math>{\mathbf e}' = {\mathbf e}\, g,\quad \text{i.e., }\,e'_\alpha = \sum_\beta e_\beta g^\beta_\alpha.</math> | ||
दोनों पक्षों के बाहरी कनेक्शन को लागू करने से ω के लिए परिवर्तन | दोनों पक्षों के बाहरी कनेक्शन को लागू करने से ω के लिए परिवर्तन नियम मिलता है जिसे इस प्रकार दिखाया जाता है | ||
:<math>\omega(\mathbf e\, g) = g^{-1}dg+g^{-1}\omega(\mathbf e)g.</math> | :<math>\omega(\mathbf e\, g) = g^{-1}dg+g^{-1}\omega(\mathbf e)g.</math> | ||
विशेष रूप से ध्यान दें कि ω एक तन्य विधि | विशेष रूप से ध्यान दें कि ω एक तन्य विधि से बदलने में विफल रहता है, क्योंकि एक फ्रेम से दूसरे फ्रेम में जाने के नियम में संक्रमण मैट्रिक्स g व्युत्पन्न के रूप में सम्मलित होते हैं। | ||
==== वैश्विक कनेक्शन प्रपत्र ==== | ==== वैश्विक कनेक्शन प्रपत्र ==== | ||
Line 64: | Line 66: | ||
=== वक्रता === | === वक्रता === | ||
{{main| | {{main|वक्रता रूप}} | ||
''ई'' में एक कनेक्शन फार्म के वक्रता दो रूप द्वारा परिभाषित किया गया है | ''ई'' में एक कनेक्शन फार्म के वक्रता दो रूप द्वारा परिभाषित किया गया है | ||
:<math>\Omega(\mathbf e) = d\omega(\mathbf e) + \omega(\mathbf e)\wedge\omega(\mathbf e).</math> | :<math>\Omega(\mathbf e) = d\omega(\mathbf e) + \omega(\mathbf e)\wedge\omega(\mathbf e).</math> | ||
Line 80: | Line 82: | ||
=== सोल्डरिंग और मरोड़ === | === सोल्डरिंग और मरोड़ === | ||
मान लीजिए कि E का फाइबर आयाम k कई गुना M के आयाम के बराबर है। इस स्थिति में, वेक्टर बंडल E कभी-कभी इसके कनेक्शन के अतिरिक्त डेटा के एक अतिरिक्त टुकड़े से सुसज्जित होता है: एक सोल्डर फॉर्म। एक 'सोल्डर फॉर्म' विश्व स्तर पर परिभाषित [[वेक्टर-मूल्यवान रूप]] है | | मान लीजिए कि E का फाइबर आयाम k कई गुना M के आयाम के बराबर है। इस स्थिति में, वेक्टर बंडल E कभी-कभी इसके कनेक्शन के अतिरिक्त डेटा के एक अतिरिक्त टुकड़े से सुसज्जित होता है: एक सोल्डर फॉर्म। एक 'सोल्डर फॉर्म' विश्व स्तर पर परिभाषित [[वेक्टर-मूल्यवान रूप]] है | सदिश मान वन-प्रपत्र θ ∈ Ω<sup>1</sup>(M,E) ऐसा है कि मैपिंग | ||
:<math>\theta_x : T_xM \rightarrow E_x</math> | :<math>\theta_x : T_xM \rightarrow E_x</math> | ||
सभी एक्स ∈ एम के लिए एक रैखिक समरूपता है। यदि एक सोल्डर प्रपत्र दिया गया है, तो कनेक्शन के 'मरोड़ (अंतर ज्यामिति)' को परिभाषित करना संभव है (बाहरी कनेक्शन के संदर्भ में) | सभी एक्स ∈ एम के लिए एक रैखिक समरूपता है। यदि एक सोल्डर प्रपत्र दिया गया है, तो कनेक्शन के 'मरोड़ (अंतर ज्यामिति)' को परिभाषित करना संभव है (बाहरी कनेक्शन के संदर्भ में) | ||
Line 106: | Line 108: | ||
=== उदाहरण: लेवी-सिविता कनेक्शन === | === उदाहरण: लेवी-सिविता कनेक्शन === | ||
एक उदाहरण के रूप में, मान लीजिए कि M में [[रिमेंनियन मीट्रिक]] है। यदि किसी के पास M के ऊपर एक वेक्टर बंडल E है, तो [[बंडल मीट्रिक]] के रूप में मीट्रिक को पूरे वेक्टर बंडल तक बढ़ाया जा सकता है। कोई तब एक कनेक्शन परिभाषित कर सकता है जो इस बंडल मीट्रिक के साथ संगत है, यह [[मीट्रिक कनेक्शन]] है। ई के स्पर्शरेखा बंडल टीएम होने के विशेष स्थिति के लिए, मीट्रिक कनेक्शन को [[ रिमानियन कनेक्शन |रिमानियन कनेक्शन]] कहा जाता है। एक रिमेंनियन कनेक्शन को देखते हुए, | एक उदाहरण के रूप में, मान लीजिए कि M में [[रिमेंनियन मीट्रिक]] है। यदि किसी के पास M के ऊपर एक वेक्टर बंडल E है, तो [[बंडल मीट्रिक]] के रूप में मीट्रिक को पूरे वेक्टर बंडल तक बढ़ाया जा सकता है। कोई तब एक कनेक्शन परिभाषित कर सकता है जो इस बंडल मीट्रिक के साथ संगत है, यह [[मीट्रिक कनेक्शन]] है। ई के स्पर्शरेखा बंडल टीएम होने के विशेष स्थिति के लिए, मीट्रिक कनेक्शन को [[ रिमानियन कनेक्शन |रिमानियन कनेक्शन]] कहा जाता है। एक रिमेंनियन कनेक्शन को देखते हुए, अधिकांशता एक अद्वितीय, समतुल्य कनेक्शन मिल सकता है जो मरोड़ तनाव | मरोड़-मुक्त है। यह एम के टेंगेंट बंडल टीएम पर लेवी-सिविता कनेक्शन है।<ref>See {{harvtxt|Jost|2011}}, chapter 4, for a complete account of the Levi-Civita connection from this point of view.</ref><ref>See {{harvtxt|Spivak|1999a}}, II.7 for a complete account of the Levi-Civita connection from this point of view.</ref> | ||
स्पर्शरेखा बंडल पर एक स्थानीय फ्रेम सदिश क्षेत्रों की एक क्रमबद्ध सूची है {{nowrap|1='''e''' = (''e''<sub>''i''</sub> {{!}} ''i'' = 1, 2, ..., ''n'')}}, कहाँ {{nowrap|1=''n'' = dim ''M''}}, M के एक खुले उपसमुच्चय पर परिभाषित किया गया है जो अपने डोमेन के प्रत्येक बिंदु पर रैखिक रूप से स्वतंत्र हैं। क्रिस्टोफेल प्रतीक लेवी-सिविता कनेक्शन को परिभाषित करते हैं | स्पर्शरेखा बंडल पर एक स्थानीय फ्रेम सदिश क्षेत्रों की एक क्रमबद्ध सूची है {{nowrap|1='''e''' = (''e''<sub>''i''</sub> {{!}} ''i'' = 1, 2, ..., ''n'')}}, कहाँ {{nowrap|1=''n'' = dim ''M''}}, M के एक खुले उपसमुच्चय पर परिभाषित किया गया है जो अपने डोमेन के प्रत्येक बिंदु पर रैखिक रूप से स्वतंत्र हैं। क्रिस्टोफेल प्रतीक लेवी-सिविता कनेक्शन को परिभाषित करते हैं | ||
:<math>\nabla_{e_i}e_j = \sum_{k=1}^n\Gamma_{ij}^k(\mathbf e)e_k.</math> | :<math>\nabla_{e_i}e_j = \sum_{k=1}^n\Gamma_{ij}^k(\mathbf e)e_k.</math> | ||
Line 142: | Line 144: | ||
जो गायब हो जाता है यदि और केवल यदि Γ<sup>मैं<sub>''kj''</sub> अपने निचले सूचकांकों पर सममित है। | जो गायब हो जाता है यदि और केवल यदि Γ<sup>मैं<sub>''kj''</sub> अपने निचले सूचकांकों पर सममित है। | ||
मरोड़ के साथ एक मीट्रिक कनेक्शन दिया गया है, एक बार | मरोड़ के साथ एक मीट्रिक कनेक्शन दिया गया है, एक बार अधिकांशता एक एकल, अद्वितीय कनेक्शन मिल सकता है जो मरोड़ से मुक्त है, यह लेवी-सिविता कनेक्शन है। एक रिमेंनियन कनेक्शन और उससे जुड़े लेवी-सिविता कनेक्शन के बीच का अंतर [[विरूपण टेंसर]] है। | ||
== संरचना समूह == | == संरचना समूह == | ||
Line 149: | Line 151: | ||
* एक जटिल मैनिफोल्ड (या लगभग जटिल मैनिफोल्ड) का होलोमोर्फिक स्पर्शरेखा बंडल।<ref name=Wells>Wells (1973).</ref> यहाँ संरचना समूह जीएल है<sub>n</sub>(C) ⊂ GL<sub>2n</sub>(आर)।<ref>See for instance Kobayashi and Nomizu, Volume II.</ref> यदि एक [[हर्मिटियन मीट्रिक]] दिया जाता है, तो संरचना समूह एकात्मक फ्रेम पर अभिनय करने वाले [[एकात्मक समूह]] को कम कर देता है।<ref name=Wells/>* [[स्पिन संरचना]] से सुसज्जित कई गुना पर [[स्पिनर]]। स्पिन स्पेस पर एक अपरिवर्तनीय आंतरिक उत्पाद के संबंध में फ्रेम एकात्मक हैं, और समूह [[स्पिन समूह]] को कम कर देता है। | * एक जटिल मैनिफोल्ड (या लगभग जटिल मैनिफोल्ड) का होलोमोर्फिक स्पर्शरेखा बंडल।<ref name=Wells>Wells (1973).</ref> यहाँ संरचना समूह जीएल है<sub>n</sub>(C) ⊂ GL<sub>2n</sub>(आर)।<ref>See for instance Kobayashi and Nomizu, Volume II.</ref> यदि एक [[हर्मिटियन मीट्रिक]] दिया जाता है, तो संरचना समूह एकात्मक फ्रेम पर अभिनय करने वाले [[एकात्मक समूह]] को कम कर देता है।<ref name=Wells/>* [[स्पिन संरचना]] से सुसज्जित कई गुना पर [[स्पिनर]]। स्पिन स्पेस पर एक अपरिवर्तनीय आंतरिक उत्पाद के संबंध में फ्रेम एकात्मक हैं, और समूह [[स्पिन समूह]] को कम कर देता है। | ||
* [[ सीआर कई गुना ]]्स पर होलोमॉर्फिक स्पर्शरेखा बंडल।<ref>See Chern and Moser.</ref> | * [[ सीआर कई गुना ]]्स पर होलोमॉर्फिक स्पर्शरेखा बंडल।<ref>See Chern and Moser.</ref> | ||
सामान्यतः , E को फाइबर आयाम k का एक दिया गया वेक्टर बंडल और G ⊂ GL(k) 'R' के सामान्य रैखिक समूह का एक दिया गया उपसमूह है।<sup>क</सुप>. यदि (ई<sub>α</sub>) ई का स्थानीय फ्रेम है, फिर एक मैट्रिक्स-मूल्यवान | सामान्यतः , E को फाइबर आयाम k का एक दिया गया वेक्टर बंडल और G ⊂ GL(k) 'R' के सामान्य रैखिक समूह का एक दिया गया उपसमूह है।<sup>क</सुप>. यदि (ई<sub>α</sub>) ई का स्थानीय फ्रेम है, फिर एक मैट्रिक्स-मूल्यवान फलन (जी<sub>i</sub><sup>j</sup>): M → G, e पर फलन कर सकता है<sub>α</sub> एक नया फ्रेम बनाने के लिए | ||
:<math>e_\alpha' = \sum_\beta e_\beta g_\alpha^\beta.</math> | :<math>e_\alpha' = \sum_\beta e_\beta g_\alpha^\beta.</math> | ||
ऐसे दो फ्रेम ''जी'' से संबंधित हैं। अनौपचारिक रूप से, वेक्टर बंडल ''ई'' में ''जी''-बंडल की संरचना होती है, यदि फ्रेम का पसंदीदा वर्ग निर्दिष्ट किया जाता है, जो सभी स्थानीय रूप से ''जी''-एक दूसरे से संबंधित हैं। औपचारिक शब्दों में, 'ई' संरचना समूह 'जी' के साथ एक [[फाइबर बंडल]] है जिसका विशिष्ट फाइबर आर है<sup>k</sup> GL(k) के एक उपसमूह के रूप में G की प्राकृतिक क्रिया के साथ। | ऐसे दो फ्रेम ''जी'' से संबंधित हैं। अनौपचारिक रूप से, वेक्टर बंडल ''ई'' में ''जी''-बंडल की संरचना होती है, यदि फ्रेम का पसंदीदा वर्ग निर्दिष्ट किया जाता है, जो सभी स्थानीय रूप से ''जी''-एक दूसरे से संबंधित हैं। औपचारिक शब्दों में, 'ई' संरचना समूह 'जी' के साथ एक [[फाइबर बंडल]] है जिसका विशिष्ट फाइबर आर है<sup>k</sup> GL(k) के एक उपसमूह के रूप में G की प्राकृतिक क्रिया के साथ। | ||
=== संगत कनेक्शन === | === संगत कनेक्शन === | ||
ई पर जी-बंडल की संरचना के साथ एक कनेक्शन [[मीट्रिक संगत]] है, बशर्ते संबंधित [[समानांतर परिवहन]] मानचित्र | ई पर जी-बंडल की संरचना के साथ एक कनेक्शन [[मीट्रिक संगत]] है, बशर्ते संबंधित [[समानांतर परिवहन]] मानचित्र अधिकांशता एक जी-फ्रेम को दूसरे में भेजते हैं। औपचारिक रूप से, एक वक्र γ के साथ, निम्नलिखित को स्थानीय रूप से धारण करना चाहिए (अर्थात, टी के पर्याप्त छोटे मूल्यों के लिए): | ||
:<math>\Gamma(\gamma)_0^t e_\alpha(\gamma(0)) = \sum_\beta e_\beta(\gamma(t))g_\alpha^\beta(t) </math> | :<math>\Gamma(\gamma)_0^t e_\alpha(\gamma(0)) = \sum_\beta e_\beta(\gamma(t))g_\alpha^\beta(t) </math> | ||
कुछ मैट्रिक्स जी के लिए<sub>α</sub><sup>β</sup> (जो t पर भी निर्भर हो सकता है)। t=0 पर अवकलन देता है | कुछ मैट्रिक्स जी के लिए<sub>α</sub><sup>β</sup> (जो t पर भी निर्भर हो सकता है)। t=0 पर अवकलन देता है | ||
Line 169: | Line 171: | ||
फ्रेम के बदलाव के अनुसार | फ्रेम के बदलाव के अनुसार | ||
:<math>e_\alpha' = \sum_\beta e_\beta g_\alpha^\beta</math> | :<math>e_\alpha' = \sum_\beta e_\beta g_\alpha^\beta</math> | ||
जहाँ g एक G-मूल्यवान | जहाँ g एक G-मूल्यवान फलन है जो M के एक खुले उपसमुच्चय पर परिभाषित है, कनेक्शन प्रपत्र के माध्यम से रूपांतरित होता है <!--Todo: incorporate index version above as well. --> | ||
:<math>\omega_\alpha^\beta(\mathbf e\cdot g) = (g^{-1})_\gamma^\beta dg_\alpha^\gamma + (g^{-1})_\gamma^\beta \omega_\delta^\gamma(\mathbf e)g_\alpha^\delta.</math> | :<math>\omega_\alpha^\beta(\mathbf e\cdot g) = (g^{-1})_\gamma^\beta dg_\alpha^\gamma + (g^{-1})_\gamma^\beta \omega_\delta^\gamma(\mathbf e)g_\alpha^\delta.</math> | ||
या, मैट्रिक्स उत्पादों का उपयोग करना: | या, मैट्रिक्स उत्पादों का उपयोग करना: | ||
Line 175: | Line 177: | ||
इनमें से प्रत्येक पद की व्याख्या करने के लिए याद रखें कि g : M → G एक G-मूल्यवान (स्थानीय रूप से परिभाषित) फलन है। इसे ध्यान में रखकर, | इनमें से प्रत्येक पद की व्याख्या करने के लिए याद रखें कि g : M → G एक G-मूल्यवान (स्थानीय रूप से परिभाषित) फलन है। इसे ध्यान में रखकर, | ||
:<math>\omega({\mathbf e}\cdot g) = g^*\omega_{\mathfrak g} + \text{Ad}_{g^{-1}}\omega(\mathbf e)</math> | :<math>\omega({\mathbf e}\cdot g) = g^*\omega_{\mathfrak g} + \text{Ad}_{g^{-1}}\omega(\mathbf e)</math> | ||
कहाँ ω<sub>'''g'''</sub> समूह जी के लिए [[मौरर-कार्टन फॉर्म|मौरर-कार्टन]] प्रपत्र है, यहां | कहाँ ω<sub>'''g'''</sub> समूह जी के लिए [[मौरर-कार्टन फॉर्म|मौरर-कार्टन]] प्रपत्र है, यहां फलन जी के साथ एम को [[ पुलबैक (अंतर ज्यामिति) |पुलबैक (अंतर ज्यामिति)]] है, और विज्ञापन इसके लाई बीजगणित पर जी का आसन्न प्रतिनिधित्व है। | ||
== प्रमुख बंडल == | == प्रमुख बंडल == | ||
Line 181: | Line 183: | ||
=== कनेक्शन प्रपत्र के लिए मुख्य कनेक्शन === | === कनेक्शन प्रपत्र के लिए मुख्य कनेक्शन === | ||
मान लीजिए कि E → M संरचना समूह G के साथ एक सदिश बंडल है। मान लीजिए कि {U} M का एक खुला आवरण है, प्रत्येक U पर G-फ्रेम के साथ, जिसे 'e' द्वारा दर्शाया गया है।<sub>U</sub>. ये द्वारा ओवरलैपिंग ओपन | मान लीजिए कि E → M संरचना समूह G के साथ एक सदिश बंडल है। मान लीजिए कि {U} M का एक खुला आवरण है, प्रत्येक U पर G-फ्रेम के साथ, जिसे 'e' द्वारा दर्शाया गया है।<sub>U</sub>. ये द्वारा ओवरलैपिंग ओपन समुच्चय के चौराहों पर संबंधित हैं | ||
:<math>{\mathbf e}_V={\mathbf e}_U\cdot h_{UV}</math> | :<math>{\mathbf e}_V={\mathbf e}_U\cdot h_{UV}</math> | ||
कुछ जी-वैल्यू | कुछ जी-वैल्यू फलन एच के लिए<sub>UV</sub> यू ∩ वी पर परिभाषित। | ||
चलो एफ<sub>G</sub>ई, एम के प्रत्येक बिंदु पर लिए गए सभी जी-फ्रेमों का | चलो एफ<sub>G</sub>ई, एम के प्रत्येक बिंदु पर लिए गए सभी जी-फ्रेमों का समुच्चय है। यह एम पर एक प्रमुख जी-बंडल है। विस्तार से, इस तथ्य का उपयोग करते हुए कि जी-फ्रेम सभी जी-संबंधित हैं, एफ<sub>G</sub>खुले आवरण के सेटों के बीच ग्लूइंग डेटा के संदर्भ में ई को महसूस किया जा सकता है: | ||
:<math>F_GE = \left.\coprod_U U\times G\right/\sim</math> | :<math>F_GE = \left.\coprod_U U\times G\right/\sim</math> | ||
जहां [[तुल्यता संबंध]] <math>\sim</math> द्वारा परिभाषित किया गया है | जहां [[तुल्यता संबंध]] <math>\sim</math> द्वारा परिभाषित किया गया है | ||
Line 198: | Line 200: | ||
इसके विपरीत, एक प्रमुख G-बंडल P→M में एक प्रमुख G-कनेक्शन ω, M पर कनेक्शन रूपों के संग्रह को जन्म देता है। मान लीजिए कि 'e': M → P, P का एक स्थानीय खंड है। फिर ω का पुलबैक 'ई' एम पर 'जी'-मूल्यवान एक-रूप को परिभाषित करता है: | इसके विपरीत, एक प्रमुख G-बंडल P→M में एक प्रमुख G-कनेक्शन ω, M पर कनेक्शन रूपों के संग्रह को जन्म देता है। मान लीजिए कि 'e': M → P, P का एक स्थानीय खंड है। फिर ω का पुलबैक 'ई' एम पर 'जी'-मूल्यवान एक-रूप को परिभाषित करता है: | ||
:<math>\omega({\mathbf e}) = {\mathbf e}^*\omega.</math> | :<math>\omega({\mathbf e}) = {\mathbf e}^*\omega.</math> | ||
जी-वैल्यू | जी-वैल्यू फलन जी द्वारा फ्रेम बदलना, कोई देखता है कि ω('e') लीबनिज़ नियम और संयोजन का उपयोग करके आवश्यक विधि े से बदलता है: | ||
:<math>\langle X, ({\mathbf e}\cdot g)^*\omega\rangle = \langle [d(\mathbf e\cdot g)](X), \omega\rangle</math> | :<math>\langle X, ({\mathbf e}\cdot g)^*\omega\rangle = \langle [d(\mathbf e\cdot g)](X), \omega\rangle</math> | ||
जहां एक्स एम पर एक वेक्टर है, और डी पुशफॉरवर्ड (अंतर) को दर्शाता है। | जहां एक्स एम पर एक वेक्टर है, और डी पुशफॉरवर्ड (अंतर) को दर्शाता है। |
Revision as of 07:53, 27 April 2023
गणित में विशेष रूप से अंतर ज्यामिति में एक कनेक्शन प्रपत्र गणित के डेटा को व्यवस्थित करने की विधि होती है, जो गतिमान फ्रेम और अंतर रूपों की भाषा का उपयोग करता है।
ऐतिहासिक रूप से, एली कार्टन द्वारा 20 वीं शताब्दी के पहले छमाही में कनेक्शन प्रपत्र को प्रस्तुत किया गया था और इस प्रकार फ्रेम को स्थानांतरित करने की उनकी पद्धति के लिए प्रमुख प्रेरणाओं में से एक था। कनेक्शन प्रपत्र सामान्यतः समन्वय फ्रेम की पसंद पर निर्भर करता है, और इसलिए यह एक तन्य वस्तु के रूप में नहीं होती है। कार्टन के प्रारंभिक काम के बाद कनेक्शन प्रपत्र के विभिन्न सामान्यीकरण और पुनर्व्याख्या तैयार की गई थी और इस प्रकार विशेष रूप से एक सिद्धांत बंडल पर एक प्रमुख कनेक्शन एक तन्य वस्तु के रूप में कनेक्शन प्रपत्र की एक प्राकृतिक पुनर्व्याख्या के रूप में है। दूसरी ओर कनेक्शन प्रपत्र का लाभ है कि यह अलग-अलग मैनिफोल्ड पर परिभाषित एक अंतर के रूप में होते है और इसके अतिरिक्त ऊपर एक अमूर्त प्रमुख बंडल के रूप में होते है इसलिए इसकी तन्यता में कमी के अतिरिक्त उनके साथ गणना करने में अपेक्षाकृत आसानी के कारण कनेक्शन प्रपत्र का उपयोग जारी है।[1] भौतिकी में, गेज सहसंयोजक व्युत्पन्न के माध्यम से गेज सिद्धांत के संदर्भ में कनेक्शन रूपों का भी व्यापक रूप से उपयोग किया जाता है।
एक कनेक्शन प्रपत्र एक सदिश बंडल के प्रत्येक आधार से भिन्न रूपों के एक मैट्रिक्स (गणित) को जोड़ता है। कनेक्शन प्रपत्र टेन्सोरियल के रूप में नहीं है क्योंकि आधार के परिवर्तन के अनुसार कनेक्शन प्रपत्र इस तरह से परिवर्तित हो जाता है जिसमें एटलस (टोपोलॉजी) ट्रांज़िशन मैप्स के बाहरी व्युत्पन्न के रूप में सम्मलित होते हैं, वैसे ही जैसे लेवी-सिविटा कनेक्शन के लिए क्रिस्टोफेल प्रतीक कनेक्शन प्रपत्र का मुख्य टेन्सोरियल इनवेरिएंट इसका वक्रता रूप है। और इस प्रकार स्पर्शरेखा बंडल के साथ वेक्टर बंडल की पहचान करने वाले सोल्डर प्रपत्र की उपस्थिति में, एक अतिरिक्त अपरिवर्तनीय आक्षेप (अंतर ज्यामिति) के रूप में है। और इस प्रकार कई स्थितियों में अतिरिक्त संरचना वाले वेक्टर बंडलों पर कनेक्शन प्रपत्रों पर विचार किया जाता है जो लाइ समूह के साथ एक फाइबर बंडल के रूप में होते हैं।
वेक्टर बंडल
वेक्टर बंडल पर फ्रेम
बता दें कि ई एक अलग-अलग कई गुना एम पर फाइबर आयाम k एक वेक्टर बंडल के रूप में है। ई के लिए एक 'स्थानीय फ्रेम' ई के खंड के वेक्टर का एक क्रमबद्ध आधार के रूप में है। स्थानीय फ्रेम का निर्माण करना अधिकांशता संभव होता है और इस प्रकार सदिश बंडलों को अधिकांशता स्थानीय निरर्थकता के संदर्भ में परिभाषित किया जाता है और कई गुना एटलस (टोपोलॉजी) के अनुरूप होते है। यदि बेस मैनिफोल्ड एम पर कोई बिंदु एक्स दिया गया है, वह एक खुला निकटतम U ⊂ M एक्स के रूप में उपस्थित है जिसके लिए यू पर वेक्टर बंडल के क्षेत्र U × Rk के लिए समरूप होते है यह स्थानीय तुच्छीकरण के रूप में है। और Rk पर वेक्टर स्पेस संरचना को इस प्रकार संपूर्ण स्थानीय तुच्छीकरण तक बढ़ाया जा सकता है और Rk के आधार को बढ़ाया जा सकता है और यह स्थानीय फ्रेम को परिभाषित करता है। यहाँ, R का आशय वास्तविक संख्याओं से है , चूंकि यहां अधिकांश विकास सामान्य रूप से छल्ले पर मॉड्यूल और जटिल संख्याओं पर वेक्टर रिक्त स्थान तक विशेष रूप से बढ़ाया जा सकता है।
यहाँ e = (eα)α=1,2,...,k पर एक स्थानीय फ्रेम E के रूप में होते है। इस फ्रेम का उपयोग स्थानीय रूप से E के किसी भी खंड को व्यक्त करने के लिए किया जा सकता है। उदाहरण के लिए मान लीजिए कि ξ एक स्थानीय खंड है, जिसे उसी खुले समुच्चय पर फ्रेम 'ई' के रूप में परिभाषित किया गया है। तब यह इस प्रकार दिखाया जाता है।
जहां ξα(e) फ्रेम e में ξ के घटकों को दर्शाता है। मैट्रिक्स समीकरण के रूप में यह पढ़ा जा सकता है।
सामान्य सापेक्षता में, ऐसे फ्रेम क्षेत्रों को टेट्राद औपचारिकता कहा जाता है। टेट्रैड विशेष रूप से स्थानीय फ्रेम को बेस मैनिफोल्ड एम पर समन्वय प्रणाली एटलस द्वारा स्थापित किया जाता है और इस प्रकार यह एक स्पष्ट समन्वय प्रणाली से संबंधित है।
बाहरी कनेक्शन
E में एक कनेक्शन (वेक्टर बंडल) एक प्रकार का अंतर ऑपरेटर के रूप में होता है
जहां Γ वेक्टर बंडल के स्थानीय खंड (फाइबर बंडल) के शीफ (गणित) को दर्शाता है और Ω1M, M पर अवकलन 1-फॉर्म्स का बंडल के रूप में है। और इस प्रकार D के लिए एक कनेक्शन होने के लिए इसे बाहरी व्युत्पन्न के साथ सही ढंग से जोड़ा जाना चाहिए। विशेष रूप से यदि v E का एक स्थानीय खंड के रूप में है और f एक सहज फलन के रूप में है, तो यह इस प्रकार दिखाया जाता है
जहाँ df, f का बाह्य व्युत्पन्न है।
कभी-कभी डी की परिभाषा को यादृच्छिक ढंग से सदिश मान अवकलन प्रपत्र ई-वैल्यूड प्रपत्र में विस्तारित करना सुविधाजनक होता है, इस प्रकार इसे ई के टेंसर उत्पाद पर अवकलन प्रपत्र के पूर्ण बाहरी बीजगणित के साथ एक अवकलन ऑपरेटर के रूप में माना जाता है। इस संगतता गुणधर्म को संतुष्ट करने वाले बाहरी कनेक्शन डी को देखते हुए, डी का एक अनूठा विस्तार के रूप में उपस्थित होता है
ऐसा है कि
जहाँ v घात deg v का सजातीय रूप है। दूसरे शब्दों में, D ग्रेडेड मॉड्यूल Γ(E ⊗ Ω*म).के शीफ पर एक व्युत्पत्ति सार बीजगणित के रूप में होते है
कनेक्शन प्रपत्र
कनेक्शन प्रपत्र तब उत्पन्न होता है जब बाहरी कनेक्शन को किसी विशेष फ्रेम में लागू किया जाता है। eα के बाहरी कनेक्शन को लागू करने पर यह अद्वितीय k × k मैट्रिक्स (ωαβ) M पर एक रूप इस प्रकार है,
कनेक्शन प्रपत्र के संदर्भ में, E के किसी भी खंड के बाहरी कनेक्शन को अब व्यक्त किया जा सकता है। उदाहरण के लिए मान लीजिए कि ξ = Σα eαξα. तब
दोनों पक्षों पर घटकों को लेना,
जहां यह समझा जाता है कि डी और ω फ्रेम 'E' के संबंध में घटक-वार व्युत्पन्न का संदर्भ देते हैं और क्रमशः 1-रूपों का मैट्रिक्स, ξ के घटकों पर फलन के रूप में होते है। और इसके विपरीत, 1-प्रपत्र ω का एक मैट्रिक्स खुले समुच्चय पर स्थानीय रूप से कनेक्शन को पूरी तरह से निर्धारित करने के लिए पर्याप्त प्राथमिकता देते है, जिस पर खंड 'ई' का आधार परिभाषित किया गया है।
फ्रेम का परिवर्तन
एक उपयुक्त वैश्विक वस्तु के लिए ω का विस्तार करने के लिए यह जांचना आवश्यक है कि जब E के मौलिक वर्गों का एक अलग विकल्प चुना जाता है तो यह कैसा व्यवहार करता है। और इस प्रकार ωαβ = ωαβ(e)'e' के विकल्प पर निर्भरता को इंगित करने के लिए होते है।
मान लीजिए कि 'e′ स्थानीय आधार का एक अलग विकल्प के रूप में है। फिर फलन g का एक व्युत्क्रमणीय k × k मैट्रिक्स होता है जैसे कि दिखाया जाता है
दोनों पक्षों के बाहरी कनेक्शन को लागू करने से ω के लिए परिवर्तन नियम मिलता है जिसे इस प्रकार दिखाया जाता है
विशेष रूप से ध्यान दें कि ω एक तन्य विधि से बदलने में विफल रहता है, क्योंकि एक फ्रेम से दूसरे फ्रेम में जाने के नियम में संक्रमण मैट्रिक्स g व्युत्पन्न के रूप में सम्मलित होते हैं।
वैश्विक कनेक्शन प्रपत्र
यदि तुमp} M का एक खुला आवरण है, और प्रत्येक Up एक तुच्छीकरण ई से लैस हैp ई के, तो ओवरलैप क्षेत्रों पर स्थानीय कनेक्शन रूपों के बीच पैचिंग डेटा के संदर्भ में वैश्विक कनेक्शन प्रपत्र को परिभाषित करना संभव है। विस्तार से, M पर एक 'कनेक्शन फॉर्म' मैट्रिक्स ω('e') की एक प्रणाली हैp) प्रत्येक यू पर परिभाषित 1-फॉर्मp जो निम्नलिखित अनुकूलता शर्त को पूरा करते हैं
यह संगतता स्थिति विशेष रूप से सुनिश्चित करती है कि E के एक खंड का बाहरी कनेक्शन, जब सार रूप से E ⊗ Ω के एक खंड के रूप में माना जाता है1एम, कनेक्शन को परिभाषित करने के लिए उपयोग किए जाने वाले आधार अनुभाग की पसंद पर निर्भर नहीं करता है।
वक्रता
ई में एक कनेक्शन फार्म के वक्रता दो रूप द्वारा परिभाषित किया गया है
कनेक्शन प्रपत्र के विपरीत, वक्रता फ्रेम के परिवर्तन के अनुसार अस्थायी रूप से व्यवहार करती है, जिसे पॉइनकेयर लेम्मा का उपयोग करके सीधे चेक किया जा सकता है। विशेष रूप से, यदि ई → ई जी फ्रेम का परिवर्तन है, तो वक्रता दो-रूप से बदल जाती है
इस परिवर्तन नियम की एक व्याख्या इस प्रकार है। चलो ई* फ्रेम ई के अनुरूप दोहरा आधार हो। फिर 2-रूप
फ्रेम की पसंद से स्वतंत्र है। विशेष रूप से, Ω एंडोमोर्फिज्म रिंग होम (ई, ई) में मूल्यों के साथ एम पर एक वेक्टर-मूल्यवान दो-रूप है। प्रतीकात्मक रूप से,
बाहरी कनेक्शन डी के संदर्भ में, वक्रता एंडोमोर्फिज्म द्वारा दिया जाता है
v ∈ E के लिए। इस प्रकार वक्रता अनुक्रम की विफलता को मापती है
एक चेन कॉम्प्लेक्स होना (डॉ कहलमज गर्भाशय के अर्थ में)।
सोल्डरिंग और मरोड़
मान लीजिए कि E का फाइबर आयाम k कई गुना M के आयाम के बराबर है। इस स्थिति में, वेक्टर बंडल E कभी-कभी इसके कनेक्शन के अतिरिक्त डेटा के एक अतिरिक्त टुकड़े से सुसज्जित होता है: एक सोल्डर फॉर्म। एक 'सोल्डर फॉर्म' विश्व स्तर पर परिभाषित वेक्टर-मूल्यवान रूप है | सदिश मान वन-प्रपत्र θ ∈ Ω1(M,E) ऐसा है कि मैपिंग
सभी एक्स ∈ एम के लिए एक रैखिक समरूपता है। यदि एक सोल्डर प्रपत्र दिया गया है, तो कनेक्शन के 'मरोड़ (अंतर ज्यामिति)' को परिभाषित करना संभव है (बाहरी कनेक्शन के संदर्भ में)
मरोड़ Θ एम पर एक ई-वैल्यू 2-प्रपत्र है।
सोल्डर प्रपत्र और संबंधित मरोड़ दोनों को ई के स्थानीय फ्रेम 'ई' के संदर्भ में वर्णित किया जा सकता है। यदि θ एक सोल्डर प्रपत्र है, तो यह फ्रेम घटकों में विघटित हो जाता है
मरोड़ के घटक तब हैं
वक्रता की तरह, यह दिखाया जा सकता है कि Θ फ्रेम में बदलाव के अनुसार सहप्रसरण और सदिशों के प्रतिप्रसरण के रूप में व्यवहार करता है:
फ़्रेम-स्वतंत्र मरोड़ को फ़्रेम घटकों से भी पुनर्प्राप्त किया जा सकता है:
बियांची पहचान
बियांची की पहचान मरोड़ को वक्रता से संबंधित करती है। पहली बियांची पहचान बताती है कि
जबकि दूसरी बियांची पहचान बताती है कि
उदाहरण: लेवी-सिविता कनेक्शन
एक उदाहरण के रूप में, मान लीजिए कि M में रिमेंनियन मीट्रिक है। यदि किसी के पास M के ऊपर एक वेक्टर बंडल E है, तो बंडल मीट्रिक के रूप में मीट्रिक को पूरे वेक्टर बंडल तक बढ़ाया जा सकता है। कोई तब एक कनेक्शन परिभाषित कर सकता है जो इस बंडल मीट्रिक के साथ संगत है, यह मीट्रिक कनेक्शन है। ई के स्पर्शरेखा बंडल टीएम होने के विशेष स्थिति के लिए, मीट्रिक कनेक्शन को रिमानियन कनेक्शन कहा जाता है। एक रिमेंनियन कनेक्शन को देखते हुए, अधिकांशता एक अद्वितीय, समतुल्य कनेक्शन मिल सकता है जो मरोड़ तनाव | मरोड़-मुक्त है। यह एम के टेंगेंट बंडल टीएम पर लेवी-सिविता कनेक्शन है।[2][3] स्पर्शरेखा बंडल पर एक स्थानीय फ्रेम सदिश क्षेत्रों की एक क्रमबद्ध सूची है e = (ei | i = 1, 2, ..., n), कहाँ n = dim M, M के एक खुले उपसमुच्चय पर परिभाषित किया गया है जो अपने डोमेन के प्रत्येक बिंदु पर रैखिक रूप से स्वतंत्र हैं। क्रिस्टोफेल प्रतीक लेवी-सिविता कनेक्शन को परिभाषित करते हैं
यदि θ = {θi | i = 1, 2, ..., n}, स्पर्शरेखा बंडल के दोहरे आधार को दर्शाता है, जैसे कि θमैं(औरj) = डीमैंj (क्रोनकर डेल्टा), तो कनेक्शन प्रपत्र है
कनेक्शन प्रपत्र के संदर्भ में, वेक्टर क्षेत्र पर बाहरी कनेक्शन v = Σieivi द्वारा दिया गया है
ई के साथ अनुबंध करके, सामान्य अर्थों में, लेवी-सिविता कनेक्शन को पुनर्प्राप्त कर सकते हैंi:
वक्रता
लेवी-सिविता कनेक्शन का वक्रता 2-रूप मैट्रिक्स (Ωij) द्वारा दिया गया
सादगी के लिए, मान लीजिए कि फ्रेम ई होलोनोमिक आधार है, जिससे कि dθi = 0.[4] फिर, अब दोहराए गए सूचकांकों पर योग परिपाटी का उपयोग करते हुए,
जहाँ R रीमैन वक्रता टेन्सर है।
मरोड़
लेवी-सिविता कनेक्शन को शून्य मरोड़ के साथ स्पर्शरेखा बंडल में अद्वितीय मीट्रिक कनेक्शन के रूप में वर्णित किया गया है। मरोड़ का वर्णन करने के लिए, ध्यान दें कि सदिश बंडल E स्पर्शरेखा बंडल है। इसमें एक कैनोनिकल सोल्डर प्रपत्र होता है (जिसे कभी-कभी विहित एक रूप कहा जाता है, विशेष रूप से मौलिक यांत्रिकी के संदर्भ में) जो कि खंड θ है Hom(TM, TM) = T∗M ⊗ TM स्पर्शरेखा रिक्त स्थान की पहचान एंडोमोर्फिज्म के अनुरूप। फ्रेम ई में, सोल्डर प्रपत्र है {{{1}}}, जहां फिर से θi दोहरा आधार है।
कनेक्शन का मरोड़ किसके द्वारा दिया जाता है Θ = Dθ, या सोल्डर प्रपत्र के फ्रेम घटकों के संदर्भ में
सादगी के लिए फिर से यह मानते हुए कि ई होलोनोमिक है, यह अभिव्यक्ति कम हो जाती है
- ,
जो गायब हो जाता है यदि और केवल यदि Γमैंkj अपने निचले सूचकांकों पर सममित है।
मरोड़ के साथ एक मीट्रिक कनेक्शन दिया गया है, एक बार अधिकांशता एक एकल, अद्वितीय कनेक्शन मिल सकता है जो मरोड़ से मुक्त है, यह लेवी-सिविता कनेक्शन है। एक रिमेंनियन कनेक्शन और उससे जुड़े लेवी-सिविता कनेक्शन के बीच का अंतर विरूपण टेंसर है।
संरचना समूह
एक अधिक विशिष्ट प्रकार के कनेक्शन प्रपत्र का निर्माण तब किया जा सकता है जब वेक्टर बंडल ई एक संबद्ध बंडल रखता है। यह ई पर फ्रेम 'ई' के एक पसंदीदा वर्ग के बराबर है, जो एक लाइ समूह जी से संबंधित हैं। उदाहरण के लिए, ई में एक मीट्रिक (वेक्टर बंडल) की उपस्थिति में, एक फ्रेम के साथ काम करता है जो प्रत्येक पर एक ऑर्थोनॉर्मल आधार बनाता है बिंदु। संरचना समूह तब ओर्थोगोनल समूह है, क्योंकि यह समूह फ़्रेमों की ऑर्थोनॉर्मलिटी को संरक्षित करता है। अन्य उदाहरणों में सम्मलित हैं:
- पूर्ववर्ती खंड में विचार किए गए सामान्य फ्रेम में संरचनात्मक समूह जीएल (के) होता है जहां के ई का फाइबर आयाम होता है।
- एक जटिल मैनिफोल्ड (या लगभग जटिल मैनिफोल्ड) का होलोमोर्फिक स्पर्शरेखा बंडल।[5] यहाँ संरचना समूह जीएल हैn(C) ⊂ GL2n(आर)।[6] यदि एक हर्मिटियन मीट्रिक दिया जाता है, तो संरचना समूह एकात्मक फ्रेम पर अभिनय करने वाले एकात्मक समूह को कम कर देता है।[5]* स्पिन संरचना से सुसज्जित कई गुना पर स्पिनर। स्पिन स्पेस पर एक अपरिवर्तनीय आंतरिक उत्पाद के संबंध में फ्रेम एकात्मक हैं, और समूह स्पिन समूह को कम कर देता है।
- सीआर कई गुना ्स पर होलोमॉर्फिक स्पर्शरेखा बंडल।[7]
सामान्यतः , E को फाइबर आयाम k का एक दिया गया वेक्टर बंडल और G ⊂ GL(k) 'R' के सामान्य रैखिक समूह का एक दिया गया उपसमूह है।क</सुप>. यदि (ईα) ई का स्थानीय फ्रेम है, फिर एक मैट्रिक्स-मूल्यवान फलन (जीij): M → G, e पर फलन कर सकता हैα एक नया फ्रेम बनाने के लिए
ऐसे दो फ्रेम जी से संबंधित हैं। अनौपचारिक रूप से, वेक्टर बंडल ई में जी-बंडल की संरचना होती है, यदि फ्रेम का पसंदीदा वर्ग निर्दिष्ट किया जाता है, जो सभी स्थानीय रूप से जी-एक दूसरे से संबंधित हैं। औपचारिक शब्दों में, 'ई' संरचना समूह 'जी' के साथ एक फाइबर बंडल है जिसका विशिष्ट फाइबर आर हैk GL(k) के एक उपसमूह के रूप में G की प्राकृतिक क्रिया के साथ।
संगत कनेक्शन
ई पर जी-बंडल की संरचना के साथ एक कनेक्शन मीट्रिक संगत है, बशर्ते संबंधित समानांतर परिवहन मानचित्र अधिकांशता एक जी-फ्रेम को दूसरे में भेजते हैं। औपचारिक रूप से, एक वक्र γ के साथ, निम्नलिखित को स्थानीय रूप से धारण करना चाहिए (अर्थात, टी के पर्याप्त छोटे मूल्यों के लिए):
कुछ मैट्रिक्स जी के लिएαβ (जो t पर भी निर्भर हो सकता है)। t=0 पर अवकलन देता है
जहां गुणांक ωαβ लाई समूह जी के लाई बीजगणित जी में हैं।
इस अवलोकन के साथ, कनेक्शन ω बनाता हैαβ द्वारा परिभाषित
संरचना के साथ संगत है यदि एक-रूपों का मैट्रिक्स ω हैαβ(e) इसका मान g में लेता है।
एक संगत कनेक्शन का वक्रता रूप, इसके अतिरिक्त , एक जी-मूल्यवान दो-रूप है।
फ्रेम का परिवर्तन
फ्रेम के बदलाव के अनुसार
जहाँ g एक G-मूल्यवान फलन है जो M के एक खुले उपसमुच्चय पर परिभाषित है, कनेक्शन प्रपत्र के माध्यम से रूपांतरित होता है
या, मैट्रिक्स उत्पादों का उपयोग करना:
इनमें से प्रत्येक पद की व्याख्या करने के लिए याद रखें कि g : M → G एक G-मूल्यवान (स्थानीय रूप से परिभाषित) फलन है। इसे ध्यान में रखकर,
कहाँ ωg समूह जी के लिए मौरर-कार्टन प्रपत्र है, यहां फलन जी के साथ एम को पुलबैक (अंतर ज्यामिति) है, और विज्ञापन इसके लाई बीजगणित पर जी का आसन्न प्रतिनिधित्व है।
प्रमुख बंडल
कनेक्शन फॉर्म, जैसा कि अब तक प्रस्तुत किया गया है, फ्रेम के एक विशेष विकल्प पर निर्भर करता है। पहली परिभाषा में, फ्रेम केवल अनुभागों का एक स्थानीय आधार है। प्रत्येक फ्रेम के लिए, एक फ्रेम से दूसरे फ्रेम में जाने के लिए परिवर्तन कानून के साथ एक कनेक्शन प्रपत्र दिया जाता है। दूसरी परिभाषा में, फ्रेम स्वयं एक लाई समूह द्वारा प्रदान की गई कुछ अतिरिक्त संरचना को ले जाते हैं, और फ्रेम के परिवर्तन उन लोगों के लिए विवश होते हैं जो इसमें अपना मान लेते हैं। 1940 के दशक में चार्ल्स एह्रेसमैन द्वारा अग्रणी प्रमुख बंडलों की भाषा, इन कई कनेक्शन रूपों को व्यवस्थित करने का एक विधि प्रदान करती है और परिवर्तन के लिए एक ही नियम के साथ उन्हें एक आंतरिक रूप में जोड़ने वाले परिवर्तन कानून प्रदान करती है। इस दृष्टिकोण का नुकसान यह है कि रूपों को अब कई गुना पर ही परिभाषित नहीं किया जाता है, बल्कि एक बड़े प्रमुख बंडल पर।
कनेक्शन प्रपत्र के लिए मुख्य कनेक्शन
मान लीजिए कि E → M संरचना समूह G के साथ एक सदिश बंडल है। मान लीजिए कि {U} M का एक खुला आवरण है, प्रत्येक U पर G-फ्रेम के साथ, जिसे 'e' द्वारा दर्शाया गया है।U. ये द्वारा ओवरलैपिंग ओपन समुच्चय के चौराहों पर संबंधित हैं
कुछ जी-वैल्यू फलन एच के लिएUV यू ∩ वी पर परिभाषित।
चलो एफGई, एम के प्रत्येक बिंदु पर लिए गए सभी जी-फ्रेमों का समुच्चय है। यह एम पर एक प्रमुख जी-बंडल है। विस्तार से, इस तथ्य का उपयोग करते हुए कि जी-फ्रेम सभी जी-संबंधित हैं, एफGखुले आवरण के सेटों के बीच ग्लूइंग डेटा के संदर्भ में ई को महसूस किया जा सकता है:
जहां तुल्यता संबंध द्वारा परिभाषित किया गया है
एफ परGE, प्रत्येक उत्पाद U × G पर एक 'g'-मूल्यवान एक-रूप निर्दिष्ट करके, एक कनेक्शन (प्रमुख बंडल) | प्रमुख G-कनेक्शन को निम्नानुसार परिभाषित करें, जो ओवरलैप क्षेत्रों पर समानता संबंध का सम्मान करता है। पहले चलो
प्रक्षेपण नक्शे हो। अब, एक बिंदु (x,g) के लिए ∈ U × G, समुच्चय कीजिए
इस तरह से निर्मित 1-प्रपत्र ω अतिव्यापी सेटों के बीच संक्रमण का सम्मान करता है, और इसलिए प्रमुख बंडल एफ पर विश्व स्तर पर परिभाषित 1-प्रपत्र देने के लिए उतरता है।Gई। यह दिखाया जा सकता है कि ω इस अर्थ में एक प्रमुख कनेक्शन है कि यह एफ पर सही जी कार्रवाई के जनरेटर को पुन: उत्पन्न करता हैGE, और समान रूप से T(F) पर सही कार्रवाई को परस्पर जोड़ता हैGई) जी के आसन्न प्रतिनिधित्व के साथ।
प्रमुख कनेक्शन से जुड़े कनेक्शन फॉर्म
इसके विपरीत, एक प्रमुख G-बंडल P→M में एक प्रमुख G-कनेक्शन ω, M पर कनेक्शन रूपों के संग्रह को जन्म देता है। मान लीजिए कि 'e': M → P, P का एक स्थानीय खंड है। फिर ω का पुलबैक 'ई' एम पर 'जी'-मूल्यवान एक-रूप को परिभाषित करता है:
जी-वैल्यू फलन जी द्वारा फ्रेम बदलना, कोई देखता है कि ω('e') लीबनिज़ नियम और संयोजन का उपयोग करके आवश्यक विधि े से बदलता है:
जहां एक्स एम पर एक वेक्टर है, और डी पुशफॉरवर्ड (अंतर) को दर्शाता है।
यह भी देखें
- एह्रेसमैन कनेक्शन
- कार्टन कनेक्शन
- एफ़िन कनेक्शन
- वक्रता रूप
टिप्पणियाँ
- ↑ Griffiths & Harris (1978), Wells (1980), Spivak (1999a)
- ↑ See Jost (2011), chapter 4, for a complete account of the Levi-Civita connection from this point of view.
- ↑ See Spivak (1999a), II.7 for a complete account of the Levi-Civita connection from this point of view.
- ↑ In a non-holonomic frame, the expression of curvature is further complicated by the fact that the derivatives dθi must be taken into account.
- ↑ 5.0 5.1 Wells (1973).
- ↑ See for instance Kobayashi and Nomizu, Volume II.
- ↑ See Chern and Moser.
संदर्भ
- Chern, S.-S., Topics in Differential Geometry, Institute for Advanced Study, mimeographed lecture notes, 1951.
- Chern S. S.; Moser, J.K. (1974), "Real hypersurfaces in complex manifolds", Acta Math., 133: 219–271, doi:10.1007/BF02392146
- Griffiths, Phillip; Harris, Joseph (1978), Principles of algebraic geometry, John Wiley and sons, ISBN 0-471-05059-8
- Jost, Jürgen (2011), Riemannian geometry and geometric analysis (PDF), Universitext (Sixth ed.), Springer, Heidelberg, doi:10.1007/978-3-642-21298-7, ISBN 978-3-642-21297-0, MR 2829653
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, Vol. 1 (New ed.), Wiley-Interscience, ISBN 0-471-15733-3
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, Vol. 2 (New ed.), Wiley-Interscience, ISBN 0-471-15732-5
- Spivak, Michael (1999a), A Comprehensive introduction to differential geometry (Volume 2), Publish or Perish, ISBN 0-914098-71-3
- Spivak, Michael (1999b), A Comprehensive introduction to differential geometry (Volume 3), Publish or Perish, ISBN 0-914098-72-1
- Wells, R.O. (1973), Differential analysis on complex manifolds, Springer-Verlag, ISBN 0-387-90419-0
- Wells, R.O. (1980), Differential analysis on complex manifolds, Prentice–Hall