आदर्श (रिंग सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|Additive subgroup of a mathematical ring that absorbs multiplication}}गणित में, और विशेष रूप से [[वलय सिद्धांत]] में, एक वलय का '''आदर्श''' उसके तत्वों का एक विशेष उपसमुच्चय होता है। आदर्श पूर्णांकों के कुछ उपसमूहों को सामान्यीकृत करते हैं, जैसे [[सम संख्या|सम संख्याए]] 3 के गुणज। सम संख्याओं का जोड़ और घटाव समता को संरक्षित करता है, और किसी भी पूर्णांक (सम या विषम) द्वारा सम संख्या को गुणा करने पर सम संख्या प्राप्त होती है; ये [[समापन (गणित)|समापन]] और अवशोषण गुण एक आदर्श के परिभाषित गुण हैं। एक आदर्श का उपयोग भागफल वलय के निर्माण के लिए उसी तरह किया जा सकता है, जैसे [[समूह सिद्धांत]] में, एक [[सामान्य उपसमूह]] का उपयोग [[भागफल समूह]] के निर्माण के लिए किया जा सकता है।
{{Short description|Additive subgroup of a mathematical ring that absorbs multiplication}}गणित में, और विशेष रूप से [[वलय सिद्धांत]] में, एक वलय का '''आदर्श''' उसके अवयवों का एक विशेष उपसमुच्चय होता है। आदर्श पूर्णांकों के कुछ उपसमूहों को सामान्यीकृत करते हैं, जैसे [[सम संख्या|सम संख्याए]] 3 के गुणज। सम संख्याओं का जोड़ और घटाव समता को संरक्षित करता है, और किसी भी पूर्णांक (सम या विषम) द्वारा सम संख्या को गुणा करने पर सम संख्या प्राप्त होती है; ये [[समापन (गणित)|समापन]] और अवशोषण गुण एक आदर्श के परिभाषित गुण हैं। एक आदर्श का उपयोग भागफल वलय के निर्माण के लिए उसी तरह किया जा सकता है, जैसे [[समूह सिद्धांत]] में, एक [[सामान्य उपसमूह]] का उपयोग [[भागफल समूह]] के निर्माण के लिए किया जा सकता है।


पूर्णांकों के बीच, आदर्श गैर-ऋणात्मक पूर्णांकों के साथ एक-के-एक मेल खाते हैं: इस वलय में, प्रत्येक आदर्श एक [[प्रमुख आदर्श]] है जिसमें एकल गैर-ऋणात्मक संख्या के गुणज शामिल होते हैं। हालाँकि, अन्य रिंगों में, आदर्श सीधे रिंग तत्वों से मेल नहीं खा सकते हैं, और पूर्णांकों के कुछ गुण, जब रिंगों के लिए सामान्यीकृत होते हैं, तो रिंग के तत्वों की तुलना में आदर्शों से अधिक स्वाभाविक रूप से जुड़ते हैं। उदाहरण के लिए, किसी रिंग के अभाज्य आदर्श [[अभाज्य संख्या|अभाज्य]] संख्याओं के अनुरूप होते हैं, और चीनी शेषफल प्रमेय को आदर्शों के लिए सामान्यीकृत किया जा सकता है। [[डेडेकाइंड डोमेन]] (संख्या सिद्धांत में महत्वपूर्ण रिंग का एक प्रकार) के आदर्शों के लिए अद्वितीय प्राइम फ़ैक्टराइज़ेशन का एक संस्करण है।
पूर्णांकों के बीच, आदर्श गैर-ऋणात्मक पूर्णांकों के साथ एक-के-एक मेल खाते हैं: इस वलय में, प्रत्येक आदर्श एक [[प्रमुख आदर्श]] है जिसमें एकल गैर-ऋणात्मक संख्या के गुणज शामिल होते हैं। हालाँकि, अन्य रिंगों में, आदर्श सीधे वलय अवयवों से मेल नहीं खा सकते हैं, और पूर्णांकों के कुछ गुण, जब रिंगों के लिए सामान्यीकृत होते हैं, तो वलय के अवयवों की तुलना में आदर्शों से अधिक स्वाभाविक रूप से जुड़ते हैं। उदाहरण के लिए, किसी वलय के अभाज्य आदर्श [[अभाज्य संख्या|अभाज्य]] संख्याओं के अनुरूप होते हैं, और चीनी शेषफल प्रमेय को आदर्शों के लिए सामान्यीकृत किया जा सकता है। [[डेडेकाइंड डोमेन]] (संख्या सिद्धांत में महत्वपूर्ण वलय का एक प्रकार) के आदर्शों के लिए अद्वितीय प्राइम फ़ैक्टराइज़ेशन का एक संस्करण है।


आदेश सिद्धांत में आदर्श की संबंधित, लेकिन विशिष्ट अवधारणा, रिंग सिद्धांत में आदर्श की धारणा से ली गई है। एक भिन्नात्मक आदर्श एक आदर्श का सामान्यीकरण है, और सामान्य आदर्शों को स्पष्टता के लिए कभी-कभी '''अभिन्न आदर्श''' कहा जाता है।
आदेश सिद्धांत में आदर्श की संबंधित, लेकिन विशिष्ट अवधारणा, वलय सिद्धांत में आदर्श की धारणा से ली गई है। एक भिन्नात्मक आदर्श एक आदर्श का सामान्यीकरण है, और सामान्य आदर्शों को स्पष्टता के लिए कभी-कभी '''अभिन्न आदर्श''' कहा जाता है।


== इतिहास ==
== इतिहास ==
Line 23: Line 23:


== परिभाषाएँ और प्रेरणा ==
== परिभाषाएँ और प्रेरणा ==
यादृच्छिक वलय <math>(R,+,\cdot)</math> के लिए, मान लीजिए कि <math>(R,+)</math> इसका [[योगात्मक समूह]] है। एक उपसमुच्चय {{mvar|I}} को <math>R</math> का बायाँ आदर्श कहा जाता है यदि यह <math>R</math> का एक योगात्मक उपसमूह है जो "<math>R</math> के तत्वों द्वारा बाएँ से गुणन को अवशोषित करता है"; अर्थात्, <math>I</math> एक वाम आदर्श है यदि यह निम्नलिखित दो शर्तों को पूरा करता है:
यादृच्छिक वलय <math>(R,+,\cdot)</math> के लिए, मान लीजिए कि <math>(R,+)</math> इसका [[योगात्मक समूह]] है। उपसमुच्चय {{mvar|I}} को <math>R</math> का '''बायाँ आदर्श''' कहा जाता है यदि यह <math>R</math> का एक योगात्मक उपसमूह है जो "<math>R</math> के अवयवों द्वारा बाएँ से गुणन को अवशोषित करता है"; अर्थात्, <math>I</math> एक वाम आदर्श है यदि यह निम्नलिखित दो शर्तों को पूरा करता है:
# <math>(I,+)</math> <math>(R,+),</math> का एक [[उपसमूह]] है।
# <math>(I,+)</math> <math>(R,+),</math> का एक [[उपसमूह]] है।
#प्रत्येक <math>r \in R</math> और प्रत्येक <math>x \in I</math> के लिए, गुणनफल <math>r x</math> <math>I</math> में होता है।
#प्रत्येक <math>r \in R</math> और प्रत्येक <math>x \in I</math> के लिए, गुणनफल <math>r x</math> <math>I</math> में होता है।


'''''एक सही आदर्श को''''' स्थिति से परिभाषित किया जाता है <math>rx\in I</math> द्वारा प्रतिस्थापित <math>xr\in I</math>. दो-तरफा आदर्श एक बायाँ आदर्श है जो एक दायाँ आदर्श भी है, और कभी-कभी इसे केवल एक आदर्श कहा जाता है। [[मॉड्यूल (गणित)]] की भाषा में, परिभाषाओं का अर्थ है कि एक बाएँ (सम्मानित दाएँ, दो-तरफा) आदर्श <math>R</math> एक <math>R</math>-मॉड्यूल (गणित)#सबमॉड्यूल और समरूपताएं <math>R</math> कब <math>R</math> बाएं (सम्मान दाएं, द्वि-) के रूप में देखा जाता है <math>R</math>-मापांक। कब <math>R</math> एक क्रमविनिमेय वलय है, बाएँ, दाएँ और दो-तरफा आदर्श की परिभाषाएँ मेल खाती हैं, और आदर्श शब्द का प्रयोग अकेले किया जाता है।
एक '''दाएँ आदर्श''' को शर्त <math>rx\in I</math> के साथ परिभाषित किया जाता है जिसे <math>xr\in I</math> द्वारा प्रतिस्थापित किया जाता है। एक '''दो-तरफा आदर्श''' एक बाएँ आदर्श है जो एक दायाँ आदर्श भी है और कभी-कभी इसे केवल एक आदर्श कहा जाता है। मॉड्यूल की भाषा में, परिभाषाओं का मतलब है कि <math>R</math> का बायां (सम्मान दाएं, दो तरफा) आदर्श <math>R</math> का R-सबमॉड्यूल है जब <math>R</math> को बाएं (सम्मान दाएं, द्वि-) R-मॉड्यूल के रूप में देखा जाता है। जब <math>R</math> एक क्रमविनिमेय वलय है, तो बाएँ, दाएँ और दो-तरफा आदर्श की परिभाषाएँ मेल खाती हैं, और '''आदर्श''' शब्द का उपयोग अकेले किया जाता है।


आदर्श की अवधारणा को समझने के लिए, विचार करें कि तत्वों के छल्ले के निर्माण में आदर्श कैसे उत्पन्न होते हैं। ठोसता के लिए, आइए रिंग को देखें <math>\Z/n\Z</math> पूर्णांकों का मॉड्यूलो <math>n</math> एक पूर्णांक दिया गया <math>n\in\Z</math> (<math>\Z</math> एक क्रमविनिमेय वलय है)। यहां मुख्य अवलोकन यह है कि हम प्राप्त करते हैं <math>\Z/n\Z</math> पूर्णांक रेखा लेकर <math>\Z</math> और इसे अपने चारों ओर लपेटना ताकि विभिन्न पूर्णांकों की पहचान हो सके। ऐसा करने में, हमें 2 आवश्यकताओं को पूरा करना होगा:
आदर्श की अवधारणा को समझने के लिए, इस बात पर विचार करें कि "अवयव मॉड्यूलो" के वलय के निर्माण में आदर्श कैसे उत्पन्न होते हैं। ठोसता के लिए, आइए पूर्णांक मॉड्यूल <math>n</math> के वलय <math>\Z/n\Z</math> को देखें, एक पूर्णांक <math>n\in\Z</math> एक क्रमविनिमेय वलय है)। यहां मुख्य अवलोकन यह है कि हम पूर्णांक रेखा <math>\Z</math> को लेकर और उसे अपने चारों ओर आवरित कर <math>\Z/n\Z</math> प्राप्त करते हैं ताकि विभिन्न पूर्णांकों की पहचान हो सके। ऐसा करने पर, हमें 2 आवश्यकताएँ पूरी करनी होंगी:


1) <math>n</math> चूँकि 0 से पहचाना जाना चाहिए <math>n</math> 0 मॉड्यूलो के अनुरूप है <math>n</math>.
1) <math>n</math> की पहचान 0 से की जानी चाहिए क्योंकि <math>n</math>, 0 मॉड्यूलो <math>n</math> के सर्वांगसम है।


2) परिणामी संरचना फिर से एक वलय होनी चाहिए।
2) परिणामी संरचना फिर से एक वलय होनी चाहिए।


दूसरी आवश्यकता हमें अतिरिक्त पहचान बनाने के लिए मजबूर करती है (यानी, यह सटीक तरीका निर्धारित करती है कि हमें किस प्रकार लपेटना चाहिए <math>\Z</math> अपने चारों ओर)। एक आदर्श की धारणा तब उत्पन्न होती है जब हम प्रश्न पूछते हैं: <blockquote>पूर्णांकों का सटीक सेट क्या है जिसे हमें 0 के साथ पहचानने के लिए मजबूर किया जाता है?</blockquote> उत्तर, आश्चर्यजनक रूप से, सेट है <math>n\Z=\{nm\mid m\in\Z\}</math> 0 मॉड्यूलो के सर्वांगसम सभी पूर्णांकों का <math>n</math>. यानी हमें लपेटना होगा <math>\Z</math> अपने चारों ओर अनंत बार कई बार ताकि पूर्णांक <math>\ldots,-2n,-n,n,2n,3n,\ldots</math> सभी 0 के साथ संरेखित होंगे। यदि हम देखें कि यह सुनिश्चित करने के लिए इस सेट को किन गुणों को पूरा करना होगा <math>\Z/n\Z</math> एक वलय है, तो हम एक आदर्श की परिभाषा पर पहुंचते हैं। वास्तव में, कोई भी इसे सीधे सत्यापित कर सकता है <math>n\Z</math> का एक आदर्श है <math>\Z</math>.
दूसरी आवश्यकता हमें अतिरिक्त पहचान बनाने के लिए मजबूर करती है (यानी, यह सटीक तरीका निर्धारित करती है कि हमें किस प्रकार लपेटना चाहिए <math>\Z</math> अपने चारों ओर)। एक आदर्श की धारणा तब उत्पन्न होती है जब हम प्रश्न पूछते हैं।  


टिप्पणी। 0 के अलावा अन्य तत्वों की भी पहचान की जानी चाहिए। उदाहरण के लिए, इसमें मौजूद तत्व <math>1+n\Z</math> 1, के तत्वों से पहचाना जाना चाहिए <math>2+n\Z</math> 2 से पहचाना जाना चाहिए, इत्यादि। हालाँकि, वे विशिष्ट रूप से निर्धारित होते हैं <math>n\Z</math> तब से <math>\Z</math> एक योगात्मक समूह है.
पूर्णांकों का सटीक सेट क्या है जिसे हमें 0 के साथ पहचानने के लिए मजबूर किया जाता है?


हम किसी भी क्रमविनिमेय वलय में एक समान निर्माण कर सकते हैं <math>R</math>: मनमाने ढंग से शुरू करें <math>x\in R</math>, और फिर आदर्श के सभी तत्वों को 0 से पहचानें <math>xR=\{xr\mid r\in R\}</math>. यह पता चला है कि आदर्श <math>xR</math> वह सबसे छोटा आदर्श है जिसमें शामिल है <math>x</math>, द्वारा उत्पन्न आदर्श कहा जाता है <math>x</math>. अधिक सामान्यतः, हम एक मनमाने उपसमुच्चय से शुरुआत कर सकते हैं <math>S\subseteq R</math>, और फिर 0 द्वारा उत्पन्न आदर्श के सभी तत्वों की पहचान करें <math>S</math>: सबसे छोटा आदर्श <math>(S)</math> ऐसा है कि <math>S\subseteq(S)</math>. पहचान के बाद हमें जो अंगूठी मिलती है वह आदर्श पर ही निर्भर करती है <math>(S)</math> और सेट पर नहीं <math>S</math> जिसकी शुरुआत हमने की थी. अर्थात यदि <math>(S)=(T)</math>, तो परिणामी वलय समान होंगे।
उत्तर, आश्चर्यजनक रूप से, सेट है <math>n\Z=\{nm\mid m\in\Z\}</math> 0 मॉड्यूलो के सर्वांगसम सभी पूर्णांकों का <math>n</math>. यानी हमें लपेटना होगा <math>\Z</math> अपने चारों ओर अनंत बार कई बार ताकि पूर्णांक <math>\ldots,-2n,-n,n,2n,3n,\ldots</math> सभी 0 के साथ संरेखित होंगे। यदि हम देखें कि यह सुनिश्चित करने के लिए इस सेट को किन गुणों को पूरा करना होगा <math>\Z/n\Z</math> एक वलय है, तो हम एक आदर्श की परिभाषा पर पहुंचते हैं। वास्तव में, कोई भी इसे सीधे सत्यापित कर सकता है <math>n\Z</math> का एक आदर्श <math>\Z</math> है।


अतः एक आदर्श <math>I</math> एक क्रमविनिमेय वलय का <math>R</math> के तत्वों की रिंग प्राप्त करने के लिए आवश्यक जानकारी को कैनोनिक रूप से कैप्चर करता है <math>R</math> मॉड्यूलो एक दिया गया उपसमुच्चय <math>S\subseteq R</math>. के तत्व <math>I</math>परिभाषा के अनुसार, वे हैं जो शून्य के सर्वांगसम हैं, अर्थात, परिणामी वलय में शून्य के साथ पहचाने जाते हैं। परिणामी वलय को भागफल वलय कहा जाता है <math>R</math> द्वारा <math>I</math> और दर्शाया गया है <math>R/I</math>. सहज रूप से, एक आदर्श की परिभाषा दो आवश्यक प्राकृतिक स्थितियों को दर्शाती है <math>I</math> द्वारा शून्य के रूप में निर्दिष्ट सभी तत्वों को समाहित करना <math>R/I</math>:
टिप्पणी। 0 के अलावा अन्य अवयवों की भी पहचान की जानी चाहिए। उदाहरण के लिए, इसमें उपस्थित अवयव <math>1+n\Z</math> 1, के अवयवों से पहचाना जाना चाहिए <math>2+n\Z</math> 2 से पहचाना जाना चाहिए, इत्यादि। हालाँकि, वे विशिष्ट रूप से निर्धारित होते हैं <math>n\Z</math> तब से <math>\Z</math> एक योगात्मक समूह है।
# <math>I</math> का एक योगात्मक उपसमूह है <math>R</math>: का शून्य 0 <math>R</math> एक शून्य है <math>0\in I</math>, और अगर <math>x_1\in I</math> और <math>x_2\in I</math> तो फिर शून्य हैं <math>x_1-x_2\in I</math> एक शून्य भी है.
 
# कोई <math>r\in R</math> शून्य से गुणा किया गया <math>x\in I</math> एक शून्य है <math>rx\in I</math>.
हम किसी भी क्रमविनिमेय वलय में एक समान निर्माण कर सकते हैं <math>R</math>: मनमाने ढंग से शुरू करें <math>x\in R</math>, और फिर आदर्श के सभी अवयवों को 0 से पहचानें <math>xR=\{xr\mid r\in R\}</math>. यह पता चला है कि आदर्श <math>xR</math> वह सबसे छोटा आदर्श है जिसमें शामिल है <math>x</math>, द्वारा उत्पन्न आदर्श कहा जाता है <math>x</math>. अधिक सामान्यतः, हम एक मनमाने उपसमुच्चय से शुरुआत कर सकते हैं <math>S\subseteq R</math>, और फिर 0 द्वारा उत्पन्न आदर्श के सभी अवयवों की पहचान करें <math>S</math>: सबसे छोटा आदर्श <math>(S)</math> ऐसा है कि <math>S\subseteq(S)</math>. पहचान के बाद हमें जो वलय मिलती है वह आदर्श पर ही निर्भर करती है <math>(S)</math> और सेट पर नहीं <math>S</math> जिसकी शुरुआत हमने की थी. अर्थात यदि <math>(S)=(T)</math>, तो परिणामी वलय समान होंगे।
यह पता चला है कि उपरोक्त स्थितियाँ भी पर्याप्त हैं <math>I</math> सभी आवश्यक शून्य समाहित करने के लिए: किसी भी अन्य तत्व को बनाने के लिए उसे शून्य के रूप में नामित करने की आवश्यकता नहीं है <math>R/I</math>. (वास्तव में, यदि हम सबसे कम पहचान करना चाहते हैं तो किसी भी अन्य तत्व को शून्य के रूप में निर्दिष्ट नहीं किया जाना चाहिए।)
 
अतः एक आदर्श <math>I</math> एक क्रमविनिमेय वलय का <math>R</math> के अवयवों की वलय प्राप्त करने के लिए आवश्यक जानकारी को कैनोनिक रूप से कैप्चर करता है <math>R</math> मॉड्यूलो एक दिया गया उपसमुच्चय <math>S\subseteq R</math>. के अवयव <math>I</math>परिभाषा के अनुसार, वे हैं जो शून्य के सर्वांगसम हैं, अर्थात, परिणामी वलय में शून्य के साथ पहचाने जाते हैं। परिणामी वलय को भागफल वलय कहा जाता है <math>R</math> द्वारा <math>I</math> और दर्शाया गया है <math>R/I</math>. सहज रूप से, एक आदर्श की परिभाषा दो आवश्यक प्राकृतिक स्थितियों को दर्शाती है <math>I</math> द्वारा शून्य के रूप में निर्दिष्ट सभी अवयवों <math>R/I</math> को समाहित करना:
# <math>I</math> का एक योगात्मक उपसमूह है <math>R</math>: का शून्य 0 <math>R</math> एक शून्य है <math>0\in I</math>, और अगर <math>x_1\in I</math> और <math>x_2\in I</math> तो फिर शून्य हैं <math>x_1-x_2\in I</math> एक शून्य भी है।
# कोई <math>r\in R</math> शून्य से गुणा किया गया <math>x\in I</math> एक शून्य है <math>rx\in I</math>
यह पता चला है कि उपरोक्त स्थितियाँ भी पर्याप्त हैं <math>I</math> सभी आवश्यक शून्य समाहित करने के लिए: किसी भी अन्य अवयव को बनाने के लिए उसे शून्य के रूप में नामित करने की आवश्यकता नहीं है <math>R/I</math>. (वास्तव में, यदि हम सबसे कम पहचान करना चाहते हैं तो किसी भी अन्य अवयव को शून्य के रूप में निर्दिष्ट नहीं किया जाना चाहिए।)


टिप्पणी। उपरोक्त निर्माण अभी भी दो-तरफा आदर्शों का उपयोग करते हुए भी काम करता है <math>R</math> आवश्यक रूप से क्रमविनिमेय नहीं है।
टिप्पणी। उपरोक्त निर्माण अभी भी दो-तरफा आदर्शों का उपयोग करते हुए भी काम करता है <math>R</math> आवश्यक रूप से क्रमविनिमेय नहीं है।
Line 50: Line 54:
== उदाहरण और गुण ==
== उदाहरण और गुण ==
(संक्षिप्तता के लिए, कुछ परिणाम केवल बाएं आदर्शों के लिए बताए गए हैं, लेकिन आमतौर पर उपयुक्त नोटेशन परिवर्तनों के साथ सही आदर्शों के लिए भी सही हैं।)
(संक्षिप्तता के लिए, कुछ परिणाम केवल बाएं आदर्शों के लिए बताए गए हैं, लेकिन आमतौर पर उपयुक्त नोटेशन परिवर्तनों के साथ सही आदर्शों के लिए भी सही हैं।)
* रिंग आर में, सेट आर स्वयं आर का दो-तरफा आदर्श बनाता है जिसे 'इकाई आदर्श' कहा जाता है। इसे प्रायः द्वारा भी दर्शाया जाता है <math>(1)</math> चूँकि यह वास्तव में एकता द्वारा उत्पन्न दोतरफा आदर्श है (नीचे देखें)। <math>1_R</math>. इसके अलावा, सेट <math>\{ 0_R \}</math> जिसमें केवल योगात्मक पहचान 0 शामिल है<sub>''R''</sub> एक दो-तरफा आदर्श बनाता है जिसे शून्य आदर्श कहा जाता है और इसे द्वारा निरूपित किया जाता है <math>(0)</math>.<ref group=note>Some authors call the zero and unit ideals of a ring ''R'' the '''trivial ideals''' of ''R''.</ref> प्रत्येक (बाएँ, दाएँ या दो-तरफा) आदर्श में शून्य आदर्श होता है और इकाई आदर्श में समाहित होता है।{{sfnp|Dummit|Foote|2004|p=243}}
* वलय R में, सेट R स्वयं R का दो-तरफा आदर्श बनाता है जिसे ''''इकाई आदर्श'''' कहा जाता है। इसे प्रायः द्वारा भी दर्शाया जाता है <math>(1)</math> चूँकि यह वास्तव में एकता द्वारा उत्पन्न दोतरफा आदर्श है (नीचे देखें)। <math>1_R</math>. इसके अलावा, सेट <math>\{ 0_R \}</math> जिसमें केवल योगात्मक पहचान 0<sub>''R''</sub> शामिल है एक दो-तरफा आदर्श बनाता है जिसे '''शून्य आदर्श''' कहा जाता है और इसे द्वारा निरूपित किया जाता है <math>(0)</math>। प्रत्येक (बाएँ, दाएँ या दो-तरफा) आदर्श में शून्य आदर्श होता है और इकाई आदर्श में समाहित होता है।{{sfnp|Dummit|Foote|2004|p=243}}
* एक (बाएँ, दाएँ या दो-तरफा) आदर्श जो इकाई आदर्श नहीं है, उचित आदर्श कहलाता है (क्योंकि यह एक उचित उपसमुच्चय है)।<ref>{{harvnb|Lang|2005|loc=Section III.2}}</ref> नोट: एक वाम आदर्श <math>\mathfrak{a}</math> उचित है यदि और केवल यदि इसमें एक इकाई तत्व शामिल नहीं है, क्योंकि यदि <math>u \in \mathfrak{a}</math> तो, एक इकाई तत्व है <math>r = (r u^{-1}) u \in \mathfrak{a}</math> हरएक के लिए <math>r \in R</math>. आमतौर पर बहुत सारे उचित आदर्श होते हैं। वास्तव में, यदि R एक तिरछा क्षेत्र है, तो <math>(0), (1)</math> इसके एकमात्र आदर्श हैं और इसके विपरीत: अर्थात्, एक गैर-शून्य वलय R एक तिरछा क्षेत्र है यदि <math>(0), (1)</math> केवल बाएँ (या दाएँ) आदर्श हैं। (प्रमाण: यदि <math>x</math> एक अशून्य तत्व है, तो प्रमुख बायां आदर्श है <math>Rx</math> (नीचे देखें) शून्येतर है और इस प्रकार <math>Rx = (1)</math>; अर्थात।, <math>yx = 1</math> कुछ अशून्य के लिए <math>y</math>. वैसे ही, <math>zy = 1</math> कुछ अशून्य के लिए <math>z</math>. तब <math>z = z(yx) = (zy)x = x</math>.)
* एक (बाएँ, दाएँ या दो-तरफा) आदर्श जो इकाई आदर्श नहीं है, '''उचित आदर्श''' कहलाता है (क्योंकि यह एक उचित उपसमुच्चय है)।<ref>{{harvnb|Lang|2005|loc=Section III.2}}</ref> नोट: एक वाम आदर्श <math>\mathfrak{a}</math> उचित है यदि और केवल यदि इसमें एक इकाई अवयव शामिल नहीं है, क्योंकि यदि <math>u \in \mathfrak{a}</math> तो, एक इकाई अवयव है <math>r = (r u^{-1}) u \in \mathfrak{a}</math> हरएक के लिए <math>r \in R</math>. आमतौर पर बहुत सारे उचित आदर्श होते हैं। वास्तव में, यदि R एक तिरछा क्षेत्र है, तो <math>(0), (1)</math> इसके एकमात्र आदर्श हैं और इसके विपरीत: अर्थात्, एक गैर-शून्य वलय R एक तिरछा क्षेत्र है यदि <math>(0), (1)</math> केवल बाएँ (या दाएँ) आदर्श हैं। (प्रमाण: यदि <math>x</math> एक अशून्य अवयव है, तो प्रमुख बायां आदर्श है <math>Rx</math> (नीचे देखें) शून्येतर है और इस प्रकार <math>Rx = (1)</math>; अर्थात।, <math>yx = 1</math> कुछ अशून्य के लिए <math>y</math>. वैसे ही, <math>zy = 1</math> कुछ अशून्य के लिए <math>z</math>. तब <math>z = z(yx) = (zy)x = x</math>.)
* सम पूर्णांक वलय में एक आदर्श बनाते हैं <math>\mathbb{Z}</math> सभी पूर्णांकों का, चूँकि किन्हीं दो सम पूर्णांकों का योग सम होता है, और सम पूर्णांक वाले किसी भी पूर्णांक का गुणनफल भी सम होता है; इस आदर्श को आमतौर पर द्वारा दर्शाया जाता है <math>2\mathbb{Z}</math>. अधिक सामान्यतः, एक निश्चित पूर्णांक से विभाज्य सभी पूर्णांकों का समुच्चय <math>n</math> एक आदर्श निरूपित है <math>n\mathbb{Z}</math>. वास्तव में, रिंग का प्रत्येक गैर-शून्य आदर्श <math>\mathbb{Z}</math> [[यूक्लिडियन प्रभाग]] के परिणामस्वरूप, इसके सबसे छोटे सकारात्मक तत्व द्वारा उत्पन्न होता है <math>\mathbb{Z}</math> एक [[प्रमुख आदर्श डोमेन]] है.{{sfnp|Dummit|Foote|2004|p=243}}
* सम पूर्णांक वलय में एक आदर्श बनाते हैं <math>\mathbb{Z}</math> सभी पूर्णांकों का, चूँकि किन्हीं दो सम पूर्णांकों का योग सम होता है, और सम पूर्णांक वाले किसी भी पूर्णांक का गुणनफल भी सम होता है; इस आदर्श को आमतौर पर द्वारा दर्शाया जाता है <math>2\mathbb{Z}</math>. अधिक सामान्यतः, एक निश्चित पूर्णांक से विभाज्य सभी पूर्णांकों का समुच्चय <math>n</math> एक आदर्श निरूपित है <math>n\mathbb{Z}</math>. वास्तव में, वलय का प्रत्येक गैर-शून्य आदर्श <math>\mathbb{Z}</math> [[यूक्लिडियन प्रभाग]] के परिणामस्वरूप, इसके सबसे छोटे सकारात्मक अवयव द्वारा उत्पन्न होता है <math>\mathbb{Z}</math> एक [[प्रमुख आदर्श डोमेन]] है।{{sfnp|Dummit|Foote|2004|p=243}}
* वास्तविक गुणांक वाले सभी [[बहुपद]]ों का समुच्चय जो बहुपद से विभाज्य हैं <math>x^2+1</math> सभी वास्तविक-गुणांक बहुपदों के वलय में एक आदर्श है <math>\mathbb{R}[x]</math>.
* वास्तविक गुणांक वाले सभी [[बहुपद]] का समुच्चय जो <math>x^2+1</math> बहुपद से विभाज्य हैं सभी वास्तविक-गुणांक बहुपदों के वलय में एक आदर्श <math>\mathbb{R}[x]</math>है।
* एक अंगूठी लें <math>R</math> और सकारात्मक पूर्णांक <math>n</math>. प्रत्येक के लिए <math>1\leq i\leq n</math>, सभी का सेट <math>n\times n</math> प्रविष्टियों के साथ [[मैट्रिक्स (गणित)]]। <math>R</math> किसका <math>i</math>-वीं पंक्ति शून्य है, रिंग में एक सही आदर्श है <math>M_n(R)</math> के सभी <math>n\times n</math> प्रविष्टियों के साथ मैट्रिक्स <math>R</math>. यह कोई वामपंथी आदर्श नहीं है. इसी प्रकार, प्रत्येक के लिए <math>1\leq j\leq n</math>, सभी का सेट <math>n\times n</math> मैट्रिक्स जिसका <math>j</math>-वाँ स्तंभ शून्य बाएँ आदर्श है लेकिन दाएँ आदर्श नहीं है।
* एक वलय लें <math>R</math> और सकारात्मक पूर्णांक <math>n</math>. प्रत्येक के लिए <math>1\leq i\leq n</math>, सभी का सेट <math>n\times n</math> प्रविष्टियों के साथ [[मैट्रिक्स (गणित)]]। <math>R</math> किसका <math>i</math>-वीं पंक्ति शून्य है, वलय में एक सही आदर्श है <math>M_n(R)</math> के सभी <math>n\times n</math> प्रविष्टियों के साथ मैट्रिक्स <math>R</math>. यह कोई वामपंथी आदर्श नहीं है। इसी प्रकार, प्रत्येक के लिए <math>1\leq j\leq n</math>, सभी का सेट <math>n\times n</math> मैट्रिक्स जिसका <math>j</math>-वाँ स्तंभ शून्य बाएँ आदर्श है लेकिन दाएँ आदर्श नहीं है।
* अंगूठी <math>C(\mathbb{R})</math> सभी [[सतत कार्य]]ों का <math>f</math> से <math>\mathbb{R}</math> को <math>\mathbb{R}</math> बिंदुवार गुणन के अंतर्गत सभी सतत फलनों का आदर्श समाहित होता है <math>f</math> ऐसा है कि <math>f(1)=0</math>.{{sfnp|Dummit|Foote|2004|p=244}}में एक और आदर्श <math>C(\mathbb{R})</math> उन फ़ंक्शंस द्वारा दिया जाता है जो पर्याप्त बड़े तर्कों के लिए गायब हो जाते हैं, यानी वे निरंतर फ़ंक्शंस <math>f</math> जिसके लिए एक संख्या मौजूद है <math>L>0</math> ऐसा है कि <math>f(x)=0</math> जब कभी भी <math>|x|>L</math>.
* वलय <math>C(\mathbb{R})</math> सभी [[सतत कार्य]]ों का <math>f</math> से <math>\mathbb{R}</math> को <math>\mathbb{R}</math> बिंदुवार गुणन के अंतर्गत सभी सतत फलनों का आदर्श समाहित होता है <math>f</math> ऐसा है कि <math>f(1)=0</math>.{{sfnp|Dummit|Foote|2004|p=244}} में एक और आदर्श <math>C(\mathbb{R})</math> उन फ़ंक्शंस द्वारा दिया जाता है जो पर्याप्त बड़े तर्कों के लिए गायब हो जाते हैं, यानी वे निरंतर फ़ंक्शंस <math>f</math> जिसके लिए एक संख्या उपस्थित है <math>L>0</math> इस तरह कि <math>f(x)=0</math> जब कभी भी <math>|x|>L</math>.
* एक वलय को साधारण वलय कहा जाता है यदि यह शून्येतर है और इसके अलावा कोई दो-तरफा आदर्श नहीं है <math>(0), (1)</math>. इस प्रकार, एक तिरछा क्षेत्र सरल है और एक सरल क्रमविनिमेय वलय एक क्षेत्र है। तिरछा क्षेत्र पर [[मैट्रिक्स रिंग]] एक साधारण रिंग है।
* एक वलय को साधारण वलय कहा जाता है यदि यह शून्येतर है और इसके अलावा कोई दो-तरफा आदर्श नहीं है <math>(0), (1)</math>. इस प्रकार, एक तिरछा क्षेत्र सरल है और एक सरल क्रमविनिमेय वलय एक क्षेत्र है। तिरछा क्षेत्र पर [[मैट्रिक्स रिंग|मैट्रिक्स वलय]] एक साधारण वलय है।
* अगर <math>f: R \to S</math> एक रिंग समरूपता है, फिर कर्नेल <math>\ker(f) = f^{-1}(0_S)</math> का दोतरफा आदर्श है <math>R</math>.{{sfnp|Dummit|Foote|2004|p=243}} परिभाषा से, <math>f(1_R) = 1_S</math>, और इस प्रकार यदि <math>S</math> शून्य वलय नहीं है (इसलिए) <math>1_S\ne0_S</math>), तब <math>\ker(f)</math> एक उचित आदर्श है. अधिक सामान्यतः, S के प्रत्येक बाएँ आदर्श I के लिए, पूर्व-छवि <math>f^{-1}(I)</math> एक वामपंथी आदर्श है. यदि I, R का वाम आदर्श है, तो <math>f(I)</math> सबरिंग का बायां आदर्श है <math>f(R)</math> S का: जब तक कि f विशेषण न हो, <math>f(I)</math> S का आदर्श होना आवश्यक नहीं है; नीचे एक आदर्श का #विस्तार और संकुचन भी देखें।
* अगर <math>f: R \to S</math> एक वलय समरूपता है, फिर कर्नेल <math>\ker(f) = f^{-1}(0_S)</math> का दोतरफा आदर्श है <math>R</math>.{{sfnp|Dummit|Foote|2004|p=243}} परिभाषा से, <math>f(1_R) = 1_S</math>, और इस प्रकार यदि <math>S</math> शून्य वलय नहीं है (इसलिए) <math>1_S\ne0_S</math>), तब <math>\ker(f)</math> एक उचित आदर्श है. अधिक सामान्यतः, S के प्रत्येक बाएँ आदर्श I के लिए, पूर्व-छवि <math>f^{-1}(I)</math> एक वामपंथी आदर्श है. यदि I, R का वाम आदर्श है, तो <math>f(I)</math> सबरिंग का बायां आदर्श है <math>f(R)</math> S का: जब तक कि f विशेषण न हो, <math>f(I)</math> S का आदर्श होना आवश्यक नहीं है; नीचे एक आदर्श का #विस्तार और संकुचन भी देखें।
* 'आदर्श पत्राचार': एक विशेषण वलय समरूपता को देखते हुए <math>f: R \to S</math>, बाएं (सम्मानित दाएं, दो तरफा) आदर्शों के बीच एक विशेषण क्रम-संरक्षण पत्राचार है <math>R</math> की गिरी युक्त <math>f</math> और बाएं (सम्मान दाएं, दो तरफा) के आदर्श <math>S</math>: पत्राचार द्वारा दिया गया है <math>I \mapsto f(I)</math> और पूर्व छवि <math>J \mapsto f^{-1}(J)</math>. इसके अलावा, क्रमविनिमेय वलय के लिए, यह विशेषण पत्राचार प्रधान आदर्शों, अधिकतम आदर्शों और मूल आदर्शों तक सीमित है (इन आदर्शों की परिभाषाओं के लिए आदर्श_(रिंग_सिद्धांत)#प्रकार_के_आदर्श अनुभाग देखें)।
* ''''आदर्श पत्राचार'''': एक विशेषण वलय समरूपता को देखते हुए <math>f: R \to S</math>, बाएं (सम्मानित दाएं, दो तरफा) आदर्शों के बीच एक विशेषण क्रम-संरक्षण पत्राचार है <math>R</math> की गिरी युक्त <math>f</math> और बाएं (सम्मान दाएं, दो तरफा) के आदर्श <math>S</math>: पत्राचार द्वारा दिया गया है <math>I \mapsto f(I)</math> और पूर्व छवि <math>J \mapsto f^{-1}(J)</math>. इसके अलावा, क्रमविनिमेय वलय के लिए, यह विशेषण पत्राचार प्रधान आदर्शों, अधिकतम आदर्शों और मूल आदर्शों तक सीमित है (इन आदर्शों की परिभाषाओं के लिए आदर्श (वलय सिद्धांत) प्रकार के आदर्श अनुभाग देखें)।
* (उन लोगों के लिए जो मॉड्यूल जानते हैं) यदि एम एक बायां आर-मॉड्यूल है और <math>S \subset M</math> एक उपसमुच्चय, फिर [[संहारक (रिंग सिद्धांत)]] <math>\operatorname{Ann}_R(S) = \{ r \in R \mid rs = 0, s \in S \}</math> S का बायाँ आदर्श है। आदर्श दिये <math>\mathfrak{a}, \mathfrak{b}</math> एक क्रमविनिमेय वलय R का, R-विनाशकारी <math>(\mathfrak{b} + \mathfrak{a})/\mathfrak{a}</math> R का एक आदर्श है जिसे का [[आदर्श भागफल]] कहा जाता है <math>\mathfrak{a}</math> द्वारा <math>\mathfrak{b}</math> और द्वारा दर्शाया गया है <math>(\mathfrak{a} : \mathfrak{b})</math>; यह क्रमविनिमेय बीजगणित में [[आदर्शवादी]] का एक उदाहरण है।
* (उन लोगों के लिए जो मॉड्यूल जानते हैं) यदि एम एक बायां R-मॉड्यूल है और <math>S \subset M</math> एक उपसमुच्चय, फिर [[संहारक (रिंग सिद्धांत)|संहारक (वलय सिद्धांत)]] <math>\operatorname{Ann}_R(S) = \{ r \in R \mid rs = 0, s \in S \}</math> S का बायाँ आदर्श है। आदर्श दिये <math>\mathfrak{a}, \mathfrak{b}</math> एक क्रमविनिमेय वलय R का, R-उन्मूलनकारी <math>(\mathfrak{b} + \mathfrak{a})/\mathfrak{a}</math> R का एक आदर्श है जिसे का [[आदर्श भागफल]] कहा जाता है <math>\mathfrak{a}</math> द्वारा <math>\mathfrak{b}</math> और द्वारा दर्शाया गया है <math>(\mathfrak{a} : \mathfrak{b})</math>; यह क्रमविनिमेय बीजगणित में [[आदर्शवादी]] का एक उदाहरण है।
* होने देना <math>\mathfrak{a}_i, i \in S</math> एक वलय ''आर'' में बाएं आदर्शों की एक [[आरोही श्रृंखला]] बनें; अर्थात।, <math>S</math> एक पूरी तरह से व्यवस्थित सेट है और <math>\mathfrak{a}_i \subset \mathfrak{a}_j</math> प्रत्येक के लिए <math>i < j</math>. फिर संघ <math>\textstyle \bigcup_{i \in S} \mathfrak{a}_i</math> R का बायाँ आदर्श है। (नोट: यह तथ्य तब भी सत्य रहता है जब R एकता 1 के बिना हो।)
* होने देना <math>\mathfrak{a}_i, i \in S</math> एक वलय ''R'' में बाएं आदर्शों की एक [[आरोही श्रृंखला]] बनें; अर्थात।, <math>S</math> एक पूरी तरह से व्यवस्थित सेट है और <math>\mathfrak{a}_i \subset \mathfrak{a}_j</math> प्रत्येक के लिए <math>i < j</math>. फिर संघ <math>\textstyle \bigcup_{i \in S} \mathfrak{a}_i</math> R का बायाँ आदर्श है। (नोट: यह तथ्य तब भी सत्य रहता है जब R एकता 1 के बिना हो।)
* उपरोक्त तथ्य ज़ोर्न के लेम्मा के साथ मिलकर निम्नलिखित सिद्ध होता है: यदि <math>E \subset R</math> संभवतः एक खाली उपसमुच्चय है और <math>\mathfrak{a}_0 \subset R</math> एक बायाँ आदर्श है जो E से असंयुक्त है, तो एक ऐसा आदर्श है जो युक्त आदर्शों में अधिकतम है <math>\mathfrak{a}_0</math> और से असंयुक्त। (फिर से यह तब भी मान्य है यदि वलय आर में एकता 1 का अभाव है।) जब <math>R \ne 0</math>, ले रहा <math>\mathfrak{a}_0 = (0)</math> और <math>E = \{ 1 \}</math>, विशेष रूप से, एक बायाँ आदर्श मौजूद है जो उचित बाएँ आदर्शों में अधिकतम है (अक्सर इसे केवल अधिकतम बाएँ आदर्श कहा जाता है); अधिक के लिए क्रुल का प्रमेय देखें।
* उपरोक्त तथ्य ज़ोर्न के लेम्मा के साथ मिलकर निम्नलिखित सिद्ध होता है: यदि <math>E \subset R</math> संभवतः एक खाली उपसमुच्चय है और <math>\mathfrak{a}_0 \subset R</math> एक बायाँ आदर्श है जो E से असंयुक्त है, तो एक ऐसा आदर्श है जो युक्त आदर्शों में अधिकतम है <math>\mathfrak{a}_0</math>और E से असंयुक्त। (फिर से यह तब भी मान्य है यदि वलय R में एकता 1 का अभाव है।) जब <math>R \ne 0</math>, ले रहा <math>\mathfrak{a}_0 = (0)</math> और <math>E = \{ 1 \}</math>, विशेष रूप से, एक बायाँ आदर्श उपस्थित है जो उचित बाएँ आदर्शों में अधिकतम है (अक्सर इसे केवल अधिकतम बाएँ आदर्श कहा जाता है); अधिक के लिए क्रुल का प्रमेय देखें।
*आदर्शों का एक मनमाना संघ एक आदर्श होना आवश्यक नहीं है, लेकिन निम्नलिखित अभी भी सत्य है: R का संभवतः खाली उपसमूह <math>RX</math>. ऐसा आदर्श मौजूद है क्योंकि यह एक्स वाले सभी बाएं आदर्शों का प्रतिच्छेदन है। समान रूप से, <math>RX</math> सभी रैखिक संयोजनों का सेट है|(परिमित) आर पर एक्स के तत्वों के बाएं आर-रैखिक संयोजन:
*आदर्शों का एक याच्छिक संघ एक आदर्श होना आवश्यक नहीं है, लेकिन निम्नलिखित अभी भी सत्य है: R का संभवतः खाली उपसमूह <math>RX</math>. ऐसा आदर्श उपस्थित है क्योंकि यह एक्स वाले सभी बाएं आदर्शों का प्रतिच्छेदन है। समान रूप से, <math>RX</math> सभी रैखिक संयोजनों का सेट है|(परिमित) R पर एक्स के अवयवों के बाएं R-रैखिक संयोजन:
*:<math>RX = \{r_1x_1+\dots+r_nx_n \mid n\in\mathbb{N}, r_i\in R, x_i\in X\}.</math>
*:<math>RX = \{r_1x_1+\dots+r_nx_n \mid n\in\mathbb{N}, r_i\in R, x_i\in X\}.</math>
:(चूँकि ऐसा स्पैन X युक्त सबसे छोटा बायाँ आदर्श है।)<ref group = note>If ''R'' does not have a unit, then the internal descriptions above must be modified slightly. In addition to the finite sums of products of things in ''X'' with things in ''R'', we must allow the addition of ''n''-fold sums of the form {{nowrap|''x'' + ''x'' + ... + ''x''}}, and ''n''-fold sums of the form {{nowrap|(−''x'') + (−''x'') + ... + (−''x'')}} for every ''x'' in ''X'' and every ''n'' in the natural numbers. When ''R'' has a unit, this extra requirement becomes superfluous.</ref> एक्स द्वारा उत्पन्न एक सही (सम्मानित दो-तरफा) आदर्श को इसी तरह से परिभाषित किया गया है। दो-तरफा के लिए, दोनों तरफ से रैखिक संयोजनों का उपयोग करना होगा; अर्थात।,
:(चूँकि ऐसा स्पैन X युक्त सबसे छोटा बायाँ आदर्श है।) X द्वारा उत्पन्न एक सही (सम्मानित दो-तरफा) आदर्श को इसी तरह से परिभाषित किया गया है। दो-तरफा के लिए, दोनों तरफ से रैखिक संयोजनों का उपयोग करना होगा; अर्थात:
::<math>RXR = \{r_1x_1s_1+\dots+r_nx_ns_n \mid n\in\mathbb{N}, r_i\in R,s_i\in R, x_i\in X\}.\,</math>
::<math>RXR = \{r_1x_1s_1+\dots+r_nx_ns_n \mid n\in\mathbb{N}, r_i\in R,s_i\in R, x_i\in X\}.\,</math>
*एकल तत्व x द्वारा उत्पन्न बाएँ (सम्मान दाएँ, दो-तरफा) आदर्श को x द्वारा उत्पन्न मुख्य बाएँ (सम्मान दाएँ, दो-तरफा) आदर्श कहा जाता है और इसे निरूपित किया जाता है <math>Rx</math> (सम्मान. <math>xR, RxR</math>). प्रमुख दोतरफा आदर्श <math>RxR</math> प्रायः द्वारा भी निरूपित किया जाता है <math>(x)</math>. अगर <math>X = \{ x_1, \dots, x_n \}</math> तो, यह एक परिमित समुच्चय है <math>RXR</math> के रूप में भी लिखा गया है <math>(x_1, \dots, x_n)</math>.
*एकल अवयव x द्वारा उत्पन्न बाएँ (सम्मान दाएँ, दो-तरफा) आदर्श को x द्वारा उत्पन्न मुख्य बाएँ (सम्मान दाएँ, दो-तरफा) आदर्श कहा जाता है और इसे निरूपित किया जाता है <math>Rx</math> (सम्मान. <math>xR, RxR</math>). प्रमुख दोतरफा आदर्श प्रायः <math>RxR</math> द्वारा भी निरूपित किया जाता है <math>(x)</math>. अगर <math>X = \{ x_1, \dots, x_n \}</math> तो, यह एक परिमित समुच्चय <math>(x_1, \dots, x_n)</math> <math>RXR</math> के रूप में भी लिखा गया।
* रिंग पर आदर्शों और सर्वांगसमता संबंधों (समतुल्यता संबंध जो रिंग संरचना का सम्मान करते हैं) के बीच एक विशेषण पत्राचार है: एक आदर्श दिया गया है <math>I</math> एक अंगूठी का <math>R</math>, होने देना <math>x\sim y</math> अगर <math>x-y\in I</math>. तब <math>\sim</math> पर एक सर्वांगसमता संबंध है <math>R</math>. इसके विपरीत, एक सर्वांगसमता संबंध दिया गया है <math>\sim</math> पर <math>R</math>, होने देना <math>I=\{x\in R:x\sim 0\}</math>. तब <math>I</math> का एक आदर्श है <math>R</math>.
* वलय पर आदर्शों और सर्वांगसमता संबंधों (समतुल्यता संबंध जो वलय संरचना का सम्मान करते हैं) के बीच एक विशेषण पत्राचार है: एक आदर्श दिया गया है <math>I</math> एक वलय का <math>R</math>, होने देना <math>x\sim y</math> अगर <math>x-y\in I</math>. तब <math>\sim</math> पर एक सर्वांगसमता संबंध है <math>R</math>. इसके विपरीत, एक सर्वांगसमता संबंध दिया गया है <math>\sim</math> पर <math>R</math>, होने देना <math>I=\{x\in R:x\sim 0\}</math>. तब <math>I</math> का एक आदर्श <math>R</math> है।


==आदर्शों के प्रकार==
==आदर्शों के प्रकार==
विवरण को सरल बनाने के लिए सभी वलय को क्रमविनिमेय माना गया है। गैर-विनिमेय मामले पर संबंधित लेखों में विस्तार से चर्चा की गई है।
विवरण को सरल बनाने के लिए सभी वलय को क्रमविनिमेय माना गया है। गैर-विनिमेय स्तिथि पर संबंधित लेखों में विस्तार से चर्चा की गई है।


आदर्श महत्वपूर्ण हैं क्योंकि वे वलय समरूपता के कर्नेल के रूप में प्रकट होते हैं और [[कारक वलय]] को परिभाषित करने की अनुमति देते हैं। विभिन्न प्रकार के आदर्शों का अध्ययन किया जाता है क्योंकि उनका उपयोग विभिन्न प्रकार के कारक वलय बनाने के लिए किया जा सकता है।
आदर्श महत्वपूर्ण हैं क्योंकि वे वलय समरूपता के कर्नेल के रूप में प्रकट होते हैं और [[कारक वलय]] को परिभाषित करने की अनुमति देते हैं। विभिन्न प्रकार के आदर्शों का अध्ययन किया जाता है क्योंकि उनका उपयोग विभिन्न प्रकार के कारक वलय बनाने के लिए किया जा सकता है।


* '[[अधिकतम आदर्श]]': एक उचित आदर्श {{mvar|I}} को अधिकतम आदर्श कहा जाता है यदि इसके साथ कोई अन्य उचित आदर्श ''J'' मौजूद नहीं है {{mvar|I}} जे का एक उचित उपसमुच्चय। अधिकतम आदर्श का कारक वलय सामान्य रूप से एक साधारण वलय है और क्रमविनिमेय वलय के लिए एक क्षेत्र (गणित) है।<ref>Because simple commutative rings are fields. See {{cite book|author=Lam|year=2001|title=A First Course in Noncommutative Rings|url={{Google books|plainurl=y|id=f15FyZuZ3-4C|page=39|text=simple commutative rings}}|page=39}}</ref>
* '[[अधिकतम आदर्श]]': एक उचित आदर्श {{mvar|I}} को '''अधिकतम आदर्श''' कहा जाता है यदि इसके साथ कोई अन्य उचित आदर्श ''J'' उपस्थित नहीं है {{mvar|I}} ''J'' का एक उचित उपसमुच्चय। अधिकतम आदर्श का कारक वलय सामान्य रूप से एक साधारण वलय है और क्रमविनिमेय वलय के लिए एक क्षेत्र (गणित) है।<ref>Because simple commutative rings are fields. See {{cite book|author=Lam|year=2001|title=A First Course in Noncommutative Rings|url={{Google books|plainurl=y|id=f15FyZuZ3-4C|page=39|text=simple commutative rings}}|page=39}}</ref>
* [[न्यूनतम आदर्श]]: एक गैर-शून्य आदर्श को न्यूनतम कहा जाता है यदि इसमें कोई अन्य गैर-शून्य आदर्श न हो।
* [[न्यूनतम आदर्श]]: एक गैर-शून्य आदर्श को न्यूनतम कहा जाता है यदि इसमें कोई अन्य गैर-शून्य आदर्श न हो।
* प्रधान आदर्श: एक उचित आदर्श <math>I</math> किसी के लिए एक प्रमुख आदर्श कहा जाता है <math>a</math> और <math>b</math> में <math>R</math>, अगर <math>ab</math> में है <math>I</math>, तो कम से कम एक <math>a</math> और <math>b</math> में है <math>I</math>. एक अभाज्य आदर्श का कारक वलय सामान्य रूप से एक अभाज्य वलय है और क्रमविनिमेय वलय के लिए एक [[अभिन्न डोमेन]] है।{{sfnp|Dummit|Foote|2004|p=255}}
* प्रधान आदर्श: एक उचित आदर्श <math>I</math> किसी के लिए एक प्'''रमुख आदर्श''' कहा जाता है <math>a</math> और <math>b</math> में <math>R</math>, अगर <math>ab</math> में है <math>I</math>, तो कम से कम एक <math>a</math> और <math>b</math> में है <math>I</math>. एक अभाज्य आदर्श का कारक वलय सामान्य रूप से एक अभाज्य वलय है और क्रमविनिमेय वलय के लिए एक [[अभिन्न डोमेन]] है।{{sfnp|Dummit|Foote|2004|p=255}}
* किसी आदर्श या अर्धप्रधान आदर्श का मूलांक: एक उचित आदर्श {{mvar|I}} को रैडिकल या सेमीप्राइम कहा जाता है यदि ''आर'' में किसी '''' के लिए, यदि ''ए''<sup>n</sup>में है {{mvar|I}} कुछ n के लिए, तो a अंदर है {{mvar|I}}. रेडिकल आदर्श का कारक वलय सामान्य वलय के लिए एक [[सेमीप्राइम रिंग]] है, और क्रमविनिमेय वलय के लिए एक कम वलय है।
* किसी आदर्श या अर्धप्रधान आदर्श का मूलांक: एक उचित आदर्श {{mvar|I}} को '''रैडिकल''' या '''सेमीप्राइम''' कहा जाता है यदि ''R'' में किसी ''A'' के लिए, यदि A<sup>n</sup> में है {{mvar|I}} कुछ n के लिए, तो a अंदर है {{mvar|I}}. रेडिकल आदर्श का कारक वलय सामान्य वलय के लिए एक [[सेमीप्राइम रिंग|सेमीप्राइम वलय]] है, और क्रमविनिमेय वलय के लिए एक कम वलय है।
*[[प्राथमिक आदर्श]]: एक आदर्श {{mvar|I}} को प्राथमिक आदर्श कहा जाता है यदि ''आर'' में सभी '''' और ''बी'' के लिए, यदि ''एबी'' अंदर है {{mvar|I}}, तो और बी में से कम से कम एक<sup>n</sup>में है {{mvar|I}} कुछ प्राकृत संख्या n के लिए। प्रत्येक प्रमुख आदर्श प्राथमिक होता है, लेकिन इसके विपरीत नहीं। एक अर्धप्रधान प्राथमिक आदर्श प्रधान होता है।
*[[प्राथमिक आदर्श]]: एक आदर्श {{mvar|I}} को '''प्राथमिक आदर्श''' कहा जाता है यदि ''R'' में सभी ''A'' और ''B'' के लिए, यदि ''AB'' अंदर है {{mvar|I}}, तो A और B<sup>n</sup> में से कम से कम एकमें है {{mvar|I}} कुछ प्राकृत संख्या n के लिए। प्रत्येक प्रमुख आदर्श प्राथमिक होता है, लेकिन इसके विपरीत नहीं। एक अर्धप्रधान प्राथमिक आदर्श प्रधान होता है।
* 'प्रधान आदर्श': एक तत्व से उत्पन्न आदर्श।{{sfnp|Dummit|Foote|2004|p=251}}
* 'प्रधान आदर्श': एक अवयव से उत्पन्न आदर्श।{{sfnp|Dummit|Foote|2004|p=251}}
* {{anchor|Finitely generated ideal}}परिमित रूप से उत्पन्न आदर्श: इस प्रकार का आदर्श एक मॉड्यूल के रूप में परिमित रूप से उत्पन्न मॉड्यूल है।
* परिमित रूप से उत्पन्न आदर्श: इस प्रकार का आदर्श एक मॉड्यूल के रूप में परिमित रूप से उत्पन्न मॉड्यूल है।
* [[आदिम आदर्श]]: एक बायाँ आदिम आदर्श एक साधारण मॉड्यूल बाएँ मॉड्यूल (गणित) का विनाशक (रिंग सिद्धांत) है।
* [[आदिम आदर्श]]: एक बायाँ आदिम आदर्श एक साधारण मॉड्यूल बाएँ मॉड्यूल (गणित) का अनिष्टकारक (वलय सिद्धांत) है।
* अपरिवर्तनीय आदर्श: एक आदर्श को अपरिवर्तनीय कहा जाता है यदि इसे उन आदर्शों के प्रतिच्छेदन के रूप में नहीं लिखा जा सकता है जो इसे ठीक से समाहित करते हैं।
* अपरिवर्तनीय आदर्श: एक आदर्श को अपरिवर्तनीय कहा जाता है यदि इसे उन आदर्शों के प्रतिच्छेदन के रूप में नहीं लिखा जा सकता है जो इसे ठीक से समाहित करते हैं।
*कॉमैक्सिमल आदर्श: दो आदर्श <math>\mathfrak{i}, \mathfrak{j}</math> यदि कोमैक्सिमल कहा जाता है <math>x + y = 1</math> कुछ के लिए <math>x \in \mathfrak{i}</math> और <math>y \in \mathfrak{j}</math>.
*कॉमैक्सिमल आदर्श: दो आदर्श <math>\mathfrak{i}, \mathfrak{j}</math> यदि '''कोमैक्सिमल''' कहा जाता है <math>x + y = 1</math> कुछ के लिए <math>x \in \mathfrak{i}</math> और <math>y \in \mathfrak{j}</math>.
* [[नियमित आदर्श]]: इस शब्द के कई उपयोग हैं। सूची के लिए आलेख देखें.
* [[नियमित आदर्श]]: इस शब्द के कई उपयोग हैं। सूची के लिए आलेख देखें।
* [[शून्य आदर्श]]: एक आदर्श एक शून्य आदर्श होता है यदि उसका प्रत्येक तत्व शून्य है।
* [[शून्य आदर्श]]: एक आदर्श एक शून्य आदर्श होता है यदि उसका प्रत्येक अवयव शून्य है।
* [[निलपोटेंट आदर्श]] : इसकी कुछ शक्ति शून्य होती है।
* [[निलपोटेंट आदर्श]] : इसकी कुछ शक्ति शून्य होती है।
* [[पैरामीटर आदर्श]]: मापदंडों की एक प्रणाली द्वारा उत्पन्न एक आदर्श।
* [[पैरामीटर आदर्श]]: मापदंडों की एक प्रणाली द्वारा उत्पन्न एक आदर्श।


आदर्श का उपयोग करने वाले दो अन्य महत्वपूर्ण शब्द हमेशा अपनी अंगूठी के आदर्श नहीं होते हैं। विवरण के लिए उनके संबंधित लेख देखें:
आदर्श का उपयोग करने वाले दो अन्य महत्वपूर्ण शब्द हमेशा अपनी वलय के आदर्श नहीं होते हैं। विवरण के लिए उनके संबंधित लेख देखें:
*आंशिक आदर्श: इसे आमतौर पर तब परिभाषित किया जाता है जब ''आर'' [[भागफल क्षेत्र]] ''के'' वाला एक क्रमविनिमेय डोमेन होता है। उनके नाम के बावजूद, भिन्नात्मक आदर्श एक विशेष संपत्ति के साथ ''आर'' के उपमॉड्यूल हैं। यदि भिन्नात्मक आदर्श पूरी तरह से ''आर'' में निहित है, तो यह वास्तव में ''आर'' का एक आदर्श है।
*आंशिक आदर्श: इसे आमतौर पर तब परिभाषित किया जाता है जब ''R'' [[भागफल क्षेत्र]] वाला एक क्रमविनिमेय डोमेन होता है। उनके नाम के बावजूद, भिन्नात्मक आदर्श एक विशेष संपत्ति के साथ ''R'' के उपमॉड्यूल हैं। यदि भिन्नात्मक आदर्श पूरी तरह से ''R'' में निहित है, तो यह वास्तव में ''R'' का एक आदर्श है।
*[[उलटा आदर्श]]: आमतौर पर एक उलटा आदर्श '''' को एक भिन्नात्मक आदर्श के रूप में परिभाषित किया जाता है जिसके लिए एक और भिन्नात्मक आदर्श ''बी'' होता है जैसे कि {{math|1=''AB'' = ''BA'' = ''R''}}. कुछ लेखक व्युत्क्रमणीय आदर्श को साधारण वलय आदर्श और बी पर भी लागू कर सकते हैं {{math|1=''AB'' = ''BA'' = ''R''}}डोमेन के अलावा अन्य रिंगों में।
*[[उलटा आदर्श]]: आमतौर पर एक उलटा आदर्श ''A'' को एक भिन्नात्मक आदर्श के रूप में परिभाषित किया जाता है जिसके लिए एक और भिन्नात्मक आदर्श ''B'' होता है जैसे कि {{math|1=''AB'' = ''BA'' = ''R''}}. कुछ लेखक व्युत्क्रमणीय आदर्श को साधारण वलय आदर्श A और B पर भी प्रयुक्त कर सकते हैं {{math|1=''AB'' = ''BA'' = ''R''}} डोमेन के अलावा अन्य रिंगों में।


== आदर्श संचालन ==
== आदर्श संचालन ==
आदर्शों का योग और उत्पाद इस प्रकार परिभाषित किया गया है। के लिए  <math>\mathfrak{a}</math> और <math>\mathfrak{b}</math>, एक वलय R के बाएँ (सम्मान दाएँ) आदर्श, उनका योग है
आदर्शों का योग और गुणनफल इस प्रकार परिभाषित किया गया है। के लिए  <math>\mathfrak{a}</math> और <math>\mathfrak{b}</math>, एक वलय R के बाएँ (सम्मान दाएँ) आदर्श, उनका योग है


:<math>\mathfrak{a}+\mathfrak{b}:=\{a+b \mid a \in \mathfrak{a} \mbox{ and } b \in \mathfrak{b}\}</math>,
:<math>\mathfrak{a}+\mathfrak{b}:=\{a+b \mid a \in \mathfrak{a} \mbox{ and } b \in \mathfrak{b}\}</math>,
Line 100: Line 104:
और अगर <math>\mathfrak{a}, \mathfrak{b}</math> दो तरफा हैं,
और अगर <math>\mathfrak{a}, \mathfrak{b}</math> दो तरफा हैं,
:<math>\mathfrak{a} \mathfrak{b}:=\{a_1b_1+ \dots + a_nb_n \mid a_i \in \mathfrak{a} \mbox{ and } b_i \in \mathfrak{b}, i=1, 2, \dots, n; \mbox{ for } n=1, 2, \dots\},</math>
:<math>\mathfrak{a} \mathfrak{b}:=\{a_1b_1+ \dots + a_nb_n \mid a_i \in \mathfrak{a} \mbox{ and } b_i \in \mathfrak{b}, i=1, 2, \dots, n; \mbox{ for } n=1, 2, \dots\},</math>
यानी उत्पाद ab के साथ ab रूप के सभी उत्पादों द्वारा उत्पन्न आदर्श है <math>\mathfrak{a}</math> और बी में <math>\mathfrak{b}</math>.
यानी गुणनफल ab के साथ ab रूप के सभी उत्पादों द्वारा उत्पन्न आदर्श है <math>\mathfrak{a}</math> और B में <math>\mathfrak{b}</math>.


टिप्पणी <math>\mathfrak{a} + \mathfrak{b}</math> सबसे छोटा बायां (सम्मान दाएं) आदर्श है जिसमें दोनों शामिल हैं <math>\mathfrak{a}</math> और <math>\mathfrak{b}</math> (या संघ <math>\mathfrak{a} \cup \mathfrak{b}</math>), जबकि उत्पाद <math>\mathfrak{a}\mathfrak{b}</math> के प्रतिच्छेदन में समाहित है <math>\mathfrak{a}</math> और <math>\mathfrak{b}</math>.
टिप्पणी <math>\mathfrak{a} + \mathfrak{b}</math> सबसे छोटा बायां (सम्मान दाएं) आदर्श है जिसमें दोनों शामिल हैं <math>\mathfrak{a}</math> और <math>\mathfrak{b}</math> (या संघ <math>\mathfrak{a} \cup \mathfrak{b}</math>), जबकि गुणनफल <math>\mathfrak{a}\mathfrak{b}</math> के प्रतिच्छेदन में समाहित है <math>\mathfrak{a}</math> और <math>\mathfrak{b}</math>.


वितरणात्मक कानून दोतरफा आदर्शों को मानता है <math>\mathfrak{a}, \mathfrak{b}, \mathfrak{c}</math>,
वितरणात्मक सिद्धांत दोतरफा आदर्शों को मानता है <math>\mathfrak{a}, \mathfrak{b}, \mathfrak{c}</math>,
*<math>\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \mathfrak{b} + \mathfrak{a} \mathfrak{c}</math>,
*<math>\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \mathfrak{b} + \mathfrak{a} \mathfrak{c}</math>,
*<math>(\mathfrak{a} + \mathfrak{b}) \mathfrak{c} = \mathfrak{a}\mathfrak{c} + \mathfrak{b}\mathfrak{c}</math>.
*<math>(\mathfrak{a} + \mathfrak{b}) \mathfrak{c} = \mathfrak{a}\mathfrak{c} + \mathfrak{b}\mathfrak{c}</math>.
यदि किसी उत्पाद को किसी प्रतिच्छेदन द्वारा प्रतिस्थापित किया जाता है, तो आंशिक वितरण कानून लागू होता है:
यदि किसी गुणनफल को किसी प्रतिच्छेदन द्वारा प्रतिस्थापित किया जाता है, तो आंशिक वितरण सिद्धांत प्रयुक्त होता है:
:<math>\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) \supset \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c}</math>
:<math>\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) \supset \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c}</math>
यदि समानता कायम है <math>\mathfrak{a}</math> रोकना <math>\mathfrak{b}</math> या <math>\mathfrak{c}</math>.
यदि समानता कायम है <math>\mathfrak{a}</math> रोकना <math>\mathfrak{b}</math> या <math>\mathfrak{c}</math>.


टिप्पणी: आदर्शों का योग और प्रतिच्छेदन फिर से एक आदर्श है; जुड़ने और मिलने जैसी इन दो संक्रियाओं के साथ, किसी दिए गए रिंग के सभी आदर्शों का सेट एक [[पूर्ण जाली]] [[मॉड्यूलर जाली]] बनाता है। जाली, सामान्यतः, एक [[वितरणात्मक जाली]] नहीं है। प्रतिच्छेदन, योग (या जुड़ाव) और उत्पाद के तीन संचालन क्रमविनिमेय वलय के आदर्शों के समुच्चय को [[ कितना ]] में बनाते हैं।
टिप्पणी: आदर्शों का योग और प्रतिच्छेदन फिर से एक आदर्श है; जुड़ने और मिलने जैसी इन दो संक्रियाओं के साथ, किसी दिए गए वलय के सभी आदर्शों का सेट एक [[पूर्ण जाली]] [[मॉड्यूलर जाली]] बनाता है। जाली, सामान्यतः, एक [[वितरणात्मक जाली]] नहीं है। प्रतिच्छेदन, योग (या जुड़ाव) और गुणनफल के तीन संचालन क्रमविनिमेय वलय के आदर्शों के समुच्चय को [[ कितना ]] में बनाते हैं।


अगर <math>\mathfrak{a}, \mathfrak{b}</math> फिर, क्रमविनिमेय वलय R के आदर्श हैं <math>\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a} \mathfrak{b}</math> निम्नलिखित दो मामलों में (कम से कम)
अगर <math>\mathfrak{a}, \mathfrak{b}</math> फिर, क्रमविनिमेय वलय R के आदर्श हैं <math>\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a} \mathfrak{b}</math> निम्नलिखित दो स्तिथियों में (कम से कम)
*<math>\mathfrak{a} + \mathfrak{b} = (1)</math>
*<math>\mathfrak{a} + \mathfrak{b} = (1)</math>
*<math>\mathfrak{a}</math> उन तत्वों द्वारा उत्पन्न होता है जो एक नियमित अनुक्रम मॉड्यूलो बनाते हैं <math>\mathfrak{b}</math>.
*<math>\mathfrak{a}</math> उन अवयवों द्वारा उत्पन्न होता है जो एक नियमित अनुक्रम मॉड्यूलो <math>\mathfrak{b}</math> बनाते हैं।
(अधिक सामान्यतः, किसी उत्पाद और आदर्शों के प्रतिच्छेदन के बीच का अंतर [[टोर काम करता है]] द्वारा मापा जाता है: <math>\operatorname{Tor}^R_1(R/\mathfrak{a}, R/\mathfrak{b}) = (\mathfrak{a} \cap \mathfrak{b})/ \mathfrak{a} \mathfrak{b}.</math><ref>{{harvnb|Eisenbud|loc=Exercise A 3.17}}</ref>)
(अधिक सामान्यतः, किसी गुणनफल और आदर्शों के प्रतिच्छेदन के बीच का अंतर [[टोर काम करता है]] द्वारा मापा जाता है: <math>\operatorname{Tor}^R_1(R/\mathfrak{a}, R/\mathfrak{b}) = (\mathfrak{a} \cap \mathfrak{b})/ \mathfrak{a} \mathfrak{b}.</math><ref>{{harvnb|Eisenbud|loc=Exercise A 3.17}}</ref>)


यदि आदर्शों की प्रत्येक जोड़ी के लिए एक अभिन्न डोमेन को डेडेकाइंड डोमेन कहा जाता है <math>\mathfrak{a} \subset \mathfrak{b}</math>, एक आदर्श है <math>\mathfrak{c}</math> ऐसा है कि <math>\mathfrak \mathfrak{a} = \mathfrak{b} \mathfrak{c}</math>.{{sfnp|Milnor|1971|p=9}} फिर यह दिखाया जा सकता है कि डेडेकाइंड डोमेन के प्रत्येक गैर-शून्य आदर्श को विशिष्ट रूप से अधिकतम आदर्शों के उत्पाद के रूप में लिखा जा सकता है, जो अंकगणित के मौलिक प्रमेय का सामान्यीकरण है।
यदि आदर्शों की प्रत्येक जोड़ी के लिए एक अभिन्न डोमेन को डेडेकाइंड डोमेन कहा जाता है <math>\mathfrak{a} \subset \mathfrak{b}</math>, एक आदर्श है <math>\mathfrak{c}</math> ऐसा है कि <math>\mathfrak \mathfrak{a} = \mathfrak{b} \mathfrak{c}</math>.{{sfnp|Milnor|1971|p=9}} फिर यह दिखाया जा सकता है कि डेडेकाइंड डोमेन के प्रत्येक गैर-शून्य आदर्श को विशिष्ट रूप से अधिकतम आदर्शों के गुणनफल के रूप में लिखा जा सकता है, जो अंकगणित के मौलिक प्रमेय का सामान्यीकरण है।


==आदर्श संचालन के उदाहरण ==
==आदर्श संचालन के उदाहरण ==
में <math>\mathbb{Z}</math> अपने पास
में <math>\mathbb{Z}</math> अपने पास
:<math>(n)\cap(m) = \operatorname{lcm}(n,m)\mathbb{Z}</math>
:<math>(n)\cap(m) = \operatorname{lcm}(n,m)\mathbb{Z}</math>
तब से <math>(n)\cap(m)</math> पूर्णांकों का वह समुच्चय है जो दोनों से विभाज्य है <math>n</math> और <math>m</math>.
तब से <math>(n)\cap(m)</math> पूर्णांकों का वह समुच्चय है जो दोनों से विभाज्य <math>n</math> <math>m</math> है।


होने देना <math>R = \mathbb{C}[x,y,z,w]</math> और जाने <math> \mathfrak{a} = (z, w), \mathfrak{b} = (x+z,y+w),\mathfrak{c} = (x+z, w)</math>. तब,
होने देना <math>R = \mathbb{C}[x,y,z,w]</math> और जाने <math> \mathfrak{a} = (z, w), \mathfrak{b} = (x+z,y+w),\mathfrak{c} = (x+z, w)</math>. तब,
Line 130: Line 134:
* <math>\mathfrak{a}\mathfrak{c} = (xz + z^2, zw, xw + zw, w^2)</math>
* <math>\mathfrak{a}\mathfrak{c} = (xz + z^2, zw, xw + zw, w^2)</math>
* <math>\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}</math> जबकि <math>\mathfrak{a} \cap \mathfrak{c} = (w, xz + z^2) \neq \mathfrak{a}\mathfrak{c}</math>
* <math>\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}</math> जबकि <math>\mathfrak{a} \cap \mathfrak{c} = (w, xz + z^2) \neq \mathfrak{a}\mathfrak{c}</math>
पहली गणना में, हम दो अंतिम रूप से उत्पन्न आदर्शों का योग लेने के लिए सामान्य पैटर्न देखते हैं, यह उनके जनरेटर के मिलन से उत्पन्न आदर्श है। पिछले तीन में हम देखते हैं कि जब भी दो आदर्श शून्य आदर्श में प्रतिच्छेद करते हैं तो उत्पाद और प्रतिच्छेदन सहमत होते हैं। इन गणनाओं को [[मैकाले 2]] का उपयोग करके जांचा जा सकता है।<ref>{{Cite web|url=http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_आदर्शों.html|title=आदर्शों|website=www.math.uiuc.edu|access-date=2017-01-14|archive-url=https://web.archive.org/web/20170116190119/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_आदर्शों.html|archive-date=2017-01-16|url-status=dead}}</ref><ref>{{Cite web|url=http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html|title=आदर्शों का योग, उत्पाद और शक्तियाँ|website=www.math.uiuc.edu|access-date=2017-01-14|archive-url=https://web.archive.org/web/20170116185903/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html|archive-date=2017-01-16|url-status=dead}}</ref><ref>{{Cite web|url=http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_intersection_spof_spideals.html|title=आदर्शों का प्रतिच्छेदन|website=www.math.uiuc.edu|access-date=2017-01-14|archive-url=https://web.archive.org/web/20170116185829/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_intersection_spof_spideals.html|archive-date=2017-01-16|url-status=dead}}</ref>
पहली गणना में, हम दो अंतिम रूप से उत्पन्न आदर्शों का योग लेने के लिए सामान्य पैटर्न देखते हैं, यह उनके जनरेटर के मिलन से उत्पन्न आदर्श है। पिछले तीन में हम देखते हैं कि जब भी दो आदर्श शून्य आदर्श में प्रतिच्छेद करते हैं तो गुणनफल और प्रतिच्छेदन सहमत होते हैं। इन गणनाओं को [[मैकाले 2]] का उपयोग करके जांचा जा सकता है।<ref>{{Cite web|url=http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_आदर्शों.html|title=आदर्शों|website=www.math.uiuc.edu|access-date=2017-01-14|archive-url=https://web.archive.org/web/20170116190119/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_आदर्शों.html|archive-date=2017-01-16|url-status=dead}}</ref><ref>{{Cite web|url=http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html|title=आदर्शों का योग, उत्पाद और शक्तियाँ|website=www.math.uiuc.edu|access-date=2017-01-14|archive-url=https://web.archive.org/web/20170116185903/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html|archive-date=2017-01-16|url-status=dead}}</ref><ref>{{Cite web|url=http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_intersection_spof_spideals.html|title=आदर्शों का प्रतिच्छेदन|website=www.math.uiuc.edu|access-date=2017-01-14|archive-url=https://web.archive.org/web/20170116185829/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_intersection_spof_spideals.html|archive-date=2017-01-16|url-status=dead}}</ref>
 
 
== वलय का मूलांक ==
== वलय का मूलांक ==
{{main|Radical of a ring}}
{{main|वलय का रेडिकल}}


मॉड्यूल के अध्ययन में आदर्श स्वाभाविक रूप से प्रकट होते हैं, विशेषकर रेडिकल के रूप में।
मॉड्यूल के अध्ययन में आदर्श स्वाभाविक रूप से प्रकट होते हैं, विशेषकर रेडिकल के रूप में।
Line 140: Line 142:
:सरलता के लिए, हम क्रमविनिमेय वलय के साथ काम करते हैं लेकिन, कुछ बदलावों के साथ, परिणाम गैर-अनुक्रमिक वलय के लिए भी सही होते हैं।
:सरलता के लिए, हम क्रमविनिमेय वलय के साथ काम करते हैं लेकिन, कुछ बदलावों के साथ, परिणाम गैर-अनुक्रमिक वलय के लिए भी सही होते हैं।


माना R एक क्रमविनिमेय वलय है। परिभाषा के अनुसार, R का एक आदिम आदर्श एक (गैर-शून्य) सरल मॉड्यूल|सरल आर-मॉड्यूल का विनाशक है। [[जैकबसन कट्टरपंथी]] <math>J = \operatorname{Jac}(R)</math> आर का प्रतिच्छेदन सभी आदिम आदर्शों का प्रतिच्छेदन है। समान रूप से,
माना R एक क्रमविनिमेय वलय है। परिभाषा के अनुसार, R का एक आदिम आदर्श एक (गैर-शून्य) सरल मॉड्यूल|सरल R-मॉड्यूल का अनिष्टकारक है। [[जैकबसन कट्टरपंथी]] <math>J = \operatorname{Jac}(R)</math> R का प्रतिच्छेदन सभी आदिम आदर्शों का प्रतिच्छेदन है। समान रूप से,
:<math>J = \bigcap_{\mathfrak{m} \text{ maximal ideals}} \mathfrak{m}.</math>
:<math>J = \bigcap_{\mathfrak{m} \text{ maximal ideals}} \mathfrak{m}.</math>
वास्तव में, यदि <math>M</math> एक सरल मॉड्यूल है और x, M में एक अशून्य तत्व है <math>Rx = M</math> और <math>R/\operatorname{Ann}(M) = R/\operatorname{Ann}(x) \simeq M</math>, अर्थ <math>\operatorname{Ann}(M)</math> एक अधिकतम आदर्श है. इसके विपरीत, यदि <math>\mathfrak{m}</math> तो यह एक अधिकतम आदर्श है <math>\mathfrak{m}</math> सरल आर-मॉड्यूल का विनाशक है <math>R/\mathfrak{m}</math>. एक अन्य लक्षण वर्णन भी है (प्रमाण कठिन नहीं है):
वास्तव में, यदि <math>M</math> एक सरल मॉड्यूल है और x, M में एक अशून्य अवयव है <math>Rx = M</math> और <math>R/\operatorname{Ann}(M) = R/\operatorname{Ann}(x) \simeq M</math>, अर्थ <math>\operatorname{Ann}(M)</math> एक अधिकतम आदर्श है. इसके विपरीत, यदि <math>\mathfrak{m}</math> तो यह एक अधिकतम आदर्श है <math>\mathfrak{m}</math> सरल R-मॉड्यूल का अनिष्टकारक है <math>R/\mathfrak{m}</math>. एक अन्य लक्षण वर्णन भी है (प्रमाण कठिन नहीं है):
:<math>J = \{ x \in R \mid 1 - yx \, \text{ is a unit element for every } y \in R\}.</math>
:<math>J = \{ x \in R \mid 1 - yx \, \text{ is a unit element for every } y \in R\}.</math>
एक गैर-आवश्यक-विनिमेय वलय के लिए, यह एक सामान्य तथ्य है <math>1 - yx</math> एक [[इकाई तत्व]] है यदि और केवल यदि <math>1 - xy</math> है (लिंक देखें) और इसलिए यह अंतिम लक्षण वर्णन दर्शाता है कि रेडिकल को बाएँ और दाएँ आदिम आदर्शों दोनों के संदर्भ में परिभाषित किया जा सकता है।
एक गैर-आवश्यक-विनिमेय वलय के लिए, यह एक सामान्य तथ्य है <math>1 - yx</math> एक [[इकाई तत्व|इकाई अवयव]] है यदि और केवल यदि <math>1 - xy</math> है (लिंक देखें) और इसलिए यह अंतिम लक्षण वर्णन दर्शाता है कि रेडिकल को बाएँ और दाएँ आदिम आदर्शों दोनों के संदर्भ में परिभाषित किया जा सकता है।


निम्नलिखित सरल लेकिन महत्वपूर्ण तथ्य (नाकायमा का लेम्मा) जैकबसन रेडिकल की परिभाषा में अंतर्निहित है: यदि एम एक मॉड्यूल है जैसे कि <math>JM = M</math>, तो एम [[अधिकतम सबमॉड्यूल]] को स्वीकार नहीं करता है, क्योंकि यदि कोई अधिकतम सबमॉड्यूल है <math>L \subsetneq M</math>, <math>J \cdot (M/L) = 0</math> इसलिए <math>M = JM \subset L \subsetneq M</math>, एक विरोधाभास. चूँकि एक गैर-शून्य परिमित रूप से उत्पन्न मॉड्यूल एक अधिकतम सबमॉड्यूल को स्वीकार करता है, विशेष रूप से, एक में:
निम्नलिखित सरल लेकिन महत्वपूर्ण तथ्य (नाकायमा का लेम्मा) जैकबसन रेडिकल की परिभाषा में अंतर्निहित है: यदि एम एक मॉड्यूल है जैसे कि <math>JM = M</math>, तो एम [[अधिकतम सबमॉड्यूल]] को स्वीकार नहीं करता है, क्योंकि यदि कोई अधिकतम सबमॉड्यूल है <math>L \subsetneq M</math>, <math>J \cdot (M/L) = 0</math> इसलिए <math>M = JM \subset L \subsetneq M</math>, एक विरोधाभास. चूँकि एक गैर-शून्य परिमित रूप से उत्पन्न मॉड्यूल एक अधिकतम सबमॉड्यूल को स्वीकार करता है, विशेष रूप से, एक में:
Line 151: Line 153:
:<math>\operatorname{nil}(R) =
:<math>\operatorname{nil}(R) =
\bigcap_{\mathfrak{p} \text { prime ideals }} \mathfrak{p} \subset \operatorname{Jac}(R)</math>
\bigcap_{\mathfrak{p} \text { prime ideals }} \mathfrak{p} \subset \operatorname{Jac}(R)</math>
जहां बाईं ओर के चौराहे को आर की अंगूठी का नीलरेडिकल कहा जाता है। जैसा कि यह पता चला है, <math>\operatorname{nil}(R)</math> R के निलपोटेंट तत्वों का समुच्चय भी है।
जहां बाईं ओर के प्रतिच्छेदन को R की वलय का नीलरेडिकल कहा जाता है। जैसा कि यह पता चला है, <math>\operatorname{nil}(R)</math> R के निलपोटेंट अवयवों का समुच्चय भी है।


यदि R एक [[आर्टिनियन अंगूठी]] है, तो <math>\operatorname{Jac}(R)</math> शून्यशक्तिशाली है और <math>\operatorname{nil}(R) = \operatorname{Jac}(R)</math>. (प्रमाण: सबसे पहले ध्यान दें कि डीसीसी का तात्पर्य है <math>J^n = J^{n+1}</math> कुछ एन के लिए यदि (डीसीसी) <math>\mathfrak{a} \supsetneq \operatorname{Ann}(J^n)</math> तो, बाद वाले की तुलना में यह एक आदर्श रूप से न्यूनतम है <math>J \cdot (\mathfrak{a}/\operatorname{Ann}(J^n)) = 0</math>. वह है, <math>J^n \mathfrak{a} = J^{n+1} \mathfrak{a} = 0</math>, एक विरोधाभास।)
यदि R एक [[आर्टिनियन अंगूठी|Rटिनियन वलय]] है, तो <math>\operatorname{Jac}(R)</math> शून्यशक्तिशाली है और <math>\operatorname{nil}(R) = \operatorname{Jac}(R)</math>. (प्रमाण: सबसे पहले ध्यान दें कि डीसीसी का तात्पर्य है <math>J^n = J^{n+1}</math> कुछ एन के लिए यदि (डीसीसी) <math>\mathfrak{a} \supsetneq \operatorname{Ann}(J^n)</math> तो, बाद वाले की तुलना में यह एक आदर्श रूप से न्यूनतम है <math>J \cdot (\mathfrak{a}/\operatorname{Ann}(J^n)) = 0</math>. वह है, <math>J^n \mathfrak{a} = J^{n+1} \mathfrak{a} = 0</math>, एक विरोधाभास।)


== आदर्श का विस्तार और संकुचन ==
== आदर्श का विस्तार और संकुचन ==


मान लीजिए कि A और B दो [[क्रमविनिमेय वलय]] हैं, और f : A → B एक वलय समरूपता है। अगर <math>\mathfrak{a}</math> तो, में एक आदर्श है <math>f(\mathfrak{a})</math> B में एक आदर्श होने की आवश्यकता नहीं है (उदाहरण के लिए f को परिमेय 'Q' के क्षेत्र में पूर्णांक 'Z' के वलय का [[समावेशन मानचित्र]] मानें)। विस्तृति' <math>\mathfrak{a}^e</math> का <math>\mathfrak{a}</math> बी में बी द्वारा उत्पन्न आदर्श को परिभाषित किया गया है <math>f(\mathfrak{a})</math>. स्पष्ट रूप से,
मान लीजिए कि A और B दो [[क्रमविनिमेय वलय]] हैं, और f : A → B एक वलय समरूपता है। अगर <math>\mathfrak{a}</math> तो, A में एक आदर्श है <math>f(\mathfrak{a})</math> B में एक आदर्श होने की आवश्यकता नहीं है (उदाहरण के लिए f को परिमेय 'Q' के क्षेत्र में पूर्णांक 'Z' के वलय का [[समावेशन मानचित्र]] मानें)। विस्तृति' <math>\mathfrak{a}^e</math> का <math>\mathfrak{a}</math> B में B द्वारा उत्पन्न आदर्श को परिभाषित किया गया है <math>f(\mathfrak{a})</math>. स्पष्ट रूप से,


:<math>\mathfrak{a}^e = \Big\{ \sum y_if(x_i) : x_i \in \mathfrak{a}, y_i \in B \Big\}</math>
:<math>\mathfrak{a}^e = \Big\{ \sum y_if(x_i) : x_i \in \mathfrak{a}, y_i \in B \Big\}</math>
अगर <math>\mathfrak{b}</math> तो, B का एक आदर्श है <math>f^{-1}(\mathfrak{b})</math> सदैव A का एक आदर्श होता है, जिसे 'संकुचन' कहा जाता है <math>\mathfrak{b}^c</math> का <math>\mathfrak{b}</math> को.
अगर <math>\mathfrak{b}</math> तो, B का एक आदर्श है <math>f^{-1}(\mathfrak{b})</math> सदैव A का एक आदर्श होता है, जिसे 'संकुचन' कहा जाता है <math>\mathfrak{b}^c</math> का <math>\mathfrak{b}</math> A को.


यह मानते हुए कि f : A → B एक वलय समरूपता है, <math>\mathfrak{a}</math> में एक आदर्श है, <math>\mathfrak{b}</math> B में एक आदर्श है, तो:
यह मानते हुए कि f : A → B एक वलय समरूपता है, <math>\mathfrak{a}</math> A में एक आदर्श है, <math>\mathfrak{b}</math> B में एक आदर्श है, तो:


* <math>\mathfrak{b}</math> बी में प्रमुख है <math>\Rightarrow</math> <math>\mathfrak{b}^c</math> A में प्रमुख है.
* <math>\mathfrak{b}</math> B में प्रमुख है <math>\Rightarrow</math> <math>\mathfrak{b}^c</math> A में प्रमुख है.
* <math>\mathfrak{a}^{ec} \supseteq \mathfrak{a}</math>
* <math>\mathfrak{a}^{ec} \supseteq \mathfrak{a}</math>
* <math>\mathfrak{b}^{ce} \subseteq \mathfrak{b}</math>
* <math>\mathfrak{b}^{ce} \subseteq \mathfrak{b}</math>
सामान्यतः यह झूठ है <math>\mathfrak{a}</math> A में अभाज्य (या अधिकतम) होने का तात्पर्य यह है <math>\mathfrak{a}^e</math> बी में अभाज्य (या अधिकतम) है। इसके कई उत्कृष्ट उदाहरण बीजगणितीय संख्या सिद्धांत से उपजे हैं। उदाहरण के लिए, [[एम्बेडिंग]] <math>\mathbb{Z} \to \mathbb{Z}\left\lbrack i \right\rbrack</math>. में <math>B = \mathbb{Z}\left\lbrack i \right\rbrack</math>, तत्व 2 कारक जैसे <math>2 = (1 + i)(1 - i)</math> जहां (कोई भी दिखा सकता है) इनमें से कोई भी नहीं <math>1 + i, 1 - i</math> बी में इकाइयां हैं तो <math>(2)^e</math> B में अभाज्य नहीं है (और इसलिए अधिकतम भी नहीं है)। वास्तव में, <math>(1 \pm i)^2 = \pm 2i</math> पता चलता है कि <math>(1 + i) = ((1 - i) - (1 - i)^2)</math>, <math>(1 - i) = ((1 + i) - (1 + i)^2)</math>, और इसलिए <math>(2)^e = (1 + i)^2</math>.
सामान्यतः यह झूठ है <math>\mathfrak{a}</math> A में अभाज्य (या अधिकतम) होने का तात्पर्य यह है <math>\mathfrak{a}^e</math> B में अभाज्य (या अधिकतम) है। इसके कई उत्कृष्ट उदाहरण बीजगणितीय संख्या सिद्धांत से उपजे हैं। उदाहरण के लिए, [[एम्बेडिंग]] <math>\mathbb{Z} \to \mathbb{Z}\left\lbrack i \right\rbrack</math>. में <math>B = \mathbb{Z}\left\lbrack i \right\rbrack</math>, अवयव 2 कारक जैसे <math>2 = (1 + i)(1 - i)</math> जहां (कोई भी दिखा सकता है) इनमें से कोई भी नहीं <math>1 + i, 1 - i</math> B में इकाइयां हैं तो <math>(2)^e</math> B में अभाज्य नहीं है (और इसलिए अधिकतम भी नहीं है)। वास्तव में, <math>(1 \pm i)^2 = \pm 2i</math> पता चलता है कि <math>(1 + i) = ((1 - i) - (1 - i)^2)</math>, <math>(1 - i) = ((1 + i) - (1 + i)^2)</math>, और इसलिए <math>(2)^e = (1 + i)^2</math>.
दूसरी ओर, यदि f विशेषण फलन है और कर्नेल(बीजगणित)|<math> \mathfrak{a} \supseteq \ker f</math>तब:
दूसरी ओर, यदि f विशेषण फलन है और कर्नेल(बीजगणित)|<math> \mathfrak{a} \supseteq \ker f</math>तब:


* <math>\mathfrak{a}^{ec}=\mathfrak{a} </math> और <math>\mathfrak{b}^{ce}=\mathfrak{b}</math>.
* <math>\mathfrak{a}^{ec}=\mathfrak{a} </math> और <math>\mathfrak{b}^{ce}=\mathfrak{b}</math>.
* <math>\mathfrak{a}</math> में एक प्रमुख आदर्श है <math>\Leftrightarrow</math> <math>\mathfrak{a}^e</math> बी में एक प्रमुख आदर्श है.
* <math>\mathfrak{a}</math> A में एक प्रमुख आदर्श है <math>\Leftrightarrow</math> <math>\mathfrak{a}^e</math> B में एक प्रमुख आदर्श है.
* <math>\mathfrak{a}</math> में एक अधिकतम आदर्श है <math>\Leftrightarrow</math> <math>\mathfrak{a}^e</math> बी में एक अधिकतम आदर्श है.
* <math>\mathfrak{a}</math> A में एक अधिकतम आदर्श है <math>\Leftrightarrow</math> <math>\mathfrak{a}^e</math> B में एक अधिकतम आदर्श है.


'टिप्पणी': मान लीजिए कि K, L का क्षेत्र विस्तार है, और मान लीजिए कि B और A क्रमशः K और L के पूर्णांकों का वलय हैं। तब B, A का एक [[अभिन्न विस्तार]] है, और हम f को A से B तक समावेशन मानचित्र मानते हैं। एक प्रमुख आदर्श का व्यवहार <math>\mathfrak{a} = \mathfrak{p}</math> A का विस्तार [[बीजगणितीय संख्या सिद्धांत]] की केंद्रीय समस्याओं में से एक है।
'टिप्पणी': मान लीजिए कि K, L का क्षेत्र विस्तार है, और मान लीजिए कि B और A क्रमशः K और L के पूर्णांकों का वलय हैं। तब B, A का एक [[अभिन्न विस्तार]] है, और हम f को A से B तक समावेशन मानचित्र मानते हैं। एक प्रमुख आदर्श का व्यवहार <math>\mathfrak{a} = \mathfrak{p}</math> A का विस्तार [[बीजगणितीय संख्या सिद्धांत]] की केंद्रीय समस्याओं में से एक है।


निम्नलिखित कभी-कभी उपयोगी होता है:{{sfnp|Atiyah|Macdonald|1969|loc=Proposition 3.16}} एक प्रमुख आदर्श <math>\mathfrak{p}</math> एक प्रमुख आदर्श का संकुचन है यदि और केवल यदि <math>\mathfrak{p} = \mathfrak{p}^{ec}</math>. (प्रमाण: बाद वाले को मानते हुए, ध्यान दें <math>\mathfrak{p}^e B_{\mathfrak{p}} = B_{\mathfrak{p}} \Rightarrow \mathfrak{p}^e</math> काटती है <math>A - \mathfrak{p}</math>, एक विरोधाभास. अब, के प्रमुख आदर्श <math>B_{\mathfrak{p}}</math> बी में उन लोगों के अनुरूप है जो से असंयुक्त हैं <math>A - \mathfrak{p}</math>. अत: एक प्रमुख आदर्श है <math>\mathfrak{q}</math> बी का, से असंयुक्त <math>A - \mathfrak{p}</math>, ऐसा है कि <math>\mathfrak{q} B_{\mathfrak{p}}</math> एक अधिकतम आदर्श युक्त है <math>\mathfrak{p}^e B_{\mathfrak{p}}</math>. फिर कोई उसकी जांच करता है <math>\mathfrak{q}</math> पर पड़ा है <math>\mathfrak{p}</math>. उलटा स्पष्ट है।)
निम्नलिखित कभी-कभी उपयोगी होता है:{{sfnp|Atiyah|Macdonald|1969|loc=Proposition 3.16}} एक प्रमुख आदर्श <math>\mathfrak{p}</math> एक प्रमुख आदर्श का संकुचन है यदि और केवल यदि <math>\mathfrak{p} = \mathfrak{p}^{ec}</math>. (प्रमाण: बाद वाले को मानते हुए, ध्यान दें <math>\mathfrak{p}^e B_{\mathfrak{p}} = B_{\mathfrak{p}} \Rightarrow \mathfrak{p}^e</math> काटती है <math>A - \mathfrak{p}</math>, एक विरोधाभास. अब, के प्रमुख आदर्श <math>B_{\mathfrak{p}}</math> B में उन लोगों के अनुरूप है जो से असंयुक्त हैं <math>A - \mathfrak{p}</math>. अत: एक प्रमुख आदर्श है <math>\mathfrak{q}</math> B का, से असंयुक्त <math>A - \mathfrak{p}</math>, ऐसा है कि <math>\mathfrak{q} B_{\mathfrak{p}}</math> एक अधिकतम आदर्श युक्त है <math>\mathfrak{p}^e B_{\mathfrak{p}}</math>. फिर कोई उसकी जांच करता है <math>\mathfrak{q}</math> पर पड़ा है <math>\mathfrak{p}</math>. उलटा स्पष्ट है।)


== सामान्यीकरण ==
== सामान्यीकरण ==
आदर्शों को किसी भी [[मोनोइड वस्तु]] के लिए सामान्यीकृत किया जा सकता है <math>(R,\otimes)</math>, कहाँ <math>R</math> वह वस्तु है जहां [[मोनोइड]] संरचना भूलने योग्य फ़ैक्टर रही है। का एक वामपंथी आदर्श <math>R</math> एक [[उपवस्तु]] है <math>I</math> जो के तत्वों द्वारा बाईं ओर से गुणन को अवशोषित करता है <math>R</math>; वह है, <math>I</math> यह एक वाम आदर्श है यदि यह निम्नलिखित दो शर्तों को पूरा करता है:
आदर्शों को किसी भी [[मोनोइड वस्तु]] के लिए सामान्यीकृत किया जा सकता है <math>(R,\otimes)</math>, कहाँ <math>R</math> वह वस्तु है जहां [[मोनोइड]] संरचना भूलने योग्य फ़ैक्टर रही है। का एक वामपंथी आदर्श <math>R</math> एक [[उपवस्तु]] है <math>I</math> जो के अवयवों द्वारा बाईं ओर से गुणन को अवशोषित करता है <math>R</math>; वह है, <math>I</math> यह एक '''वाम आदर्श''' है यदि यह निम्नलिखित दो शर्तों को पूरा करता है:
# <math>I</math> का एक उपविषय है <math>R</math>
# <math>I</math> का एक उपविषय है <math>R</math>
# हरएक के लिए <math>r \in (R,\otimes)</math> और हर <math>x \in (I, \otimes)</math>, उत्पाद <math>r \otimes x</math> में है <math>(I, \otimes)</math>.
# हरएक के लिए <math>r \in (R,\otimes)</math> और हर <math>x \in (I, \otimes)</math>, गुणनफल <math>r \otimes x</math> में <math>(I, \otimes)</math>है।


एक सही आदर्श को स्थिति से परिभाषित किया जाता है<math>r \otimes x \in (I, \otimes)</math>द्वारा प्रतिस्थापित  '<math>x \otimes r \in (I, \otimes)</math>. दो-तरफा आदर्श एक बायाँ आदर्श है जो एक दायाँ आदर्श भी है, और कभी-कभी इसे केवल एक आदर्श कहा जाता है। कब <math>R</math> क्रमशः एक क्रमविनिमेय मोनोइड वस्तु है, बाएँ, दाएँ और दो-तरफा आदर्श की परिभाषाएँ मेल खाती हैं, और आदर्श शब्द का प्रयोग अकेले किया जाता है।
एक सही आदर्श को स्थिति से परिभाषित किया जाता है<math>r \otimes x \in (I, \otimes)</math>द्वारा प्रतिस्थापित  '<math>x \otimes r \in (I, \otimes)</math>. दो-तरफा आदर्श एक बायाँ आदर्श है जो एक दायाँ आदर्श भी है, और कभी-कभी इसे केवल एक आदर्श कहा जाता है। कब <math>R</math> क्रमशः एक क्रमविनिमेय मोनोइड वस्तु है, बाएँ, दाएँ और '''दो-तरफा आदर्श''' की परिभाषाएँ मेल खाती हैं, और आदर्श शब्द का प्रयोग अकेले किया जाता है।


एक आदर्श को एक विशिष्ट प्रकार के मॉड्यूल_(गणित)| के रूप में भी सोचा जा सकता है{{math|''R''}}-मापांक। अगर हम विचार करें <math>R</math> बाएँ के रूप में <math>R</math>-मॉड्यूल (बाएं गुणन द्वारा), फिर एक बायां आदर्श <math>I</math> वास्तव में यह केवल एक बायां मॉड्यूल_(गणित)#सबमॉड्यूल_और_होमोमोर्फिज्म|उप-मॉड्यूल है <math>R</math>. दूसरे शब्दों में, <math>I</math> का बाएँ (दाएँ) आदर्श है <math>R</math> यदि और केवल यदि यह बाएँ (दाएँ) है <math>R</math>-मॉड्यूल जो का एक उपसमुच्चय है <math>R</math><math>I</math> यदि यह एक उप- है तो यह दो-तरफा आदर्श है<math>R</math>-बिमॉड्यूल का <math>R</math>.
आदर्श को एक विशिष्ट प्रकार के आर-मॉड्यूल के रूप में भी माना जा सकता है। यदि हम {{math|''R''}} को बाएं <math>R</math>-मॉड्यूल (बाएं गुणन द्वारा) के रूप में मानते हैं, तो '''बायां आदर्श''' I वास्तव में <math>R</math> का एक बायां उप-मॉड्यूल है। दूसरे शब्दों में, <math>I</math>, <math>R</math> का बायां (दाएं) आदर्श है यदि और केवल यदि यह एक बायां (दाएं) आर <math>R</math>-मॉड्यूल है जो आर का एक उपसमुच्चय है। यदि यह <math>R</math> का उप-<math>R</math> -बिमोड्यूल है तो <math>I</math> एक दो-तरफा आदर्श है।


उदाहरण: यदि हम जाने दें <math>R=\mathbb{Z}</math>, का एक आदर्श <math>\mathbb{Z}</math> एक एबेलियन समूह है जो एक उपसमुच्चय है <math>\mathbb{Z}</math>, अर्थात। <math>m\mathbb{Z}</math> कुछ के लिए <math>m\in\mathbb{Z}</math>. तो ये सारे आदर्श देते हैं <math>\mathbb{Z}</math>.
उदाहरण: यदि हम जाने दें <math>R=\mathbb{Z}</math>, का एक आदर्श <math>\mathbb{Z}</math> एक एबेलियन समूह है जो एक उपसमुच्चय है <math>\mathbb{Z}</math>, अर्थात। <math>m\mathbb{Z}</math> कुछ के लिए <math>m\in\mathbb{Z}</math>. तो ये सारे आदर्श <math>\mathbb{Z}</math> देते हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 14:53, 7 July 2023

गणित में, और विशेष रूप से वलय सिद्धांत में, एक वलय का आदर्श उसके अवयवों का एक विशेष उपसमुच्चय होता है। आदर्श पूर्णांकों के कुछ उपसमूहों को सामान्यीकृत करते हैं, जैसे सम संख्याए 3 के गुणज। सम संख्याओं का जोड़ और घटाव समता को संरक्षित करता है, और किसी भी पूर्णांक (सम या विषम) द्वारा सम संख्या को गुणा करने पर सम संख्या प्राप्त होती है; ये समापन और अवशोषण गुण एक आदर्श के परिभाषित गुण हैं। एक आदर्श का उपयोग भागफल वलय के निर्माण के लिए उसी तरह किया जा सकता है, जैसे समूह सिद्धांत में, एक सामान्य उपसमूह का उपयोग भागफल समूह के निर्माण के लिए किया जा सकता है।

पूर्णांकों के बीच, आदर्श गैर-ऋणात्मक पूर्णांकों के साथ एक-के-एक मेल खाते हैं: इस वलय में, प्रत्येक आदर्श एक प्रमुख आदर्श है जिसमें एकल गैर-ऋणात्मक संख्या के गुणज शामिल होते हैं। हालाँकि, अन्य रिंगों में, आदर्श सीधे वलय अवयवों से मेल नहीं खा सकते हैं, और पूर्णांकों के कुछ गुण, जब रिंगों के लिए सामान्यीकृत होते हैं, तो वलय के अवयवों की तुलना में आदर्शों से अधिक स्वाभाविक रूप से जुड़ते हैं। उदाहरण के लिए, किसी वलय के अभाज्य आदर्श अभाज्य संख्याओं के अनुरूप होते हैं, और चीनी शेषफल प्रमेय को आदर्शों के लिए सामान्यीकृत किया जा सकता है। डेडेकाइंड डोमेन (संख्या सिद्धांत में महत्वपूर्ण वलय का एक प्रकार) के आदर्शों के लिए अद्वितीय प्राइम फ़ैक्टराइज़ेशन का एक संस्करण है।

आदेश सिद्धांत में आदर्श की संबंधित, लेकिन विशिष्ट अवधारणा, वलय सिद्धांत में आदर्श की धारणा से ली गई है। एक भिन्नात्मक आदर्श एक आदर्श का सामान्यीकरण है, और सामान्य आदर्शों को स्पष्टता के लिए कभी-कभी अभिन्न आदर्श कहा जाता है।

इतिहास

अर्न्स्ट कुमेर ने संख्या रिंगों में "लापता" कारकों के रूप में काम करने के लिए आदर्श संख्याओं की अवधारणा का आविष्कार किया, जिसमें अद्वितीय गुणनखंडन विफल हो जाता है; यहां "आदर्श" शब्द केवल कल्पना में विद्यमान होने के अर्थ में है, ज्यामिति में "आदर्श" वस्तुओं जैसे अनंत पर बिंदु के अनुरूप।[1] 1876 में, रिचर्ड डेडेकाइंड ने कुमेर की अपरिभाषित अवधारणा को संख्याओं के ठोस सेटों से बदल दिया, सेट जिन्हें उन्होंने आदर्श कहा, डिरिक्लेट की पुस्तक वोरलेसुंगेन उबेर ज़हलेनथियोरी के तीसरे संस्करण में, जिसमें डेडेकाइंड ने कई पूरक जोड़े थे।[1][2][3] बाद में इस धारणा को डेविड हिल्बर्ट और विशेष रूप से एमी नोएथर द्वारा संख्या रिंगों से आगे बहुपद रिंगों और अन्य क्रमविनिमेय रिंगों की सेटिंग तक बढ़ाया गया था।

परिभाषाएँ और प्रेरणा

यादृच्छिक वलय के लिए, मान लीजिए कि इसका योगात्मक समूह है। उपसमुच्चय I को का बायाँ आदर्श कहा जाता है यदि यह का एक योगात्मक उपसमूह है जो " के अवयवों द्वारा बाएँ से गुणन को अवशोषित करता है"; अर्थात्, एक वाम आदर्श है यदि यह निम्नलिखित दो शर्तों को पूरा करता है:

  1. का एक उपसमूह है।
  2. प्रत्येक और प्रत्येक के लिए, गुणनफल में होता है।

एक दाएँ आदर्श को शर्त के साथ परिभाषित किया जाता है जिसे द्वारा प्रतिस्थापित किया जाता है। एक दो-तरफा आदर्श एक बाएँ आदर्श है जो एक दायाँ आदर्श भी है और कभी-कभी इसे केवल एक आदर्श कहा जाता है। मॉड्यूल की भाषा में, परिभाषाओं का मतलब है कि का बायां (सम्मान दाएं, दो तरफा) आदर्श का R-सबमॉड्यूल है जब को बाएं (सम्मान दाएं, द्वि-) R-मॉड्यूल के रूप में देखा जाता है। जब एक क्रमविनिमेय वलय है, तो बाएँ, दाएँ और दो-तरफा आदर्श की परिभाषाएँ मेल खाती हैं, और आदर्श शब्द का उपयोग अकेले किया जाता है।

आदर्श की अवधारणा को समझने के लिए, इस बात पर विचार करें कि "अवयव मॉड्यूलो" के वलय के निर्माण में आदर्श कैसे उत्पन्न होते हैं। ठोसता के लिए, आइए पूर्णांक मॉड्यूल के वलय को देखें, एक पूर्णांक एक क्रमविनिमेय वलय है)। यहां मुख्य अवलोकन यह है कि हम पूर्णांक रेखा को लेकर और उसे अपने चारों ओर आवरित कर प्राप्त करते हैं ताकि विभिन्न पूर्णांकों की पहचान हो सके। ऐसा करने पर, हमें 2 आवश्यकताएँ पूरी करनी होंगी:

1) की पहचान 0 से की जानी चाहिए क्योंकि , 0 मॉड्यूलो के सर्वांगसम है।

2) परिणामी संरचना फिर से एक वलय होनी चाहिए।

दूसरी आवश्यकता हमें अतिरिक्त पहचान बनाने के लिए मजबूर करती है (यानी, यह सटीक तरीका निर्धारित करती है कि हमें किस प्रकार लपेटना चाहिए अपने चारों ओर)। एक आदर्श की धारणा तब उत्पन्न होती है जब हम प्रश्न पूछते हैं।

पूर्णांकों का सटीक सेट क्या है जिसे हमें 0 के साथ पहचानने के लिए मजबूर किया जाता है?

उत्तर, आश्चर्यजनक रूप से, सेट है 0 मॉड्यूलो के सर्वांगसम सभी पूर्णांकों का . यानी हमें लपेटना होगा अपने चारों ओर अनंत बार कई बार ताकि पूर्णांक सभी 0 के साथ संरेखित होंगे। यदि हम देखें कि यह सुनिश्चित करने के लिए इस सेट को किन गुणों को पूरा करना होगा एक वलय है, तो हम एक आदर्श की परिभाषा पर पहुंचते हैं। वास्तव में, कोई भी इसे सीधे सत्यापित कर सकता है का एक आदर्श है।

टिप्पणी। 0 के अलावा अन्य अवयवों की भी पहचान की जानी चाहिए। उदाहरण के लिए, इसमें उपस्थित अवयव 1, के अवयवों से पहचाना जाना चाहिए 2 से पहचाना जाना चाहिए, इत्यादि। हालाँकि, वे विशिष्ट रूप से निर्धारित होते हैं तब से एक योगात्मक समूह है।

हम किसी भी क्रमविनिमेय वलय में एक समान निर्माण कर सकते हैं : मनमाने ढंग से शुरू करें , और फिर आदर्श के सभी अवयवों को 0 से पहचानें . यह पता चला है कि आदर्श वह सबसे छोटा आदर्श है जिसमें शामिल है , द्वारा उत्पन्न आदर्श कहा जाता है . अधिक सामान्यतः, हम एक मनमाने उपसमुच्चय से शुरुआत कर सकते हैं , और फिर 0 द्वारा उत्पन्न आदर्श के सभी अवयवों की पहचान करें : सबसे छोटा आदर्श ऐसा है कि . पहचान के बाद हमें जो वलय मिलती है वह आदर्श पर ही निर्भर करती है और सेट पर नहीं जिसकी शुरुआत हमने की थी. अर्थात यदि , तो परिणामी वलय समान होंगे।

अतः एक आदर्श एक क्रमविनिमेय वलय का के अवयवों की वलय प्राप्त करने के लिए आवश्यक जानकारी को कैनोनिक रूप से कैप्चर करता है मॉड्यूलो एक दिया गया उपसमुच्चय . के अवयव परिभाषा के अनुसार, वे हैं जो शून्य के सर्वांगसम हैं, अर्थात, परिणामी वलय में शून्य के साथ पहचाने जाते हैं। परिणामी वलय को भागफल वलय कहा जाता है द्वारा और दर्शाया गया है . सहज रूप से, एक आदर्श की परिभाषा दो आवश्यक प्राकृतिक स्थितियों को दर्शाती है द्वारा शून्य के रूप में निर्दिष्ट सभी अवयवों को समाहित करना:

  1. का एक योगात्मक उपसमूह है : का शून्य 0 एक शून्य है , और अगर और तो फिर शून्य हैं एक शून्य भी है।
  2. कोई शून्य से गुणा किया गया एक शून्य है

यह पता चला है कि उपरोक्त स्थितियाँ भी पर्याप्त हैं सभी आवश्यक शून्य समाहित करने के लिए: किसी भी अन्य अवयव को बनाने के लिए उसे शून्य के रूप में नामित करने की आवश्यकता नहीं है . (वास्तव में, यदि हम सबसे कम पहचान करना चाहते हैं तो किसी भी अन्य अवयव को शून्य के रूप में निर्दिष्ट नहीं किया जाना चाहिए।)।

टिप्पणी। उपरोक्त निर्माण अभी भी दो-तरफा आदर्शों का उपयोग करते हुए भी काम करता है आवश्यक रूप से क्रमविनिमेय नहीं है।

उदाहरण और गुण

(संक्षिप्तता के लिए, कुछ परिणाम केवल बाएं आदर्शों के लिए बताए गए हैं, लेकिन आमतौर पर उपयुक्त नोटेशन परिवर्तनों के साथ सही आदर्शों के लिए भी सही हैं।)

  • वलय R में, सेट R स्वयं R का दो-तरफा आदर्श बनाता है जिसे 'इकाई आदर्श' कहा जाता है। इसे प्रायः द्वारा भी दर्शाया जाता है चूँकि यह वास्तव में एकता द्वारा उत्पन्न दोतरफा आदर्श है (नीचे देखें)। . इसके अलावा, सेट जिसमें केवल योगात्मक पहचान 0R शामिल है एक दो-तरफा आदर्श बनाता है जिसे शून्य आदर्श कहा जाता है और इसे द्वारा निरूपित किया जाता है । प्रत्येक (बाएँ, दाएँ या दो-तरफा) आदर्श में शून्य आदर्श होता है और इकाई आदर्श में समाहित होता है।[4]
  • एक (बाएँ, दाएँ या दो-तरफा) आदर्श जो इकाई आदर्श नहीं है, उचित आदर्श कहलाता है (क्योंकि यह एक उचित उपसमुच्चय है)।[5] नोट: एक वाम आदर्श उचित है यदि और केवल यदि इसमें एक इकाई अवयव शामिल नहीं है, क्योंकि यदि तो, एक इकाई अवयव है हरएक के लिए . आमतौर पर बहुत सारे उचित आदर्श होते हैं। वास्तव में, यदि R एक तिरछा क्षेत्र है, तो इसके एकमात्र आदर्श हैं और इसके विपरीत: अर्थात्, एक गैर-शून्य वलय R एक तिरछा क्षेत्र है यदि केवल बाएँ (या दाएँ) आदर्श हैं। (प्रमाण: यदि एक अशून्य अवयव है, तो प्रमुख बायां आदर्श है (नीचे देखें) शून्येतर है और इस प्रकार ; अर्थात।, कुछ अशून्य के लिए . वैसे ही, कुछ अशून्य के लिए . तब .)
  • सम पूर्णांक वलय में एक आदर्श बनाते हैं सभी पूर्णांकों का, चूँकि किन्हीं दो सम पूर्णांकों का योग सम होता है, और सम पूर्णांक वाले किसी भी पूर्णांक का गुणनफल भी सम होता है; इस आदर्श को आमतौर पर द्वारा दर्शाया जाता है . अधिक सामान्यतः, एक निश्चित पूर्णांक से विभाज्य सभी पूर्णांकों का समुच्चय एक आदर्श निरूपित है . वास्तव में, वलय का प्रत्येक गैर-शून्य आदर्श यूक्लिडियन प्रभाग के परिणामस्वरूप, इसके सबसे छोटे सकारात्मक अवयव द्वारा उत्पन्न होता है एक प्रमुख आदर्श डोमेन है।[4]
  • वास्तविक गुणांक वाले सभी बहुपद का समुच्चय जो बहुपद से विभाज्य हैं सभी वास्तविक-गुणांक बहुपदों के वलय में एक आदर्श है।
  • एक वलय लें और सकारात्मक पूर्णांक . प्रत्येक के लिए , सभी का सेट प्रविष्टियों के साथ मैट्रिक्स (गणित) किसका -वीं पंक्ति शून्य है, वलय में एक सही आदर्श है के सभी प्रविष्टियों के साथ मैट्रिक्स . यह कोई वामपंथी आदर्श नहीं है। इसी प्रकार, प्रत्येक के लिए , सभी का सेट मैट्रिक्स जिसका -वाँ स्तंभ शून्य बाएँ आदर्श है लेकिन दाएँ आदर्श नहीं है।
  • वलय सभी सतत कार्यों का से को बिंदुवार गुणन के अंतर्गत सभी सतत फलनों का आदर्श समाहित होता है ऐसा है कि .[6] में एक और आदर्श उन फ़ंक्शंस द्वारा दिया जाता है जो पर्याप्त बड़े तर्कों के लिए गायब हो जाते हैं, यानी वे निरंतर फ़ंक्शंस जिसके लिए एक संख्या उपस्थित है इस तरह कि जब कभी भी .
  • एक वलय को साधारण वलय कहा जाता है यदि यह शून्येतर है और इसके अलावा कोई दो-तरफा आदर्श नहीं है . इस प्रकार, एक तिरछा क्षेत्र सरल है और एक सरल क्रमविनिमेय वलय एक क्षेत्र है। तिरछा क्षेत्र पर मैट्रिक्स वलय एक साधारण वलय है।
  • अगर एक वलय समरूपता है, फिर कर्नेल का दोतरफा आदर्श है .[4] परिभाषा से, , और इस प्रकार यदि शून्य वलय नहीं है (इसलिए) ), तब एक उचित आदर्श है. अधिक सामान्यतः, S के प्रत्येक बाएँ आदर्श I के लिए, पूर्व-छवि एक वामपंथी आदर्श है. यदि I, R का वाम आदर्श है, तो सबरिंग का बायां आदर्श है S का: जब तक कि f विशेषण न हो, S का आदर्श होना आवश्यक नहीं है; नीचे एक आदर्श का #विस्तार और संकुचन भी देखें।
  • 'आदर्श पत्राचार': एक विशेषण वलय समरूपता को देखते हुए , बाएं (सम्मानित दाएं, दो तरफा) आदर्शों के बीच एक विशेषण क्रम-संरक्षण पत्राचार है की गिरी युक्त और बाएं (सम्मान दाएं, दो तरफा) के आदर्श : पत्राचार द्वारा दिया गया है और पूर्व छवि . इसके अलावा, क्रमविनिमेय वलय के लिए, यह विशेषण पत्राचार प्रधान आदर्शों, अधिकतम आदर्शों और मूल आदर्शों तक सीमित है (इन आदर्शों की परिभाषाओं के लिए आदर्श (वलय सिद्धांत) प्रकार के आदर्श अनुभाग देखें)।
  • (उन लोगों के लिए जो मॉड्यूल जानते हैं) यदि एम एक बायां R-मॉड्यूल है और एक उपसमुच्चय, फिर संहारक (वलय सिद्धांत) S का बायाँ आदर्श है। आदर्श दिये एक क्रमविनिमेय वलय R का, R-उन्मूलनकारी R का एक आदर्श है जिसे का आदर्श भागफल कहा जाता है द्वारा और द्वारा दर्शाया गया है ; यह क्रमविनिमेय बीजगणित में आदर्शवादी का एक उदाहरण है।
  • होने देना एक वलय R में बाएं आदर्शों की एक आरोही श्रृंखला बनें; अर्थात।, एक पूरी तरह से व्यवस्थित सेट है और प्रत्येक के लिए . फिर संघ R का बायाँ आदर्श है। (नोट: यह तथ्य तब भी सत्य रहता है जब R एकता 1 के बिना हो।)
  • उपरोक्त तथ्य ज़ोर्न के लेम्मा के साथ मिलकर निम्नलिखित सिद्ध होता है: यदि संभवतः एक खाली उपसमुच्चय है और एक बायाँ आदर्श है जो E से असंयुक्त है, तो एक ऐसा आदर्श है जो युक्त आदर्शों में अधिकतम है और E से असंयुक्त। (फिर से यह तब भी मान्य है यदि वलय R में एकता 1 का अभाव है।) जब , ले रहा और , विशेष रूप से, एक बायाँ आदर्श उपस्थित है जो उचित बाएँ आदर्शों में अधिकतम है (अक्सर इसे केवल अधिकतम बाएँ आदर्श कहा जाता है); अधिक के लिए क्रुल का प्रमेय देखें।
  • आदर्शों का एक याच्छिक संघ एक आदर्श होना आवश्यक नहीं है, लेकिन निम्नलिखित अभी भी सत्य है: R का संभवतः खाली उपसमूह . ऐसा आदर्श उपस्थित है क्योंकि यह एक्स वाले सभी बाएं आदर्शों का प्रतिच्छेदन है। समान रूप से, सभी रैखिक संयोजनों का सेट है|(परिमित) R पर एक्स के अवयवों के बाएं R-रैखिक संयोजन:
(चूँकि ऐसा स्पैन X युक्त सबसे छोटा बायाँ आदर्श है।) X द्वारा उत्पन्न एक सही (सम्मानित दो-तरफा) आदर्श को इसी तरह से परिभाषित किया गया है। दो-तरफा के लिए, दोनों तरफ से रैखिक संयोजनों का उपयोग करना होगा; अर्थात:
  • एकल अवयव x द्वारा उत्पन्न बाएँ (सम्मान दाएँ, दो-तरफा) आदर्श को x द्वारा उत्पन्न मुख्य बाएँ (सम्मान दाएँ, दो-तरफा) आदर्श कहा जाता है और इसे निरूपित किया जाता है (सम्मान. ). प्रमुख दोतरफा आदर्श प्रायः द्वारा भी निरूपित किया जाता है . अगर तो, यह एक परिमित समुच्चय के रूप में भी लिखा गया।
  • वलय पर आदर्शों और सर्वांगसमता संबंधों (समतुल्यता संबंध जो वलय संरचना का सम्मान करते हैं) के बीच एक विशेषण पत्राचार है: एक आदर्श दिया गया है एक वलय का , होने देना अगर . तब पर एक सर्वांगसमता संबंध है . इसके विपरीत, एक सर्वांगसमता संबंध दिया गया है पर , होने देना . तब का एक आदर्श है।

आदर्शों के प्रकार

विवरण को सरल बनाने के लिए सभी वलय को क्रमविनिमेय माना गया है। गैर-विनिमेय स्तिथि पर संबंधित लेखों में विस्तार से चर्चा की गई है।

आदर्श महत्वपूर्ण हैं क्योंकि वे वलय समरूपता के कर्नेल के रूप में प्रकट होते हैं और कारक वलय को परिभाषित करने की अनुमति देते हैं। विभिन्न प्रकार के आदर्शों का अध्ययन किया जाता है क्योंकि उनका उपयोग विभिन्न प्रकार के कारक वलय बनाने के लिए किया जा सकता है।

  • 'अधिकतम आदर्श': एक उचित आदर्श I को अधिकतम आदर्श कहा जाता है यदि इसके साथ कोई अन्य उचित आदर्श J उपस्थित नहीं है I J का एक उचित उपसमुच्चय। अधिकतम आदर्श का कारक वलय सामान्य रूप से एक साधारण वलय है और क्रमविनिमेय वलय के लिए एक क्षेत्र (गणित) है।[7]
  • न्यूनतम आदर्श: एक गैर-शून्य आदर्श को न्यूनतम कहा जाता है यदि इसमें कोई अन्य गैर-शून्य आदर्श न हो।
  • प्रधान आदर्श: एक उचित आदर्श किसी के लिए एक प्रमुख आदर्श कहा जाता है और में , अगर में है , तो कम से कम एक और में है . एक अभाज्य आदर्श का कारक वलय सामान्य रूप से एक अभाज्य वलय है और क्रमविनिमेय वलय के लिए एक अभिन्न डोमेन है।[8]
  • किसी आदर्श या अर्धप्रधान आदर्श का मूलांक: एक उचित आदर्श I को रैडिकल या सेमीप्राइम कहा जाता है यदि R में किसी A के लिए, यदि An में है I कुछ n के लिए, तो a अंदर है I. रेडिकल आदर्श का कारक वलय सामान्य वलय के लिए एक सेमीप्राइम वलय है, और क्रमविनिमेय वलय के लिए एक कम वलय है।
  • प्राथमिक आदर्श: एक आदर्श I को प्राथमिक आदर्श कहा जाता है यदि R में सभी A और B के लिए, यदि AB अंदर है I, तो A और Bn में से कम से कम एकमें है I कुछ प्राकृत संख्या n के लिए। प्रत्येक प्रमुख आदर्श प्राथमिक होता है, लेकिन इसके विपरीत नहीं। एक अर्धप्रधान प्राथमिक आदर्श प्रधान होता है।
  • 'प्रधान आदर्श': एक अवयव से उत्पन्न आदर्श।[9]
  • परिमित रूप से उत्पन्न आदर्श: इस प्रकार का आदर्श एक मॉड्यूल के रूप में परिमित रूप से उत्पन्न मॉड्यूल है।
  • आदिम आदर्श: एक बायाँ आदिम आदर्श एक साधारण मॉड्यूल बाएँ मॉड्यूल (गणित) का अनिष्टकारक (वलय सिद्धांत) है।
  • अपरिवर्तनीय आदर्श: एक आदर्श को अपरिवर्तनीय कहा जाता है यदि इसे उन आदर्शों के प्रतिच्छेदन के रूप में नहीं लिखा जा सकता है जो इसे ठीक से समाहित करते हैं।
  • कॉमैक्सिमल आदर्श: दो आदर्श यदि कोमैक्सिमल कहा जाता है कुछ के लिए और .
  • नियमित आदर्श: इस शब्द के कई उपयोग हैं। सूची के लिए आलेख देखें।
  • शून्य आदर्श: एक आदर्श एक शून्य आदर्श होता है यदि उसका प्रत्येक अवयव शून्य है।
  • निलपोटेंट आदर्श : इसकी कुछ शक्ति शून्य होती है।
  • पैरामीटर आदर्श: मापदंडों की एक प्रणाली द्वारा उत्पन्न एक आदर्श।

आदर्श का उपयोग करने वाले दो अन्य महत्वपूर्ण शब्द हमेशा अपनी वलय के आदर्श नहीं होते हैं। विवरण के लिए उनके संबंधित लेख देखें:

  • आंशिक आदर्श: इसे आमतौर पर तब परिभाषित किया जाता है जब R भागफल क्षेत्र वाला एक क्रमविनिमेय डोमेन होता है। उनके नाम के बावजूद, भिन्नात्मक आदर्श एक विशेष संपत्ति के साथ R के उपमॉड्यूल हैं। यदि भिन्नात्मक आदर्श पूरी तरह से R में निहित है, तो यह वास्तव में R का एक आदर्श है।
  • उलटा आदर्श: आमतौर पर एक उलटा आदर्श A को एक भिन्नात्मक आदर्श के रूप में परिभाषित किया जाता है जिसके लिए एक और भिन्नात्मक आदर्श B होता है जैसे कि AB = BA = R. कुछ लेखक व्युत्क्रमणीय आदर्श को साधारण वलय आदर्श A और B पर भी प्रयुक्त कर सकते हैं AB = BA = R डोमेन के अलावा अन्य रिंगों में।

आदर्श संचालन

आदर्शों का योग और गुणनफल इस प्रकार परिभाषित किया गया है। के लिए और , एक वलय R के बाएँ (सम्मान दाएँ) आदर्श, उनका योग है

,

जो बाएँ (सम्मान दाएँ) आदर्श है, और अगर दो तरफा हैं,

यानी गुणनफल ab के साथ ab रूप के सभी उत्पादों द्वारा उत्पन्न आदर्श है और B में .

टिप्पणी सबसे छोटा बायां (सम्मान दाएं) आदर्श है जिसमें दोनों शामिल हैं और (या संघ ), जबकि गुणनफल के प्रतिच्छेदन में समाहित है और .

वितरणात्मक सिद्धांत दोतरफा आदर्शों को मानता है ,

  • ,
  • .

यदि किसी गुणनफल को किसी प्रतिच्छेदन द्वारा प्रतिस्थापित किया जाता है, तो आंशिक वितरण सिद्धांत प्रयुक्त होता है:

यदि समानता कायम है रोकना या .

टिप्पणी: आदर्शों का योग और प्रतिच्छेदन फिर से एक आदर्श है; जुड़ने और मिलने जैसी इन दो संक्रियाओं के साथ, किसी दिए गए वलय के सभी आदर्शों का सेट एक पूर्ण जाली मॉड्यूलर जाली बनाता है। जाली, सामान्यतः, एक वितरणात्मक जाली नहीं है। प्रतिच्छेदन, योग (या जुड़ाव) और गुणनफल के तीन संचालन क्रमविनिमेय वलय के आदर्शों के समुच्चय को कितना में बनाते हैं।

अगर फिर, क्रमविनिमेय वलय R के आदर्श हैं निम्नलिखित दो स्तिथियों में (कम से कम)

  • उन अवयवों द्वारा उत्पन्न होता है जो एक नियमित अनुक्रम मॉड्यूलो बनाते हैं।

(अधिक सामान्यतः, किसी गुणनफल और आदर्शों के प्रतिच्छेदन के बीच का अंतर टोर काम करता है द्वारा मापा जाता है: [10])

यदि आदर्शों की प्रत्येक जोड़ी के लिए एक अभिन्न डोमेन को डेडेकाइंड डोमेन कहा जाता है , एक आदर्श है ऐसा है कि .[11] फिर यह दिखाया जा सकता है कि डेडेकाइंड डोमेन के प्रत्येक गैर-शून्य आदर्श को विशिष्ट रूप से अधिकतम आदर्शों के गुणनफल के रूप में लिखा जा सकता है, जो अंकगणित के मौलिक प्रमेय का सामान्यीकरण है।

आदर्श संचालन के उदाहरण

में अपने पास

तब से पूर्णांकों का वह समुच्चय है जो दोनों से विभाज्य है।

होने देना और जाने . तब,

  • और
  • जबकि

पहली गणना में, हम दो अंतिम रूप से उत्पन्न आदर्शों का योग लेने के लिए सामान्य पैटर्न देखते हैं, यह उनके जनरेटर के मिलन से उत्पन्न आदर्श है। पिछले तीन में हम देखते हैं कि जब भी दो आदर्श शून्य आदर्श में प्रतिच्छेद करते हैं तो गुणनफल और प्रतिच्छेदन सहमत होते हैं। इन गणनाओं को मैकाले 2 का उपयोग करके जांचा जा सकता है।[12][13][14]

वलय का मूलांक

मॉड्यूल के अध्ययन में आदर्श स्वाभाविक रूप से प्रकट होते हैं, विशेषकर रेडिकल के रूप में।

सरलता के लिए, हम क्रमविनिमेय वलय के साथ काम करते हैं लेकिन, कुछ बदलावों के साथ, परिणाम गैर-अनुक्रमिक वलय के लिए भी सही होते हैं।

माना R एक क्रमविनिमेय वलय है। परिभाषा के अनुसार, R का एक आदिम आदर्श एक (गैर-शून्य) सरल मॉड्यूल|सरल R-मॉड्यूल का अनिष्टकारक है। जैकबसन कट्टरपंथी R का प्रतिच्छेदन सभी आदिम आदर्शों का प्रतिच्छेदन है। समान रूप से,

वास्तव में, यदि एक सरल मॉड्यूल है और x, M में एक अशून्य अवयव है और , अर्थ एक अधिकतम आदर्श है. इसके विपरीत, यदि तो यह एक अधिकतम आदर्श है सरल R-मॉड्यूल का अनिष्टकारक है . एक अन्य लक्षण वर्णन भी है (प्रमाण कठिन नहीं है):

एक गैर-आवश्यक-विनिमेय वलय के लिए, यह एक सामान्य तथ्य है एक इकाई अवयव है यदि और केवल यदि है (लिंक देखें) और इसलिए यह अंतिम लक्षण वर्णन दर्शाता है कि रेडिकल को बाएँ और दाएँ आदिम आदर्शों दोनों के संदर्भ में परिभाषित किया जा सकता है।

निम्नलिखित सरल लेकिन महत्वपूर्ण तथ्य (नाकायमा का लेम्मा) जैकबसन रेडिकल की परिभाषा में अंतर्निहित है: यदि एम एक मॉड्यूल है जैसे कि , तो एम अधिकतम सबमॉड्यूल को स्वीकार नहीं करता है, क्योंकि यदि कोई अधिकतम सबमॉड्यूल है , इसलिए , एक विरोधाभास. चूँकि एक गैर-शून्य परिमित रूप से उत्पन्न मॉड्यूल एक अधिकतम सबमॉड्यूल को स्वीकार करता है, विशेष रूप से, एक में:

अगर और फिर एम अंतिम रूप से उत्पन्न होता है

एक अधिकतम आदर्श एक प्रधान आदर्श होता है और ऐसा किसी के पास भी होता है

जहां बाईं ओर के प्रतिच्छेदन को R की वलय का नीलरेडिकल कहा जाता है। जैसा कि यह पता चला है, R के निलपोटेंट अवयवों का समुच्चय भी है।

यदि R एक Rटिनियन वलय है, तो शून्यशक्तिशाली है और . (प्रमाण: सबसे पहले ध्यान दें कि डीसीसी का तात्पर्य है कुछ एन के लिए यदि (डीसीसी) तो, बाद वाले की तुलना में यह एक आदर्श रूप से न्यूनतम है . वह है, , एक विरोधाभास।)

आदर्श का विस्तार और संकुचन

मान लीजिए कि A और B दो क्रमविनिमेय वलय हैं, और f : A → B एक वलय समरूपता है। अगर तो, A में एक आदर्श है B में एक आदर्श होने की आवश्यकता नहीं है (उदाहरण के लिए f को परिमेय 'Q' के क्षेत्र में पूर्णांक 'Z' के वलय का समावेशन मानचित्र मानें)। विस्तृति' का B में B द्वारा उत्पन्न आदर्श को परिभाषित किया गया है . स्पष्ट रूप से,

अगर तो, B का एक आदर्श है सदैव A का एक आदर्श होता है, जिसे 'संकुचन' कहा जाता है का A को.

यह मानते हुए कि f : A → B एक वलय समरूपता है, A में एक आदर्श है, B में एक आदर्श है, तो:

  • B में प्रमुख है A में प्रमुख है.

सामान्यतः यह झूठ है A में अभाज्य (या अधिकतम) होने का तात्पर्य यह है B में अभाज्य (या अधिकतम) है। इसके कई उत्कृष्ट उदाहरण बीजगणितीय संख्या सिद्धांत से उपजे हैं। उदाहरण के लिए, एम्बेडिंग . में , अवयव 2 कारक जैसे जहां (कोई भी दिखा सकता है) इनमें से कोई भी नहीं B में इकाइयां हैं तो B में अभाज्य नहीं है (और इसलिए अधिकतम भी नहीं है)। वास्तव में, पता चलता है कि , , और इसलिए . दूसरी ओर, यदि f विशेषण फलन है और कर्नेल(बीजगणित)|तब:

  • और .
  • A में एक प्रमुख आदर्श है B में एक प्रमुख आदर्श है.
  • A में एक अधिकतम आदर्श है B में एक अधिकतम आदर्श है.

'टिप्पणी': मान लीजिए कि K, L का क्षेत्र विस्तार है, और मान लीजिए कि B और A क्रमशः K और L के पूर्णांकों का वलय हैं। तब B, A का एक अभिन्न विस्तार है, और हम f को A से B तक समावेशन मानचित्र मानते हैं। एक प्रमुख आदर्श का व्यवहार A का विस्तार बीजगणितीय संख्या सिद्धांत की केंद्रीय समस्याओं में से एक है।

निम्नलिखित कभी-कभी उपयोगी होता है:[15] एक प्रमुख आदर्श एक प्रमुख आदर्श का संकुचन है यदि और केवल यदि . (प्रमाण: बाद वाले को मानते हुए, ध्यान दें काटती है , एक विरोधाभास. अब, के प्रमुख आदर्श B में उन लोगों के अनुरूप है जो से असंयुक्त हैं . अत: एक प्रमुख आदर्श है B का, से असंयुक्त , ऐसा है कि एक अधिकतम आदर्श युक्त है . फिर कोई उसकी जांच करता है पर पड़ा है . उलटा स्पष्ट है।)

सामान्यीकरण

आदर्शों को किसी भी मोनोइड वस्तु के लिए सामान्यीकृत किया जा सकता है , कहाँ वह वस्तु है जहां मोनोइड संरचना भूलने योग्य फ़ैक्टर रही है। का एक वामपंथी आदर्श एक उपवस्तु है जो के अवयवों द्वारा बाईं ओर से गुणन को अवशोषित करता है ; वह है, यह एक वाम आदर्श है यदि यह निम्नलिखित दो शर्तों को पूरा करता है:

  1. का एक उपविषय है
  2. हरएक के लिए और हर , गुणनफल में है।

एक सही आदर्श को स्थिति से परिभाषित किया जाता हैद्वारा प्रतिस्थापित '. दो-तरफा आदर्श एक बायाँ आदर्श है जो एक दायाँ आदर्श भी है, और कभी-कभी इसे केवल एक आदर्श कहा जाता है। कब क्रमशः एक क्रमविनिमेय मोनोइड वस्तु है, बाएँ, दाएँ और दो-तरफा आदर्श की परिभाषाएँ मेल खाती हैं, और आदर्श शब्द का प्रयोग अकेले किया जाता है।

आदर्श को एक विशिष्ट प्रकार के आर-मॉड्यूल के रूप में भी माना जा सकता है। यदि हम R को बाएं -मॉड्यूल (बाएं गुणन द्वारा) के रूप में मानते हैं, तो बायां आदर्श I वास्तव में का एक बायां उप-मॉड्यूल है। दूसरे शब्दों में, , का बायां (दाएं) आदर्श है यदि और केवल यदि यह एक बायां (दाएं) आर -मॉड्यूल है जो आर का एक उपसमुच्चय है। यदि यह का उप- -बिमोड्यूल है तो एक दो-तरफा आदर्श है।

उदाहरण: यदि हम जाने दें , का एक आदर्श एक एबेलियन समूह है जो एक उपसमुच्चय है , अर्थात। कुछ के लिए . तो ये सारे आदर्श देते हैं।

यह भी देखें

टिप्पणियाँ


संदर्भ

  1. 1.0 1.1 John Stillwell (2010). Mathematics and its history. p. 439.
  2. Harold M. Edwards (1977). Fermat's last theorem. A genetic introduction to algebraic number theory. p. 76.
  3. Everest G., Ward T. (2005). संख्या सिद्धांत का परिचय. p. 83.
  4. 4.0 4.1 4.2 Dummit & Foote (2004), p. 243.
  5. Lang 2005, Section III.2
  6. Dummit & Foote (2004), p. 244.
  7. Because simple commutative rings are fields. See Lam (2001). A First Course in Noncommutative Rings. p. 39.
  8. Dummit & Foote (2004), p. 255.
  9. Dummit & Foote (2004), p. 251.
  10. Eisenbud, Exercise A 3.17
  11. Milnor (1971), p. 9.
  12. "आदर्शों". www.math.uiuc.edu. Archived from the original on 2017-01-16. Retrieved 2017-01-14.
  13. "आदर्शों का योग, उत्पाद और शक्तियाँ". www.math.uiuc.edu. Archived from the original on 2017-01-16. Retrieved 2017-01-14.
  14. "आदर्शों का प्रतिच्छेदन". www.math.uiuc.edu. Archived from the original on 2017-01-16. Retrieved 2017-01-14.
  15. Atiyah & Macdonald (1969), Proposition 3.16.


बाहरी संबंध