मॉड्यूलर प्रतिनिधित्व सिद्धांत: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description| Studies linear representations of finite groups over a field K of positive characteristic p}} | {{Short description| Studies linear representations of finite groups over a field K of positive characteristic p}} | ||
मॉड्यूलर [[प्रतिनिधित्व सिद्धांत]] गणित की एक शाखा है, और प्रतिनिधित्व सिद्धांत का हिस्सा है जो सकारात्मक [[विशेषता (बीजगणित)]] ''p'' के [[क्षेत्र (गणित)]] ''K'' पर [[परिमित समूह]] के [[रैखिक प्रतिनिधित्व]] का अध्ययन करता है, अनिवार्य रूप से एक [[अभाज्य संख्या]] | मॉड्यूलर [[प्रतिनिधित्व सिद्धांत]] गणित की एक शाखा है, और प्रतिनिधित्व सिद्धांत का हिस्सा है जो सकारात्मक [[विशेषता (बीजगणित)]] ''p'' के [[क्षेत्र (गणित)]] ''K'' पर [[परिमित समूह]] के [[रैखिक प्रतिनिधित्व]] का अध्ययन करता है, अनिवार्य रूप से एक [[अभाज्य संख्या]] साथ ही [[समूह सिद्धांत]] के अनुप्रयोगों के साथ, मॉड्यूलर प्रतिनिधित्व स्वाभाविक रूप से गणित की अन्य शाखाओं में उत्पन्न होता है, जैसे [[बीजगणितीय ज्यामिति]], [[कोडिंग सिद्धांत]], संयोजक और [[संख्या सिद्धांत]] है । | ||
परिमित समूह सिद्धांत के भीतर, मॉड्यूलर प्रतिनिधित्व सिद्धांत का उपयोग करके [[रिचर्ड ब्राउर]] द्वारा सिद्ध किए गए चरित्र-सैद्धांतिक परिणामों ने परिमित सरल समूहों के वर्गीकरण की दिशा में प्रारंभिक प्रगति में महत्वपूर्ण भूमिका निभाई, विशेष रूप से सरल समूहों के लिए जिनका लक्षण वर्णन विशुद्ध रूप से समूह-सैद्धांतिक विधियों के लिए उत्तरदायी नहीं था। क्योंकि उनके साइलो के प्रमेय|साइलो 2-उपसमूह एक उचित अर्थ में बहुत छोटे थे। इसके अलावा, जेड प्रमेय नामक परिमित समूहों में आदेश के तत्वों (समूह सिद्धांत) 2 के एम्बेडिंग पर एक सामान्य परिणाम, [[जॉर्ज फेथरमैन]] द्वारा ब्राउर द्वारा विकसित सिद्धांत का उपयोग करके सिद्ध किया गया, वर्गीकरण कार्यक्रम में विशेष रूप से उपयोगी था। | परिमित समूह सिद्धांत के भीतर, मॉड्यूलर प्रतिनिधित्व सिद्धांत का उपयोग करके [[रिचर्ड ब्राउर]] द्वारा सिद्ध किए गए चरित्र-सैद्धांतिक परिणामों ने परिमित सरल समूहों के वर्गीकरण की दिशा में प्रारंभिक प्रगति में महत्वपूर्ण भूमिका निभाई, विशेष रूप से सरल समूहों के लिए जिनका लक्षण वर्णन विशुद्ध रूप से समूह-सैद्धांतिक विधियों के लिए उत्तरदायी नहीं था। क्योंकि उनके साइलो के प्रमेय|साइलो 2-उपसमूह एक उचित अर्थ में बहुत छोटे थे। इसके अलावा, जेड प्रमेय नामक परिमित समूहों में आदेश के तत्वों (समूह सिद्धांत) 2 के एम्बेडिंग पर एक सामान्य परिणाम, [[जॉर्ज फेथरमैन]] द्वारा ब्राउर द्वारा विकसित सिद्धांत का उपयोग करके सिद्ध किया गया, वर्गीकरण कार्यक्रम में विशेष रूप से उपयोगी था। | ||
यदि K की विशेषता p क्रम (समूह सिद्धांत) |[G]| को विभाजित नहीं करती है, तो मास्चके के प्रमेय के आधार पर, मॉड्यूलर प्रतिनिधित्व पूरी तरह से कम हो जाते हैं, जैसा कि सामान्य (विशेषता 0) प्रतिनिधित्व के साथ होता है। दूसरे मामले में, जब |जी| | यदि K की विशेषता p क्रम (समूह सिद्धांत) |[G]| को विभाजित नहीं करती है, तो मास्चके के प्रमेय के आधार पर, मॉड्यूलर प्रतिनिधित्व पूरी तरह से कम हो जाते हैं, जैसा कि सामान्य (विशेषता 0) प्रतिनिधित्व के साथ होता है। दूसरे मामले में, जब |जी| 0 मॉड पी, मास्चके के प्रमेय को साबित करने के लिए आवश्यक समूह पर औसत की प्रक्रिया टूट जाती है, और प्रस्तुतियों को पूरी तरह से कम करने की आवश्यकता नहीं होती है। नीचे दी गई अधिकांश चर्चा में निहित रूप से माना जाता है कि क्षेत्र K पर्याप्त रूप से बड़ा है (उदाहरण के लिए, K बीजगणितीय रूप से बंद क्षेत्र पर्याप्त है), अन्यथा कुछ बयानों को परिष्कृत करने की आवश्यकता है। | ||
== इतिहास == | == इतिहास == | ||
[[परिमित क्षेत्र]] पर प्रतिनिधित्व सिद्धांत पर सबसे पहला कार्य {{harvtxt| | [[परिमित क्षेत्र]] पर प्रतिनिधित्व सिद्धांत पर सबसे पहला कार्य {{harvtxt|डिक्सन|1902}} द्वारा किया गया है जिन्होंने दिखाया कि जब पी समूह के क्रम को विभाजित नहीं करता है, तो प्रतिनिधित्व सिद्धांत विशेषता 0 के समान है। उन्होंने कुछ परिमित समूहों के समूह के मॉड्यूलर इनवेरिएंट की भी जांच की। मॉड्यूलर अभ्यावेदन का व्यवस्थित अध्ययन, जब विशेषता p समूह के क्रम को विभाजित करता है,{{harvtxt|ब्राउर|1935}} द्वारा शुरू किया गया था और उसके द्वारा अगले कुछ दशकों तक जारी रखा गया। | ||
== उदाहरण == | == उदाहरण == | ||
Line 32: | Line 30: | ||
सकारात्मक विशेषता के बीजगणितीय रूप से बंद क्षेत्र पर, परिमित चक्रीय समूह का प्रतिनिधित्व सिद्धांत पूरी तरह से [[जॉर्डन सामान्य रूप]] के सिद्धांत द्वारा समझाया गया है। गैर-विकर्ण जॉर्डन रूप तब होते हैं जब विशेषता समूह के क्रम को विभाजित करती है। | सकारात्मक विशेषता के बीजगणितीय रूप से बंद क्षेत्र पर, परिमित चक्रीय समूह का प्रतिनिधित्व सिद्धांत पूरी तरह से [[जॉर्डन सामान्य रूप]] के सिद्धांत द्वारा समझाया गया है। गैर-विकर्ण जॉर्डन रूप तब होते हैं जब विशेषता समूह के क्रम को विभाजित करती है। | ||
== रिंग थ्योरी | == रिंग थ्योरी व्याख्या == | ||
एक क्षेत्र K और एक परिमित समूह [G] को देखते हुए, समूह वलय K [G] (जो K-वेक्टर स्थान है जिसमें K-आधार है जिसमें [G] के तत्व शामिल हैं, जो रैखिकता द्वारा [G] के गुणन का विस्तार करके बीजगणित गुणन से संपन्न है)एक [[आर्टिनियन रिंग]] है । | एक क्षेत्र K और एक परिमित समूह [G] को देखते हुए, समूह वलय K [G] (जो K-वेक्टर स्थान है जिसमें K-आधार है जिसमें [G] के तत्व शामिल हैं, जो रैखिकता द्वारा [G] के गुणन का विस्तार करके बीजगणित गुणन से संपन्न है)एक [[आर्टिनियन रिंग]] है । | ||
Line 43: | Line 41: | ||
विशेषता पी प्रतिनिधित्व सिद्धांत, सामान्य चरित्र सिद्धांत और जी की संरचना, विशेष रूप से उत्तरार्द्ध के एम्बेडिंग से संबंधित है, और इसके पी-उपसमूहों के बीच संबंध हैं। इस तरह के परिणाम समूह सिद्धांत में उन समस्याओं के लिए लागू किए जा सकते हैं जो प्रतिनिधित्व के संदर्भ में सीधे तौर पर नहीं हैं। | विशेषता पी प्रतिनिधित्व सिद्धांत, सामान्य चरित्र सिद्धांत और जी की संरचना, विशेष रूप से उत्तरार्द्ध के एम्बेडिंग से संबंधित है, और इसके पी-उपसमूहों के बीच संबंध हैं। इस तरह के परिणाम समूह सिद्धांत में उन समस्याओं के लिए लागू किए जा सकते हैं जो प्रतिनिधित्व के संदर्भ में सीधे तौर पर नहीं हैं। | ||
ब्राउर ने उस धारणा को पेश किया जिसे अब 'ब्राउर चरित्र' के रूप में जाना जाता है। जब K सकारात्मक विशेषता p के बीजगणितीय रूप से बंद होता है, तो K में एकता की जड़ों और p के क्रम प्रधान की एकता की जटिल जड़ों के बीच एक आक्षेप होता है। एक बार इस तरह के एक आक्षेप का विकल्प तय हो जाने के बाद, एक प्रतिनिधित्व के ब्राउर चरित्र आदेश कोप्राइम के प्रत्येक समूह तत्व को दिए गए प्रतिनिधित्व में उस तत्व के | ब्राउर ने उस धारणा को पेश किया जिसे अब 'ब्राउर चरित्र' के रूप में जाना जाता है। जब K सकारात्मक विशेषता p के बीजगणितीय रूप से बंद होता है, तो K में एकता की जड़ों और p के क्रम प्रधान की एकता की जटिल जड़ों के बीच एक आक्षेप होता है। एक बार इस तरह के एक आक्षेप का विकल्प तय हो जाने के बाद, एक प्रतिनिधित्व के ब्राउर चरित्र आदेश कोप्राइम के प्रत्येक समूह तत्व को दिए गए प्रतिनिधित्व में उस तत्व के एगेंवल्लूस(बहुगुणों सहित) के अनुरूप एकता की जटिल जड़ों का योग p करने के लिए निर्दिष्ट करता है। | ||
प्रतिनिधित्व का ब्राउर चरित्र इसकी संरचना को निर्धारित करता है | प्रतिनिधित्व का ब्राउर चरित्र इसकी संरचना को निर्धारित करता है | ||
Line 70: | Line 68: | ||
विशेषता पी और विशेषता के अंश एफ के क्षेत्र | विशेषता पी और विशेषता के अंश एफ के क्षेत्र | ||
0, जैसे p- | 0, जैसे p-अर्थात पूर्णांक |p-अर्थात पूर्णांक। आर जी की संरचना दोनों से निकटता से संबंधित है | ||
समूह बीजगणित K [G] की संरचना और अर्धसरल समूह बीजगणित F[G] की संरचना, और इसमें बहुत अधिक परस्पर क्रिया है | समूह बीजगणित K [G] की संरचना और अर्धसरल समूह बीजगणित F[G] की संरचना, और इसमें बहुत अधिक परस्पर क्रिया है | ||
Line 99: | Line 97: | ||
जब विशेषता समूह क्रम को विभाजित करती है, तो समूह बीजगणित को ब्लॉक के रूप में जाने वाले दो तरफा आदर्शों के अधिकतम संग्रह के प्रत्यक्ष योग के रूप में विघटित किया जा सकता है। जब फ़ील्ड '' एफ '' में विशेषता 0, या समूह क्रम के लिए विशेषता कोप्राइम होता है, तब भी समूह बीजगणित '' एफ '' ''जी '' का ऐसा अपघटन ब्लॉक के योग के रूप में होता है (एक के लिए सरल मॉड्यूल का प्रत्येक समरूपता प्रकार), लेकिन स्थिति अपेक्षाकृत पारदर्शी होती है जब ''एफ'' पर्याप्त रूप से बड़ा होता है: प्रत्येक ब्लॉक ''एफ'' पर एक पूर्ण मैट्रिक्स बीजगणित होता है, संबंधित सरल मॉड्यूल अंतर्निहित वेक्टर अंतरिक्ष की एंडोमोर्फिज्म रिंग . | जब विशेषता समूह क्रम को विभाजित करती है, तो समूह बीजगणित को ब्लॉक के रूप में जाने वाले दो तरफा आदर्शों के अधिकतम संग्रह के प्रत्यक्ष योग के रूप में विघटित किया जा सकता है। जब फ़ील्ड '' एफ '' में विशेषता 0, या समूह क्रम के लिए विशेषता कोप्राइम होता है, तब भी समूह बीजगणित '' एफ '' ''जी '' का ऐसा अपघटन ब्लॉक के योग के रूप में होता है (एक के लिए सरल मॉड्यूल का प्रत्येक समरूपता प्रकार), लेकिन स्थिति अपेक्षाकृत पारदर्शी होती है जब ''एफ'' पर्याप्त रूप से बड़ा होता है: प्रत्येक ब्लॉक ''एफ'' पर एक पूर्ण मैट्रिक्स बीजगणित होता है, संबंधित सरल मॉड्यूल अंतर्निहित वेक्टर अंतरिक्ष की एंडोमोर्फिज्म रिंग . | ||
ब्लॉक प्राप्त करने के लिए, समूह 'जी' के पहचान तत्व को आदिम [[idempotent]] | ब्लॉक प्राप्त करने के लिए, समूह 'जी' के पहचान तत्व को आदिम [[idempotent|आइदेम्पोतेंट्स]] के योग के रूप में विघटित किया जाता है | ||
''Z''(''R''[G]) में, ''F'' के अधिकतम क्रम ''R'' पर समूह बीजगणित का [[केंद्र (रिंग थ्योरी)]]। आदिम idempotent के अनुरूप ब्लॉक | ''Z''(''R''[G]) में, ''F'' के अधिकतम क्रम ''R'' पर समूह बीजगणित का [[केंद्र (रिंग थ्योरी)]]। आदिम [[idempotent|आइदेम्पोतेंट्स]] के अनुरूप ब्लॉक | ||
''ई'' दो तरफा आदर्श ''ई'' ''आर'' ''जी'' है। प्रत्येक अविघटनीय ''आर'' ''जी''-मॉड्यूल के लिए, केवल एक ऐसा आदिम आदर्श है जो इसे नष्ट नहीं करता है, और कहा जाता है कि मॉड्यूल इसी ब्लॉक से संबंधित है (या इसमें होना है) किस मामले में, इसके सभी [[रचना कारक]] भी उस ब्लॉक के हैं)। विशेष रूप से, प्रत्येक साधारण मॉड्यूल एक अद्वितीय ब्लॉक से संबंधित होता है। प्रत्येक साधारण इर्रिडिएबल कैरेक्टर को इरेड्यूसिबल ब्राउर कैरेक्टर्स के योग के रूप में इसके अपघटन के अनुसार एक अद्वितीय ब्लॉक को भी सौंपा जा सकता है। [[तुच्छ प्रतिनिधित्व]] वाले ब्लॉक को प्रिंसिपल ब्लॉक के रूप में जाना जाता है। | ''ई'' दो तरफा आदर्श ''ई'' ''आर'' ''जी'' है। प्रत्येक अविघटनीय ''आर'' ''जी''-मॉड्यूल के लिए, केवल एक ऐसा आदिम आदर्श है जो इसे नष्ट नहीं करता है, और कहा जाता है कि मॉड्यूल इसी ब्लॉक से संबंधित है (या इसमें होना है) किस मामले में, इसके सभी [[रचना कारक]] भी उस ब्लॉक के हैं)। विशेष रूप से, प्रत्येक साधारण मॉड्यूल एक अद्वितीय ब्लॉक से संबंधित होता है। प्रत्येक साधारण इर्रिडिएबल कैरेक्टर को इरेड्यूसिबल ब्राउर कैरेक्टर्स के योग के रूप में इसके अपघटन के अनुसार एक अद्वितीय ब्लॉक को भी सौंपा जा सकता है। [[तुच्छ प्रतिनिधित्व]] वाले ब्लॉक को प्रिंसिपल ब्लॉक के रूप में जाना जाता है। | ||
Line 113: | Line 111: | ||
गैर-समरूपी तल समूह बीजगणित (नियमित मॉड्यूल के रूप में देखा जाता है) के योग के रूप में एक प्रक्षेप्य अविघटनीय मॉड्यूल की बहुलता इसके सॉकल का आयाम है (विशेषता शून्य के बड़े पर्याप्त क्षेत्रों के लिए, यह इस तथ्य को ठीक करता है कि प्रत्येक सरल मॉड्यूल इसके बराबर बहुलता के साथ होता है नियमित मॉड्यूल के प्रत्यक्ष योग के रूप में आयाम)। | गैर-समरूपी तल समूह बीजगणित (नियमित मॉड्यूल के रूप में देखा जाता है) के योग के रूप में एक प्रक्षेप्य अविघटनीय मॉड्यूल की बहुलता इसके सॉकल का आयाम है (विशेषता शून्य के बड़े पर्याप्त क्षेत्रों के लिए, यह इस तथ्य को ठीक करता है कि प्रत्येक सरल मॉड्यूल इसके बराबर बहुलता के साथ होता है नियमित मॉड्यूल के प्रत्यक्ष योग के रूप में आयाम)। | ||
सकारात्मक विशेषता p में प्रत्येक प्रक्षेप्य अविघटनीय मॉड्यूल (और इसलिए प्रत्येक प्रक्षेप्य मॉड्यूल) को विशेषता 0 में एक मॉड्यूल में उठाया जा सकता है। ऊपर के रूप में रिंग आर का उपयोग करके, अवशेष क्षेत्र K के साथ, [G] के पहचान तत्व को पारस्परिक रूप से योग के रूप में विघटित किया जा सकता है ऑर्थोगोनल आदिम | सकारात्मक विशेषता p में प्रत्येक प्रक्षेप्य अविघटनीय मॉड्यूल (और इसलिए प्रत्येक प्रक्षेप्य मॉड्यूल) को विशेषता 0 में एक मॉड्यूल में उठाया जा सकता है। ऊपर के रूप में रिंग आर का उपयोग करके, अवशेष क्षेत्र K के साथ, [G] के पहचान तत्व को पारस्परिक रूप से योग के रूप में विघटित किया जा सकता है ऑर्थोगोनल आदिम आइदेम्पोतेंट्स (जरूरी नहीं | ||
केंद्रीय | |||
केंद्रीय के जी इस अपघटन में होने वाले एक आदिम आइडेम्पोटेंट्सई के लिए प्रत्येक प्रक्षेप्य अविघटनीय K [G]-मॉड्यूल e.K[G] के लिए आइसोमॉर्फिक है। आइडेम्पोटेंट्सe एक प्रिमिटिव आइडेम्पोटेंट्सके लिए लिफ्ट करता है, R [G] के E, कहते हैं, और बाएँ मॉड्यूल E.R [G] में e.K [G] के लिए रिडक्शन (mod p) आइसोमॉर्फिक है। | |||
==ब्राउर वर्णों के लिए कुछ ओर्थोगोनलिटी संबंध== | ==ब्राउर वर्णों के लिए कुछ ओर्थोगोनलिटी संबंध== | ||
जब एक प्रक्षेपी मॉड्यूल को उठाया जाता है, तो संबंधित वर्ण पी द्वारा विभाज्य क्रम के सभी तत्वों पर गायब हो जाता है, और (एकता की जड़ों की लगातार पसंद के साथ), पी-नियमित तत्वों पर मूल विशेषता पी मॉड्यूल के ब्राउर चरित्र से सहमत होता है। किसी भी अन्य | जब एक प्रक्षेपी मॉड्यूल को उठाया जाता है, तो संबंधित वर्ण पी द्वारा विभाज्य क्रम के सभी तत्वों पर गायब हो जाता है, और (एकता की जड़ों की लगातार पसंद के साथ), पी-नियमित तत्वों पर मूल विशेषता पी मॉड्यूल के ब्राउर चरित्र से सहमत होता है। किसी भी अन्य ब्राउर वर्ण के साथ प्रक्षेप्य अविघटनीय के ब्राउर वर्ण का (सामान्य वर्ण-अंगूठी) आंतरिक उत्पाद इस प्रकार परिभाषित किया जा सकता है: यह 0 है यदि | ||
दूसरा ब्राउर चरित्र एक गैर-आइसोमॉर्फिक प्रक्षेप्य अविघटनीय के सोसल का है, और 1 | दूसरा ब्राउर चरित्र एक गैर-आइसोमॉर्फिक प्रक्षेप्य अविघटनीय के सोसल का है, और 1 | ||
यदि दूसरा | यदि दूसरा ब्राउर चरित्र अपने स्वयं के समाज का है। एक साधारण अलघुकरणीय की बहुलता | ||
प्रक्षेप्य अपघटनीय की लिफ्ट के चरित्र में वर्ण संख्या के बराबर है | प्रक्षेप्य अपघटनीय की लिफ्ट के चरित्र में वर्ण संख्या के बराबर है | ||
Line 130: | Line 129: | ||
प्रक्षेपी अविघटनीय मॉड्यूल की [[रचना श्रृंखला]] की गणना निम्नानुसार की जा सकती है: | प्रक्षेपी अविघटनीय मॉड्यूल की [[रचना श्रृंखला]] की गणना निम्नानुसार की जा सकती है: | ||
एक विशेष परिमित समूह के सामान्य अलघुकरणीय और अलघुकरणीय | एक विशेष परिमित समूह के सामान्य अलघुकरणीय और अलघुकरणीय ब्राउर वर्णों को देखते हुए, अलघुकरणीय सामान्य वर्णों को अलघुकरणीय ब्राउर वर्णों के गैर-नकारात्मक पूर्णांक संयोजनों के रूप में विघटित किया जा सकता है। शामिल पूर्णांकों को एक मैट्रिक्स में रखा जा सकता है, जिसमें साधारण अलघुकरणीय वर्णों को पंक्तियाँ दी जाती हैं और अलघुकरणीय ब्राउर वर्णों को स्तंभ दिए जाते हैं। इसे अपघटन मैट्रिक्स के रूप में संदर्भित किया जाता है, और इसे अक्सर डी लेबल किया जाता है। यह क्रमशः पहली पंक्ति और स्तंभ में तुच्छ साधारण और ब्राउर वर्णों को रखने के लिए प्रथागत है। डी के साथ डी के स्थानान्तरण का उत्पाद | ||
कार्टन मैट्रिक्स में परिणाम, आमतौर पर सी चिह्नित; यह एक सममित मैट्रिक्स है जैसे कि इसकी जे-वीं पंक्ति में प्रविष्टियां संरचना के रूप में संबंधित सरल मॉड्यूल की बहुलताएं हैं | कार्टन मैट्रिक्स में परिणाम, आमतौर पर सी चिह्नित; यह एक सममित मैट्रिक्स है जैसे कि इसकी जे-वीं पंक्ति में प्रविष्टियां संरचना के रूप में संबंधित सरल मॉड्यूल की बहुलताएं हैं | ||
Line 149: | Line 149: | ||
समूह बीजगणित के जी के प्रत्येक ब्लॉक बी के लिए, ब्राउर ने एक निश्चित पी-उपसमूह को जोड़ा, जिसे इसके 'दोष समूह' के रूप में जाना जाता है (जहां पी के की विशेषता है)। औपचारिक रूप से, यह सबसे बड़ा पी-उपसमूह है | समूह बीजगणित के जी के प्रत्येक ब्लॉक बी के लिए, ब्राउर ने एक निश्चित पी-उपसमूह को जोड़ा, जिसे इसके 'दोष समूह' के रूप में जाना जाता है (जहां पी के की विशेषता है)। औपचारिक रूप से, यह सबसे बड़ा पी-उपसमूह है | ||
[G] का D जिसके लिए B के लिए एक | [G] का D जिसके लिए B के लिए एक ब्राउर के तीन मुख्य प्रमेय हैं | ||
उपसमूह <math>DC_G(D)</math>, कहाँ <math>C_G(D)</math> [G] में D का [[केंद्रक]] है। | उपसमूह <math>DC_G(D)</math>, कहाँ <math>C_G(D)</math> [G] में D का [[केंद्रक]] है। | ||
एक ब्लॉक का दोष समूह संयुग्मन तक अद्वितीय है और ब्लॉक की संरचना पर इसका गहरा प्रभाव है। उदाहरण के लिए, यदि दोष समूह तुच्छ है, तो ब्लॉक में केवल एक साधारण मॉड्यूल होता है, केवल एक साधारण चरित्र, सामान्य और ब्राउर इरेड्यूसिबल अक्षर प्रासंगिक विशेषता पी के ऑर्डर प्राइम के तत्वों पर सहमत होते हैं, और सरल मॉड्यूल प्रोजेक्टिव होता है। दूसरे चरम पर, जब K की विशेषता p होती है, परिमित समूह [G] का [[Sylow]] p-उपसमूह K [G] के प्रमुख ब्लॉक के लिए एक दोष समूह होता है। | एक ब्लॉक का दोष समूह संयुग्मन तक अद्वितीय है और ब्लॉक की संरचना पर इसका गहरा प्रभाव है। उदाहरण के लिए, यदि दोष समूह तुच्छ है, तो ब्लॉक में केवल एक साधारण मॉड्यूल होता है, केवल एक साधारण चरित्र, सामान्य और ब्राउर इरेड्यूसिबल अक्षर प्रासंगिक विशेषता पी के ऑर्डर प्राइम के तत्वों पर सहमत होते हैं, और सरल मॉड्यूल प्रोजेक्टिव होता है। दूसरे चरम पर, जब K की विशेषता p होती है, परिमित समूह [G] का [[Sylow|साइलो]] p-उपसमूह K [G] के प्रमुख ब्लॉक के लिए एक दोष समूह होता है। | ||
एक ब्लॉक के दोष समूह के क्रम में प्रतिनिधित्व सिद्धांत से संबंधित कई अंकगणितीय विशेषताएँ हैं। यह ब्लॉक के कार्टन मैट्रिक्स का सबसे बड़ा अपरिवर्तनीय कारक है, और इसके साथ होता है | एक ब्लॉक के दोष समूह के क्रम में प्रतिनिधित्व सिद्धांत से संबंधित कई अंकगणितीय विशेषताएँ हैं। यह ब्लॉक के कार्टन मैट्रिक्स का सबसे बड़ा अपरिवर्तनीय कारक है, और इसके साथ होता है |
Revision as of 16:22, 21 April 2023
मॉड्यूलर प्रतिनिधित्व सिद्धांत गणित की एक शाखा है, और प्रतिनिधित्व सिद्धांत का हिस्सा है जो सकारात्मक विशेषता (बीजगणित) p के क्षेत्र (गणित) K पर परिमित समूह के रैखिक प्रतिनिधित्व का अध्ययन करता है, अनिवार्य रूप से एक अभाज्य संख्या साथ ही समूह सिद्धांत के अनुप्रयोगों के साथ, मॉड्यूलर प्रतिनिधित्व स्वाभाविक रूप से गणित की अन्य शाखाओं में उत्पन्न होता है, जैसे बीजगणितीय ज्यामिति, कोडिंग सिद्धांत, संयोजक और संख्या सिद्धांत है ।
परिमित समूह सिद्धांत के भीतर, मॉड्यूलर प्रतिनिधित्व सिद्धांत का उपयोग करके रिचर्ड ब्राउर द्वारा सिद्ध किए गए चरित्र-सैद्धांतिक परिणामों ने परिमित सरल समूहों के वर्गीकरण की दिशा में प्रारंभिक प्रगति में महत्वपूर्ण भूमिका निभाई, विशेष रूप से सरल समूहों के लिए जिनका लक्षण वर्णन विशुद्ध रूप से समूह-सैद्धांतिक विधियों के लिए उत्तरदायी नहीं था। क्योंकि उनके साइलो के प्रमेय|साइलो 2-उपसमूह एक उचित अर्थ में बहुत छोटे थे। इसके अलावा, जेड प्रमेय नामक परिमित समूहों में आदेश के तत्वों (समूह सिद्धांत) 2 के एम्बेडिंग पर एक सामान्य परिणाम, जॉर्ज फेथरमैन द्वारा ब्राउर द्वारा विकसित सिद्धांत का उपयोग करके सिद्ध किया गया, वर्गीकरण कार्यक्रम में विशेष रूप से उपयोगी था।
यदि K की विशेषता p क्रम (समूह सिद्धांत) |[G]| को विभाजित नहीं करती है, तो मास्चके के प्रमेय के आधार पर, मॉड्यूलर प्रतिनिधित्व पूरी तरह से कम हो जाते हैं, जैसा कि सामान्य (विशेषता 0) प्रतिनिधित्व के साथ होता है। दूसरे मामले में, जब |जी| 0 मॉड पी, मास्चके के प्रमेय को साबित करने के लिए आवश्यक समूह पर औसत की प्रक्रिया टूट जाती है, और प्रस्तुतियों को पूरी तरह से कम करने की आवश्यकता नहीं होती है। नीचे दी गई अधिकांश चर्चा में निहित रूप से माना जाता है कि क्षेत्र K पर्याप्त रूप से बड़ा है (उदाहरण के लिए, K बीजगणितीय रूप से बंद क्षेत्र पर्याप्त है), अन्यथा कुछ बयानों को परिष्कृत करने की आवश्यकता है।
इतिहास
परिमित क्षेत्र पर प्रतिनिधित्व सिद्धांत पर सबसे पहला कार्य डिक्सन (1902) द्वारा किया गया है जिन्होंने दिखाया कि जब पी समूह के क्रम को विभाजित नहीं करता है, तो प्रतिनिधित्व सिद्धांत विशेषता 0 के समान है। उन्होंने कुछ परिमित समूहों के समूह के मॉड्यूलर इनवेरिएंट की भी जांच की। मॉड्यूलर अभ्यावेदन का व्यवस्थित अध्ययन, जब विशेषता p समूह के क्रम को विभाजित करता है,ब्राउर (1935) द्वारा शुरू किया गया था और उसके द्वारा अगले कुछ दशकों तक जारी रखा गया।
उदाहरण
F पर दो तत्वों के चक्रीय समूह का प्रतिनिधित्व ढूँढना2 मैट्रिक्स (गणित) खोजने की समस्या के बराबर है जिसका वर्ग पहचान मैट्रिक्स है। 2 के अलावा विशेषता के प्रत्येक क्षेत्र में, हमेशा एक आधार (रैखिक बीजगणित) होता है जैसे कि मैट्रिक्स को विकर्ण मैट्रिक्स के रूप में लिखा जा सकता है जिसमें केवल 1 या -1 विकर्ण पर होता है, जैसे कि
ओवर एफ2, कई अन्य संभावित मेट्रिसेस हैं, जैसे
सकारात्मक विशेषता के बीजगणितीय रूप से बंद क्षेत्र पर, परिमित चक्रीय समूह का प्रतिनिधित्व सिद्धांत पूरी तरह से जॉर्डन सामान्य रूप के सिद्धांत द्वारा समझाया गया है। गैर-विकर्ण जॉर्डन रूप तब होते हैं जब विशेषता समूह के क्रम को विभाजित करती है।
रिंग थ्योरी व्याख्या
एक क्षेत्र K और एक परिमित समूह [G] को देखते हुए, समूह वलय K [G] (जो K-वेक्टर स्थान है जिसमें K-आधार है जिसमें [G] के तत्व शामिल हैं, जो रैखिकता द्वारा [G] के गुणन का विस्तार करके बीजगणित गुणन से संपन्न है)एक आर्टिनियन रिंग है ।
जब [G] का क्रम K की विशेषता से विभाज्य होता है, तो समूह बीजगणित सेमीसिम्पल बीजगणितीय समूह नहीं होता है, इसलिए गैर-शून्य जैकबसन कट्टरपंथी होता है। उस स्थिति में, समूह बीजगणित के लिए परिमित-आयामी मॉड्यूल होते हैं जो प्रक्षेपी मॉड्यूल नहीं होते हैं। इसके विपरीत, विशेषता 0 मामले में प्रत्येक अलघुकरणीय प्रतिनिधित्व नियमित प्रतिनिधित्व का प्रत्यक्ष योग है, इसलिए प्रक्षेपी है।
ब्राउर वर्ण
मॉड्यूलर प्रतिनिधित्व सिद्धांत रिचर्ड ब्राउर द्वारा 1940 के बाद से अधिक गहराई से अध्ययन करने के लिए विकसित किया गया था |
विशेषता पी प्रतिनिधित्व सिद्धांत, सामान्य चरित्र सिद्धांत और जी की संरचना, विशेष रूप से उत्तरार्द्ध के एम्बेडिंग से संबंधित है, और इसके पी-उपसमूहों के बीच संबंध हैं। इस तरह के परिणाम समूह सिद्धांत में उन समस्याओं के लिए लागू किए जा सकते हैं जो प्रतिनिधित्व के संदर्भ में सीधे तौर पर नहीं हैं।
ब्राउर ने उस धारणा को पेश किया जिसे अब 'ब्राउर चरित्र' के रूप में जाना जाता है। जब K सकारात्मक विशेषता p के बीजगणितीय रूप से बंद होता है, तो K में एकता की जड़ों और p के क्रम प्रधान की एकता की जटिल जड़ों के बीच एक आक्षेप होता है। एक बार इस तरह के एक आक्षेप का विकल्प तय हो जाने के बाद, एक प्रतिनिधित्व के ब्राउर चरित्र आदेश कोप्राइम के प्रत्येक समूह तत्व को दिए गए प्रतिनिधित्व में उस तत्व के एगेंवल्लूस(बहुगुणों सहित) के अनुरूप एकता की जटिल जड़ों का योग p करने के लिए निर्दिष्ट करता है।
प्रतिनिधित्व का ब्राउर चरित्र इसकी संरचना को निर्धारित करता है
अलघुकरणीय कारक हैं, लेकिन सामान्य तौर पर, इसका तुल्यता प्रकार नहीं है।
ब्राउर वर्ण वे हैं जो सरल मॉड्यूल द्वारा वहन किए जाते हैं।
ये अभिन्न (हालांकि जरूरी नहीं कि गैर-नकारात्मक) संयोजन हैं
साधारण इरेड्यूसिबल के ऑर्डर कोप्राइम टू पी के तत्वों पर प्रतिबंध
इसके विपरीत, आदेश के तत्वों के लिए प्रतिबंध पी पात्र के कोप्राइम
प्रत्येक सामान्य अलघुकरणीय चरित्र विशिष्ट रूप से एक गैर-नकारात्मक के रूप में अभिव्यक्त होता है
इरेड्यूसिबल ब्राउर वर्णों का पूर्णांक संयोजन।
कटौती (मॉड पी)
शुरुआत में ब्राउर द्वारा विकसित सिद्धांत में, साधारण प्रतिनिधित्व सिद्धांत और मॉड्यूलर प्रतिनिधित्व सिद्धांत के बीच की कड़ी को विचार करके सबसे अच्छा उदाहरण दिया गया है।
पूर्ण असतत पर समूह [G] का समूह वलय
वैल्यूएशन रिंग आर पॉजिटिव के अवशेष फील्ड के साथ
विशेषता पी और विशेषता के अंश एफ के क्षेत्र
0, जैसे p-अर्थात पूर्णांक |p-अर्थात पूर्णांक। आर जी की संरचना दोनों से निकटता से संबंधित है
समूह बीजगणित K [G] की संरचना और अर्धसरल समूह बीजगणित F[G] की संरचना, और इसमें बहुत अधिक परस्पर क्रिया है
तीन बीजगणित के मॉड्यूल सिद्धांत के बीच।
प्रत्येक आर[जी]-मॉड्यूल स्वाभाविक रूप से एक एफ[जी]-मॉड्यूल को जन्म देता है,
और, एक प्रक्रिया द्वारा जिसे अक्सर अनौपचारिक रूप से 'कमी (मॉड पी)' के रूप में जाना जाता है,
एक के [जी] -मॉड्यूल के लिए। दूसरी ओर, चूँकि R एक है
प्रमुख आदर्श डोमेन, प्रत्येक परिमित-आयामी F[G]-मॉड्यूल
R[G]-मॉड्यूल से स्केलर्स के विस्तार से उत्पन्न होता है। सामान्य रूप में,
हालांकि, सभी के [जी] -मॉड्यूल कटौती (मॉड पी) के रूप में उत्पन्न नहीं होते हैं
आर [जी] - मॉड्यूल। जो करते हैं वे 'उठाने योग्य' होते हैं।
सरल मॉड्यूल की संख्या
साधारण प्रतिनिधित्व सिद्धांत में, सरल मॉड्यूल k([G]) की संख्या [G] के संयुग्मन वर्ग की संख्या के बराबर है। मॉड्यूलर मामले में, सरल मॉड्यूल की संख्या l([G]) संयुग्मी वर्गों की संख्या के बराबर है जिनके तत्व हैं संबंधित प्राइम पी, तथाकथित पी-नियमित कक्षाओं के लिए कोप्राइम ऑर्डर करें।
ब्लॉक और समूह बीजगणित की संरचना
मॉड्यूलर प्रतिनिधित्व सिद्धांत में, जबकि माश्के का प्रमेय मान्य नहीं है जब विशेषता समूह क्रम को विभाजित करती है, तो समूह बीजगणित को ब्लॉक के रूप में जाने वाले दो तरफा आदर्शों के अधिकतम संग्रह के प्रत्यक्ष योग के रूप में विघटित किया जा सकता है। जब फ़ील्ड एफ में विशेषता 0, या समूह क्रम के लिए विशेषता कोप्राइम होता है, तब भी समूह बीजगणित एफ जी का ऐसा अपघटन ब्लॉक के योग के रूप में होता है (एक के लिए सरल मॉड्यूल का प्रत्येक समरूपता प्रकार), लेकिन स्थिति अपेक्षाकृत पारदर्शी होती है जब एफ पर्याप्त रूप से बड़ा होता है: प्रत्येक ब्लॉक एफ पर एक पूर्ण मैट्रिक्स बीजगणित होता है, संबंधित सरल मॉड्यूल अंतर्निहित वेक्टर अंतरिक्ष की एंडोमोर्फिज्म रिंग .
ब्लॉक प्राप्त करने के लिए, समूह 'जी' के पहचान तत्व को आदिम आइदेम्पोतेंट्स के योग के रूप में विघटित किया जाता है
Z(R[G]) में, F के अधिकतम क्रम R पर समूह बीजगणित का केंद्र (रिंग थ्योरी)। आदिम आइदेम्पोतेंट्स के अनुरूप ब्लॉक
ई दो तरफा आदर्श ई आर जी है। प्रत्येक अविघटनीय आर जी-मॉड्यूल के लिए, केवल एक ऐसा आदिम आदर्श है जो इसे नष्ट नहीं करता है, और कहा जाता है कि मॉड्यूल इसी ब्लॉक से संबंधित है (या इसमें होना है) किस मामले में, इसके सभी रचना कारक भी उस ब्लॉक के हैं)। विशेष रूप से, प्रत्येक साधारण मॉड्यूल एक अद्वितीय ब्लॉक से संबंधित होता है। प्रत्येक साधारण इर्रिडिएबल कैरेक्टर को इरेड्यूसिबल ब्राउर कैरेक्टर्स के योग के रूप में इसके अपघटन के अनुसार एक अद्वितीय ब्लॉक को भी सौंपा जा सकता है। तुच्छ प्रतिनिधित्व वाले ब्लॉक को प्रिंसिपल ब्लॉक के रूप में जाना जाता है।
प्रोजेक्टिव मॉड्यूल
सामान्य प्रतिनिधित्व सिद्धांत में, प्रत्येक अविघटनीय मॉड्यूल इर्रिड्यूसिबल होता है, और इसलिए प्रत्येक मॉड्यूल प्रक्षेपी होता है। हालांकि, समूह क्रम को विभाजित करने वाली विशेषता वाले सरल मॉड्यूल शायद ही कभी अनुमानित होते हैं। वास्तव में, यदि एक साधारण मॉड्यूल प्रक्षेपी है, तो यह अपने ब्लॉक में एकमात्र सरल मॉड्यूल है, जो तब अंतर्निहित सदिश स्थान के एंडोमोर्फिज्म बीजगणित के लिए आइसोमोर्फिक है, एक पूर्ण मैट्रिक्स बीजगणित। उस स्थिति में, ब्लॉक को 'दोष 0' कहा जाता है। आम तौर पर, प्रोजेक्टिव मॉड्यूल की संरचना निर्धारित करना मुश्किल होता है।
एक परिमित समूह के समूह बीजगणित के लिए, (समरूपता प्रकार के) प्रक्षेपी अविघटनीय मॉड्यूल एक-से-एक पत्राचार में (समरूपता प्रकार के) सरल मॉड्यूल के साथ होते हैं: प्रत्येक प्रक्षेप्य अविघटनीय का सॉकल (गणित) सरल है (और शीर्ष पर आइसोमॉर्फिक), और यह आक्षेप की पुष्टि करता है, क्योंकि गैर-आइसोमॉर्फिक प्रक्षेपी अविघटनकारी है
गैर-समरूपी तल समूह बीजगणित (नियमित मॉड्यूल के रूप में देखा जाता है) के योग के रूप में एक प्रक्षेप्य अविघटनीय मॉड्यूल की बहुलता इसके सॉकल का आयाम है (विशेषता शून्य के बड़े पर्याप्त क्षेत्रों के लिए, यह इस तथ्य को ठीक करता है कि प्रत्येक सरल मॉड्यूल इसके बराबर बहुलता के साथ होता है नियमित मॉड्यूल के प्रत्यक्ष योग के रूप में आयाम)।
सकारात्मक विशेषता p में प्रत्येक प्रक्षेप्य अविघटनीय मॉड्यूल (और इसलिए प्रत्येक प्रक्षेप्य मॉड्यूल) को विशेषता 0 में एक मॉड्यूल में उठाया जा सकता है। ऊपर के रूप में रिंग आर का उपयोग करके, अवशेष क्षेत्र K के साथ, [G] के पहचान तत्व को पारस्परिक रूप से योग के रूप में विघटित किया जा सकता है ऑर्थोगोनल आदिम आइदेम्पोतेंट्स (जरूरी नहीं
केंद्रीय के जी इस अपघटन में होने वाले एक आदिम आइडेम्पोटेंट्सई के लिए प्रत्येक प्रक्षेप्य अविघटनीय K [G]-मॉड्यूल e.K[G] के लिए आइसोमॉर्फिक है। आइडेम्पोटेंट्सe एक प्रिमिटिव आइडेम्पोटेंट्सके लिए लिफ्ट करता है, R [G] के E, कहते हैं, और बाएँ मॉड्यूल E.R [G] में e.K [G] के लिए रिडक्शन (mod p) आइसोमॉर्फिक है।
ब्राउर वर्णों के लिए कुछ ओर्थोगोनलिटी संबंध
जब एक प्रक्षेपी मॉड्यूल को उठाया जाता है, तो संबंधित वर्ण पी द्वारा विभाज्य क्रम के सभी तत्वों पर गायब हो जाता है, और (एकता की जड़ों की लगातार पसंद के साथ), पी-नियमित तत्वों पर मूल विशेषता पी मॉड्यूल के ब्राउर चरित्र से सहमत होता है। किसी भी अन्य ब्राउर वर्ण के साथ प्रक्षेप्य अविघटनीय के ब्राउर वर्ण का (सामान्य वर्ण-अंगूठी) आंतरिक उत्पाद इस प्रकार परिभाषित किया जा सकता है: यह 0 है यदि
दूसरा ब्राउर चरित्र एक गैर-आइसोमॉर्फिक प्रक्षेप्य अविघटनीय के सोसल का है, और 1
यदि दूसरा ब्राउर चरित्र अपने स्वयं के समाज का है। एक साधारण अलघुकरणीय की बहुलता
प्रक्षेप्य अपघटनीय की लिफ्ट के चरित्र में वर्ण संख्या के बराबर है
प्रक्षेपी अविघटनीय के समाज के ब्राउर चरित्र की घटनाओं की जब साधारण चरित्र के पी-नियमित तत्वों के प्रतिबंध को इरेड्यूसिबल ब्राउर वर्णों के योग के रूप में व्यक्त किया जाता है।
अपघटन मैट्रिक्स और कार्टन मैट्रिक्स
प्रक्षेपी अविघटनीय मॉड्यूल की रचना श्रृंखला की गणना निम्नानुसार की जा सकती है: एक विशेष परिमित समूह के सामान्य अलघुकरणीय और अलघुकरणीय ब्राउर वर्णों को देखते हुए, अलघुकरणीय सामान्य वर्णों को अलघुकरणीय ब्राउर वर्णों के गैर-नकारात्मक पूर्णांक संयोजनों के रूप में विघटित किया जा सकता है। शामिल पूर्णांकों को एक मैट्रिक्स में रखा जा सकता है, जिसमें साधारण अलघुकरणीय वर्णों को पंक्तियाँ दी जाती हैं और अलघुकरणीय ब्राउर वर्णों को स्तंभ दिए जाते हैं। इसे अपघटन मैट्रिक्स के रूप में संदर्भित किया जाता है, और इसे अक्सर डी लेबल किया जाता है। यह क्रमशः पहली पंक्ति और स्तंभ में तुच्छ साधारण और ब्राउर वर्णों को रखने के लिए प्रथागत है। डी के साथ डी के स्थानान्तरण का उत्पाद
कार्टन मैट्रिक्स में परिणाम, आमतौर पर सी चिह्नित; यह एक सममित मैट्रिक्स है जैसे कि इसकी जे-वीं पंक्ति में प्रविष्टियां संरचना के रूप में संबंधित सरल मॉड्यूल की बहुलताएं हैं
जे-वें प्रक्षेपी अविघटनीय मॉड्यूल के कारक। कार्टन
मैट्रिक्स गैर-एकवचन है; वास्तव में, इसका निर्धारक की एक शक्ति है
के. की विशेषता
चूंकि किसी दिए गए ब्लॉक में एक प्रक्षेप्य अविघटनीय मॉड्यूल है
उसी ब्लॉक में इसके सभी रचना कारक, प्रत्येक ब्लॉक में हैं
इसका अपना कार्टन मैट्रिक्स।
दोष समूह
समूह बीजगणित के जी के प्रत्येक ब्लॉक बी के लिए, ब्राउर ने एक निश्चित पी-उपसमूह को जोड़ा, जिसे इसके 'दोष समूह' के रूप में जाना जाता है (जहां पी के की विशेषता है)। औपचारिक रूप से, यह सबसे बड़ा पी-उपसमूह है
[G] का D जिसके लिए B के लिए एक ब्राउर के तीन मुख्य प्रमेय हैं
उपसमूह , कहाँ [G] में D का केंद्रक है।
एक ब्लॉक का दोष समूह संयुग्मन तक अद्वितीय है और ब्लॉक की संरचना पर इसका गहरा प्रभाव है। उदाहरण के लिए, यदि दोष समूह तुच्छ है, तो ब्लॉक में केवल एक साधारण मॉड्यूल होता है, केवल एक साधारण चरित्र, सामान्य और ब्राउर इरेड्यूसिबल अक्षर प्रासंगिक विशेषता पी के ऑर्डर प्राइम के तत्वों पर सहमत होते हैं, और सरल मॉड्यूल प्रोजेक्टिव होता है। दूसरे चरम पर, जब K की विशेषता p होती है, परिमित समूह [G] का साइलो p-उपसमूह K [G] के प्रमुख ब्लॉक के लिए एक दोष समूह होता है।
एक ब्लॉक के दोष समूह के क्रम में प्रतिनिधित्व सिद्धांत से संबंधित कई अंकगणितीय विशेषताएँ हैं। यह ब्लॉक के कार्टन मैट्रिक्स का सबसे बड़ा अपरिवर्तनीय कारक है, और इसके साथ होता है
बहुलता एक। साथ ही, किसी ब्लॉक के दोष समूह के सूचकांक को विभाजित करने वाली p की शक्ति उस ब्लॉक में सरल मॉड्यूल के आयामों को विभाजित करने वाली p की शक्तियों का सबसे बड़ा सामान्य विभाजक है, और यह p की शक्तियों के सबसे बड़े सामान्य विभाजक के साथ मेल खाता है। उस ब्लॉक में साधारण अलघुकरणीय पात्रों की डिग्री को विभाजित करना।
एक ब्लॉक और चरित्र सिद्धांत के दोष समूह के बीच अन्य संबंधों में ब्राउर का परिणाम शामिल है कि यदि समूह तत्व जी के पी-भाग का कोई संयुग्म किसी दिए गए ब्लॉक के दोष समूह में नहीं है, तो उस ब्लॉक में प्रत्येक अप्रासंगिक चरित्र जी पर गायब हो जाता है। यह ब्राउर के दूसरे मुख्य प्रमेय के कई परिणामों में से एक है।
सैंडी ग्रीन (गणितज्ञ)|जे. ए ग्रीन, जो एक पी-उपसमूह को जोड़ता है मॉड्यूल के 'सापेक्ष प्रोजेक्टिविटी' के संदर्भ में परिभाषित एक अविघटनीय मॉड्यूल के लिए 'वर्टेक्स' के रूप में जाना जाता है। उदाहरण के लिए, एक ब्लॉक में प्रत्येक अविघटनीय मॉड्यूल का शीर्ष निहित है (संयुग्मन तक) ब्लॉक के दोष समूह में, और दोष समूह के किसी भी उचित उपसमूह के पास वह गुण नहीं है।
ब्राउर के पहले मुख्य प्रमेय में कहा गया है कि एक परिमित समूह के ब्लॉकों की संख्या जिसमें पी-उपसमूह को दोष समूह के रूप में दिया गया है, उस पी-उपसमूह के समूह में नॉर्मलाइज़र के लिए इसी संख्या के समान है।
गैर-तुच्छ दोष समूह के साथ विश्लेषण करने के लिए सबसे आसान ब्लॉक संरचना तब होती है जब उत्तरार्द्ध चक्रीय होता है। तब ब्लॉक में केवल बहुत से आइसोमोर्फिज्म प्रकार के अविघटनीय मॉड्यूल होते हैं, और ब्लॉक की संरचना अब तक अच्छी तरह से समझी जाती है, ब्राउर, ई.सी. डेड, जे.ए. के काम के आधार पर। ग्रीन और जॉन ग्रिग्स थॉम्पसन|जे.जी. थॉम्पसन, दूसरों के बीच में। अन्य सभी मामलों में, ब्लॉक में असीम रूप से कई समरूपता प्रकार के अविघटनीय मॉड्यूल हैं।
जिन ब्लॉकों के दोष समूह चक्रीय नहीं हैं, उन्हें दो प्रकारों में विभाजित किया जा सकता है: तम और जंगली टेम ब्लॉक्स (जो केवल प्राइम 2 के लिए होते हैं) में एक दोष समूह के रूप में एक डायहेड्रल समूह, सेमीडायहेड्रल समूह या (सामान्यीकृत) चतुर्धातुक समूह होता है, और उनकी संरचना मोटे तौर पर कैरिन एर्डमैन द्वारा पत्रों की एक श्रृंखला में निर्धारित की गई है। जंगली ब्लॉकों में अविघटनीय मॉड्यूल सिद्धांत रूप में भी वर्गीकृत करना बेहद मुश्किल है।
औसत की प्रक्रिया टूट जाती है, और प्रस्तुतियों को पूरी तरह से कम करने की आवश्यकता नहीं होती है। नीचे दी गई अधिकांश चर्चा में निहित रूप से माना जाता है कि क्षेत्र K पर्याप्त रूप से बड़ा है (उदाहरण के लिए, K बीजगणितीय रूप से बंद क्षेत्र पर्याप्त है), अन्यथा कुछ बयानों को परिष्कृत करने की आवश्यकता है।
संदर्भ
- Brauer, R. (1935), Über die Darstellung von Gruppen in Galoisschen Feldern, Actualités Scientifiques et Industrielles, vol. 195, Paris: Hermann et cie, pp. 1–15, review
- Dickson, Leonard Eugene (1902), "On the Group Defined for any Given Field by the Multiplication Table of Any Given Finite Group", Transactions of the American Mathematical Society, Providence, R.I.: American Mathematical Society, 3 (3): 285–301, doi:10.2307/1986379, ISSN 0002-9947, JSTOR 1986379
- Jean-Pierre Serre (1977). Linear Representations of Finite Groups. Springer-Verlag. ISBN 0-387-90190-6.
- Walter Feit (1982). The representation theory of finite groups. North-Holland Mathematical Library. Vol. 25. Amsterdam-New York: North-Holland Publishing. ISBN 0-444-86155-6.