आवर्त 5 तत्व: Difference between revisions

From Vigyanwiki
Line 62: Line 62:
{{main|रुबिडियम}}
{{main|रुबिडियम}}


रुबिडियम आवर्त 5 में रखा गया पहला तत्व है। यह क्षार धातु है जो [[ आवर्त सारणी |आवर्त सारणी]] में सबसे अधिक प्रतिक्रियाशील समूह है जिसमें अन्य क्षार धातुओं और अन्य 5 तत्वों के साथ गुण और समानताएं हैं। उदाहरण के लिए रूबिडियम में 5 इलेक्ट्रॉन कोश होते हैं जो अन्य सभी अवधि 5 तत्वों में पाया जाने वाला एक गुण है जबकि इसके इलेक्ट्रॉन विन्यास का अंत अन्य सभी क्षार धातुओं के समान हैI  <sup>रुबिडियम भी बढ़ती [[ प्रतिक्रियाशीलता (रसायन विज्ञान) | प्रतिक्रियाशीलता रसायन विज्ञान]] की प्रवृत्ति का अनुसरण करता है क्योंकि क्षार धातुओं में परमाणु संख्या बढ़ जाती है क्योंकि यह पोटेशियम की तुलना में अधिक प्रतिक्रियाशील है लेकिन [[ सीज़ियम |सीज़ियम]] धातु से कम है। इसके अलावा[[ पोटैशियम ]] और रूबिडियम दोनों ही प्रज्वलन के समय लगभग समान रंग प्रकट करते हैंI शोधकर्ताओं को इन दो प्रथम समूह तत्वों के बीच अंतर करने के लिए विभिन्न तरीकों का उपयोग करना चाहिए।<ref>{{cite web|url=http://webmineral.com/help/FlameTest.shtml |title=लौ परीक्षण|publisher=Webmineral.com |access-date=2012-08-13}}</ref> रूबिडियम अन्य क्षार धातुओं के समान हवा में [[ रेडोक्स |रेडोक्स]] के लिए अतिसंवेदनशील है इसलिए यह आसानी से [[ रूबिडियम ऑक्साइड |रूबिडियम ऑक्साइड]] में बदल जाता हैI इस धातु का [[ रासायनिक सूत्र ]] आरबी के साथ पीला ठोसRb<sub>2 O हैI</sub>
रुबिडियम आवर्त 5 में रखा गया पहला तत्व है। यह क्षार धातु है जो [[ आवर्त सारणी |आवर्त सारणी]] में सबसे अधिक प्रतिक्रियाशील समूह है जिसमें अन्य क्षार धातुओं और अन्य 5 तत्वों के साथ गुण और समानताएं हैं। उदाहरण के लिए रूबिडियम में 5 इलेक्ट्रॉन कोश होते हैं जो अन्य सभी अवधि 5 तत्वों में पाया जाने वाला एक गुण है जबकि इसके इलेक्ट्रॉन विन्यास का अंत अन्य सभी क्षार धातुओं के समान हैI  <sup>रुबिडियम भी बढ़ती [[ प्रतिक्रियाशीलता (रसायन विज्ञान) | प्रतिक्रियाशीलता रसायन विज्ञान]] की प्रवृत्ति का अनुसरण करता है क्योंकि क्षार धातुओं में परमाणु संख्या बढ़ जाती है क्योंकि यह पोटेशियम की तुलना में अधिक प्रतिक्रियाशील है लेकिन [[ सीज़ियम |सीज़ियम]] धातु से कम है। इसके अलावा[[ पोटैशियम ]] और रूबिडियम दोनों ही प्रज्वलन के समय लगभग समान रंग प्रकट करते हैंI शोधकर्ताओं को इन दो प्रथम समूह तत्वों के बीच अंतर करने के लिए विभिन्न तरीकों का उपयोग करना चाहिए।<ref>{{cite web|url=http://webmineral.com/help/FlameTest.shtml |title=लौ परीक्षण|publisher=Webmineral.com |access-date=2012-08-13}}</ref> रूबिडियम अन्य क्षार धातुओं के समान हवा में [[ रेडोक्स |रेडोक्स]] के लिए अतिसंवेदनशील है इसलिए यह आसानी से [[ रूबिडियम ऑक्साइड |रूबिडियम ऑक्साइड]] में बदल जाता हैI इस धातु का [[ रासायनिक सूत्र ]]Rb<sub>2 O हैI</sub>




Line 72: Line 72:


=== यत्रियम ===
=== यत्रियम ===
{{main|Yttrium}}
{{main|एट्रियम}}
एट्रियम[[ रासायनिक तत्व ]]है जिसका प्रतीक Y और परमाणु संख्या 39 है। यह एक चांदी-धातु [[ संक्रमण धातु ]] है जो रासायनिक रूप से [[ लैंथेनाइड ]]के समान हैI इसे अक्सर [[ दुर्लभ पृथ्वी तत्व |दुर्लभ पृथ्वी तत्व]] के रूप में वर्गीकृत किया गया है।<ref name="IUPAC">{{cite book
एट्रियम[[ रासायनिक तत्व ]]है जिसका प्रतीक Y और परमाणु संख्या 39 है। यह एक चांदी-धातु [[ संक्रमण धातु ]] है जो रासायनिक रूप से [[ लैंथेनाइड ]]के समान हैI इसे अक्सर [[ दुर्लभ पृथ्वी तत्व |दुर्लभ पृथ्वी तत्व]] के रूप में वर्गीकृत किया गया है।<ref name="IUPAC">{{cite book
  |author=IUPAC contributors
  |author=IUPAC contributors
Line 100: Line 100:


=== नाइओबियम ===
=== नाइओबियम ===
{{main|Niobium}}
{{main|नाइओबियम}}
नाइओबियम या कोलम्बियम रासायनिक तत्व है। इसका प्रतीक Nb और परमाणु संख्या 41 हैI  यह ग्रे रंग की [[ नमनीय |नमनीय]] धातु हैI यह तत्व अक्सर [[ पायरोक्लोर |पायरोक्लोर]] खनिज में पाया जाता हैI नाइओबियम[[ कोलम्बाईट ]]का मुख्य वाणिज्यिक स्रोत है। यह नाम ग्रीक पौराणिक कथाओं से आया है जिसका अर्थ है ''नीओब और [[ टैंटलस |टैंटलस]] ''की बेटी।
नाइओबियम या कोलम्बियम रासायनिक तत्व है। इसका प्रतीक Nb और परमाणु संख्या 41 हैI  यह ग्रे रंग की [[ नमनीय |नमनीय]] धातु हैI यह तत्व अक्सर [[ पायरोक्लोर |पायरोक्लोर]] खनिज में पाया जाता हैI नाइओबियम[[ कोलम्बाईट ]]का मुख्य वाणिज्यिक स्रोत है। यह नाम ग्रीक पौराणिक कथाओं से आया है जिसका अर्थ है ''नीओब और [[ टैंटलस |टैंटलस]] ''की बेटी।


Line 108: Line 108:


===मोलिब्डेनम ===
===मोलिब्डेनम ===
{{main| Molybdenum}}
{{main|मोलिब्डेनम}}
मोलिब्डेनम एक [[ समूह 6 तत्व ]] रासायनिक तत्व है जिसका प्रतीक MO और परमाणु संख्या 42 है। यह नाम प्राचीन ग्रीक से नियो-लैटिन ''मोलिब्डेनम'' से लिया गया है।जिसका अर्थ है सीसाI [[ लुवियन भाषा | यह लुवियन भाषा एवं]] [[ लिडियन भाषा ]]के ऋण शब्द के रूप में प्रस्तावित हैI<ref name="melchert">{{cite web|author=Melchert, Craig |url=http://www.unc.edu/~melchert/molybdos.pdf |title=Lydian . से ऋण शब्द के रूप में ग्रीक मोलिब्डोस|publisher=[[University of North Carolina]] at [[Chapel Hill, North Carolina|Chapel Hill]] |access-date=2011-04-23 |url-status=dead |archive-url=https://web.archive.org/web/20081012125202/http://www.unc.edu/~melchert/molybdos.pdf |archive-date=2008-10-12 }}</ref> कुछ जगह इसे सीसा अयस्क के रूप में जानकर भ्रमित किया गया था।<ref name="CRCdescription">{{Cite book|contribution = Molybdenum|year = 1994|title = केमेस्ट्री और फ़ीजिक्स के लिए सीआरसी हैंडबुक|editor-last = Lide|editor-first = David R.|volume = 4|page = 18|publisher = Chemical Rubber Publishing Company|isbn=0-8493-0474-1|author = editor-in-chief David R. Lide.}}</ref> चांदी [[ धातु |धातु]] में मोलिब्डेनम तत्व स्थित होता है I किसी भी तत्व में छठा गलनांक के रूप में होता हैI मोलिब्डेनम पृथ्वी पर मूल धातु के रूप में नहीं होता हैI बल्कि खनिजों में विभिन्न [[ ऑक्सीकरण अवस्था |ऑक्सीकरण अवस्था]] में पाया जाता है। औद्योगिक रूप से मोलिब्डेनम [[ रासायनिक यौगिक |रासायनिक यौगिक]] का उपयोग उच्च दबाव और उच्च तापमान अनुप्रयोगों में वर्णक और [[ कटैलिसीस |कटैलिसीस]] रासायनिक तत्व के तौर पर विद्यमान है I  
 
मोलिब्डेनम [[ समूह 6 तत्व |समूह 6 का]] रासायनिक तत्व है जिसका प्रतीक MO और परमाणु संख्या 42 है। यह नाम प्राचीन ग्रीक से नियो-लैटिन ''मोलिब्डेनम'' से लिया गया है जिसका अर्थ है सीसा होता है I [[ लुवियन भाषा |यह शब्द लुवियन भाषा एवं]] [[ लिडियन भाषा ]]के ऋण शब्द के रूप में प्रस्तावित हैI<ref name="melchert">{{cite web|author=Melchert, Craig |url=http://www.unc.edu/~melchert/molybdos.pdf |title=Lydian . से ऋण शब्द के रूप में ग्रीक मोलिब्डोस|publisher=[[University of North Carolina]] at [[Chapel Hill, North Carolina|Chapel Hill]] |access-date=2011-04-23 |url-status=dead |archive-url=https://web.archive.org/web/20081012125202/http://www.unc.edu/~melchert/molybdos.pdf |archive-date=2008-10-12 }}</ref> कुछ जगह इसे सीसा अयस्क के रूप में जानकर भ्रमित किया गया था।<ref name="CRCdescription">{{Cite book|contribution = Molybdenum|year = 1994|title = केमेस्ट्री और फ़ीजिक्स के लिए सीआरसी हैंडबुक|editor-last = Lide|editor-first = David R.|volume = 4|page = 18|publisher = Chemical Rubber Publishing Company|isbn=0-8493-0474-1|author = editor-in-chief David R. Lide.}}</ref> चांदी [[ धातु |धातु]] में मोलिब्डेनम तत्व स्थित होता है I किसी भी तत्व में छठा गलनांक के रूप में होता हैI मोलिब्डेनम पृथ्वी पर मूल धातु के रूप में नहीं होता हैI बल्कि खनिजों में विभिन्न [[ ऑक्सीकरण अवस्था |ऑक्सीकरण अवस्था]] में पाया जाता है। औद्योगिक रूप से मोलिब्डेनम [[ रासायनिक यौगिक |रासायनिक यौगिक]] का उपयोग उच्च दबाव और उच्च तापमान अनुप्रयोगों में वर्णक और [[ कटैलिसीस |कटैलिसीस]] रासायनिक तत्व के तौर पर विद्यमान है I  


मोलिब्डेनम खनिजों को लंबे समय से जाना जाता है लेकिन इस तत्व की खोज 1778 में [[ कार्ल विल्हेम शीले |कार्ल विल्हेम शीले]] द्वारा की गई थीI धातु को पहली बार 1781 में [[ पीटर जैकब हेलमेट ]] द्वारा अलग किया गया था। अधिकांश मोलिब्डेनम यौगिक पानी में कम [[ घुलनशीलता | घुलनशील]] होते हैंI मोलिब्डेट आयन MoO<sub>4</sub><sup>2−</sup> में घुलनशील होता हैI  यह तब बनता है जब मोलिब्डेनम युक्त खनिज ऑक्सीजन और पानी के संपर्क में आते हैं।
मोलिब्डेनम खनिजों को लंबे समय से जाना जाता है लेकिन इस तत्व की खोज 1778 में [[ कार्ल विल्हेम शीले |कार्ल विल्हेम शीले]] द्वारा की गई थीI धातु को पहली बार 1781 में [[ पीटर जैकब हेलमेट ]] द्वारा अलग किया गया था। अधिकांश मोलिब्डेनम यौगिक पानी में कम [[ घुलनशीलता | घुलनशील]] होते हैंI मोलिब्डेट आयन MoO<sub>4</sub><sup>2−</sup> में घुलनशील होता हैI  यह तब बनता है जब मोलिब्डेनम युक्त खनिज ऑक्सीजन और पानी के संपर्क में आते हैं।


===टेक्नेटियम ===
===टेक्नेटियम ===
{{main|Technetium}}
{{main|टेक्नेटियम}}
टेक्नेटियम रासायनिक तत्व है जिसका परमाणु क्रमांक 43 और प्रतीक Tc है। यह बिना किसी [[ स्थिर समस्थानिक ]] के सबसे कम परमाणु क्रमांक वाला तत्व हैI इसका हर रूप [[ रेडियोधर्मी ]] है। लगभग सभी टेक्नेटियम कृत्रिम रूप से निर्मित होते हैं और प्रकृति में केवल थोड़ी मात्रा में पाए जाते हैं। स्वाभाविक रूप से उतपन्न होने वाला टेक्नेटियम [[ रेनीयाम | यूरेनियम]] अयस्क में सहज [[ विखंडन उत्पाद ]] के रूप में या मोलिब्डेनम अयस्क में [[ न्यूट्रॉन कैप्चर |न्यूट्रॉन कैप्चर]] के रूप में होता है। सिल्वर ग्रे क्रिस्टलीय धातु के रासायनिक गुण [[ यूरेनियम अयस्क |यूरेनियम अयस्क एवं]] [[ मैंगनीज |मैंगनीज]] के बीच पाए जाते हैं।
टेक्नेटियम रासायनिक तत्व है जिसका परमाणु क्रमांक 43 और प्रतीक Tc है। यह बिना किसी [[ स्थिर समस्थानिक ]] के सबसे कम परमाणु क्रमांक वाला तत्व हैI इसका हर रूप [[ रेडियोधर्मी ]] है। लगभग सभी टेक्नेटियम कृत्रिम रूप से निर्मित होते हैं और प्रकृति में केवल थोड़ी मात्रा में पाए जाते हैं। स्वाभाविक रूप से उतपन्न होने वाला टेक्नेटियम [[ रेनीयाम | यूरेनियम]] अयस्क में सहज [[ विखंडन उत्पाद ]] के रूप में या मोलिब्डेनम अयस्क में [[ न्यूट्रॉन कैप्चर |न्यूट्रॉन कैप्चर]] के रूप में होता है। सिल्वर ग्रे क्रिस्टलीय धातु के रासायनिक गुण [[ यूरेनियम अयस्क |यूरेनियम अयस्क एवं]] [[ मैंगनीज |मैंगनीज]] के बीच पाए जाते हैं।


Line 134: Line 135:
===पैलेडियम ===
===पैलेडियम ===


{{main|Palladium}}
{{main|पैलेडियम}}
पैलेडियम रासायनिक प्रतीक पीडी और 46 की परमाणु संख्या के साथ एक रासायनिक तत्व है। यह विलियम हाइड वोलास्टन द्वारा 1803 में खोजी गई एक दुर्लभ और चमकदार चांदी-सफेद धातु है। उन्होंने इसका नाम [[ 2 पलास ]] के नाम पर रखाI इसका नाम ग्रीक पौराणिक कथाओं की देवी [[ एथेना |एथेना]] के नाम पर रखा गया थाI पैलेडियम, प्लैटिनम, रोडियम, [[ इरिडियम |इरिडियम]] और [[ आज़मियम |आज़मियम]] तत्वों का समूह बनाते हैं जिन्हें प्लैटिनम समूह धातु "पीजीएम" कहा जाता है। इनमें समान रासायनिक गुण होते हैं लेकिन इसका गलनांक सबसे कम होता है।
पैलेडियम रासायनिक प्रतीक पीडी और 46 की परमाणु संख्या के साथ एक रासायनिक तत्व है। यह विलियम हाइड वोलास्टन द्वारा 1803 में खोजी गई एक दुर्लभ और चमकदार चांदी-सफेद धातु है। उन्होंने इसका नाम [[ 2 पलास ]] के नाम पर रखाI इसका नाम ग्रीक पौराणिक कथाओं की देवी [[ एथेना |एथेना]] के नाम पर रखा गया थाI पैलेडियम, प्लैटिनम, रोडियम, [[ इरिडियम |इरिडियम]] और [[ आज़मियम |आज़मियम]] तत्वों का समूह बनाते हैं जिन्हें प्लैटिनम समूह धातु "पीजीएम" कहा जाता है। इनमें समान रासायनिक गुण होते हैं लेकिन इसका गलनांक सबसे कम होता है।


Line 140: Line 141:


=== चांदी ===
=== चांदी ===
{{main|Silver}}
{{main|चांदी}}
चांदी एक धात्विक रासायनिक तत्व है जिसका रासायनिक प्रतीक Ag और परमाणु संख्या 47 हैI यह नरम, सफेद, चमकदार धातु होती हैI  इसमें किसी भी तत्व की उच्चतम विद्युत चालकता और किसी भी धातु की उच्चतम तापीय चालकता है। धातु प्राकृतिक रूप से शुद्ध, सोने और अन्य धातुओं के साथ मिश्र धातु के रूप में, और खनिजों में जैसे कि [[ अर्जेन्ट्स |अर्जेन्ट्स]] और [[ क्लोरार्गाइराइट ]]में पायी जाती है। अधिकांश चांदी का उत्पादन तांबा, सोना, सीसा ,[[ जस्ता ]] शोधन के उपोत्पाद के रूप में किया जाता है।
चांदी एक धात्विक रासायनिक तत्व है जिसका रासायनिक प्रतीक Ag और परमाणु संख्या 47 हैI यह नरम, सफेद, चमकदार धातु होती हैI  इसमें किसी भी तत्व की उच्चतम विद्युत चालकता और किसी भी धातु की उच्चतम तापीय चालकता है। धातु प्राकृतिक रूप से शुद्ध, सोने और अन्य धातुओं के साथ मिश्र धातु के रूप में, और खनिजों में जैसे कि [[ अर्जेन्ट्स |अर्जेन्ट्स]] और [[ क्लोरार्गाइराइट ]]में पायी जाती है। अधिकांश चांदी का उत्पादन तांबा, सोना, सीसा ,[[ जस्ता ]] शोधन के उपोत्पाद के रूप में किया जाता है।


Line 153: Line 154:
पी-ब्लॉक तत्व
पी-ब्लॉक तत्व
=== ईण्डीयुम ===
=== ईण्डीयुम ===
{{main|Indium}}
{{main|इंडियम}}
इंडियम एक रासायनिक तत्व है जिसका प्रतीक इन और परमाणु संख्या 49 है। यह दुर्लभ, बहुत नरम, निंदनीय और आसानी से गलने योग्य मिश्र धातु [[ अन्य धातु ]] रासायनिक रूप से [[ गैलियम ]] और [[ थालियम ]] के समान है, और इन दोनों के बीच के मध्यवर्ती गुणों को दर्शाता है। इंडियम की खोज 1863 में की गई थी और इसका नाम इसके स्पेक्ट्रम में [[ नील ]] लाइन के लिए रखा गया था जो एक नए और अज्ञात तत्व के रूप में जस्ता अयस्क में इसके अस्तित्व का पहला संकेत था। अगले वर्ष धातु को पहली बार अलग किया गया था। जिंक अयस्क इंडियम का प्राथमिक स्रोत बना हुआ है, जहां यह यौगिक रूप में पाया जाता है। बहुत कम ही तत्व देशी (मुक्त) धातु के अनाज के रूप में पाया जा सकता है, लेकिन ये व्यावसायिक महत्व के नहीं हैं।


इंडियम का वर्तमान प्राथमिक अनुप्रयोग [[ लिक्विड क्रिस्टल डिस्प्ले ]] और [[ टच स्क्रीन ]] में [[ इंडियम टिन ऑक्साइड ]] से पारदर्शी इलेक्ट्रोड बनाना है, और यह उपयोग बड़े पैमाने पर इसके वैश्विक खनन उत्पादन को निर्धारित करता है। यह व्यापक रूप से पतली फिल्मों में चिकनाई वाली परतें बनाने के लिए उपयोग किया जाता है ([[ द्वितीय विश्व युद्ध ]] के दौरान इसे उच्च-प्रदर्शन वाले विमानों में बीयरिंगों को कोट करने के लिए व्यापक रूप से उपयोग किया जाता था)। इसका उपयोग विशेष रूप से कम गलनांक मिश्र धातु बनाने के लिए भी किया जाता है, और कुछ सीसा रहित सोल्डर में एक घटक है।
इंडियम एक रासायनिक तत्व है जिसका प्रतीक इन और परमाणु संख्या 49 है। यह दुर्लभ बहुत नरम और आसानी से गलने योग्य मिश्र धातु हैI [[ अन्य धातु |अन्य धातु]] रासायनिक रूप से यह धातु [[ गैलियम |गैलियम]] और [[ थालियम |थालियम]] के समान हैI  यह धातु इन दोनों के बीच के मध्यवर्ती गुण को दर्शाता है। इंडियम की खोज 1863 में की गई थी जिंक अयस्क इंडियम का प्राथमिक स्रोत बना है जहां यह यौगिक रूप में पाया जाता है। इंडियम का वर्तमान प्राथमिक अनुप्रयोग [[ लिक्विड क्रिस्टल डिस्प्ले | लिक्विड क्रिस्टल डिस्प्ले]] और [[ टच स्क्रीन |टच स्क्रीन]] में [[ इंडियम टिन ऑक्साइड |इंडियम टिन ऑक्साइड]] से पारदर्शी इलेक्ट्रोड बनाने के लिए किया जाता हैI  वैश्विक खनन उत्पादन के लिए बड़े पैमाने पर इसका उपयोग होता हैI व्यापक रूप से पतली फिल्मों में परतें बनाने के लिए भी इस तत्व का उपयोग किया जाता हैI


इंडियम किसी भी जीव द्वारा उपयोग किए जाने के लिए नहीं जाना जाता है। एल्युमिनियम लवण के समान ही, इंजेक्शन द्वारा दिए जाने पर इंडियम (III) आयन गुर्दे के लिए विषाक्त हो सकते हैं, लेकिन मौखिक ईण्डीयुम यौगिकों में भारी धातुओं के लवणों की पुरानी विषाक्तता नहीं होती है, संभवतः बुनियादी परिस्थितियों में खराब अवशोषण के कारण। रेडियोधर्मी इंडियम-111 (रासायनिक आधार पर बहुत कम मात्रा में) का उपयोग परमाणु चिकित्सा परीक्षणों में किया जाता है, शरीर में लेबल किए गए प्रोटीन और [[ ईण्डीयुम ल्यूकोसाइट इमेजिंग ]] के आंदोलन का पालन करने के लिए एक [[ रेडियोट्रेसर ]] के रूप में।
इंडियम किसी भी जीव द्वारा उपयोग किए जाने के लिए उचित तत्व नहीं है। रेडियोधर्मी इंडियम-111 का उपयोग रासायनिक आधार पर बहुत कम मात्रा में परमाणु चिकित्सा परीक्षणों में किया जाता हैI शरीर में लेबल किए गए प्रोटीन और [[ ईण्डीयुम ल्यूकोसाइट इमेजिंग |ईण्डीयुम ल्यूकोसाइट इमेजिंग]] के लिए [[ रेडियोट्रेसर | रेडियोट्रेसर]] के रूप में विस्तृत प्रयोग होता है।


=== टिन ===
=== टिन ===
{{main|Tin}}
{{main|टिन}}
टिन एक रासायनिक तत्व है जिसका प्रतीक Sn (for .) है {{lang-la|stannum}}) और परमाणु क्रमांक 50। यह आवर्त सारणी के [[ समूह 14 ]] में एक मुख्य-समूह तत्व | मुख्य-समूह धातु है। टिन पड़ोसी समूह 14 तत्वों, [[ जर्मेनियम ]] और लेड दोनों के लिए रासायनिक समानता दिखाता है और इसकी दो संभावित ऑक्सीकरण अवस्थाएँ हैं, +2 और थोड़ा अधिक स्थिर +4। टिन 49 वां सबसे प्रचुर तत्व है और इसमें 10 स्थिर समस्थानिक हैं, जो आवर्त सारणी में सबसे अधिक स्थिर समस्थानिक हैं। टिन मुख्य रूप से [[ खनिज ]] [[ कैसिटराइट ]] से प्राप्त होता है, जहां यह [[ टिन डाइऑक्साइड ]], SnO . के रूप में होता है<sub>2</sub>.


यह चांदी, निंदनीय अन्य धातु हवा में आसानी से [[ ऑक्सीकरण ]] नहीं होती है और [[ जंग | जंग]] को रोकने के लिए अन्य धातुओं को कोट करने के लिए उपयोग की जाती है। 3000 ईसा पूर्व से बड़े पैमाने पर इस्तेमाल किया जाने वाला पहला मिश्र धातु, कांस्य, टिन और तांबे का मिश्र धातु था<!--[Anatoly F. Fomenko in his book "History: Fiction or Science",[Chronology 1, pg.70] asserts that Tin metallurgy is more complex than that of Copper and metallic tin had not been known during the Bronze Age. It is possible that some metal of a higher fusibility was manufactured using Copper with some minerals rich in tin content]-->. 600 ईसा पूर्व के बाद शुद्ध धात्विक [[ टिन का डब्बा ]] उत्पादन हुआ। [[ पारितोषिक ]], जो 85-90% टिन का मिश्र धातु है, शेष आमतौर पर तांबा, [[ सुरमा ]] और सीसा से युक्त होता है, का उपयोग [[ कांस्य युग ]] से 20 वीं शताब्दी तक [[ मेज ]] के लिए किया जाता था। आधुनिक समय में टिन का उपयोग कई मिश्र धातुओं में किया जाता है, विशेष रूप से टिन/लीड सॉफ्ट सेलर्स, जिसमें आमतौर पर 60% या अधिक टिन होता है। टिन के लिए एक और बड़ा अनुप्रयोग स्टील का संक्षारण प्रतिरोधी टिन चढ़ाना है। इसकी कम विषाक्तता के कारण, टिन-प्लेटेड धातु का उपयोग खाद्य पैकेजिंग के लिए भी किया जाता है, जो टिन के डिब्बे को नाम देता है, जो ज्यादातर स्टील से बने होते हैं।
टिन रासायनिक तत्व का प्रतीक Sn और परमाणु क्रमांक 50 है। यह आवर्त सारणी के [[ समूह 14 |समूह 14]] में एक मुख्य-समूह तत्व में शामिल हैI  टिन[[ जर्मेनियम ]]और लेड दोनों के लिए रासायनिक समानता प्रस्तुत करता हैI इसकी दो संभावित ऑक्सीकरण अवस्थाएँ हैंI  टिन धातुओं में 49 वां सबसे प्रचुर तत्व है और इसमें 10 स्थिर समस्थानिक हैं जो आवर्त सारणी में सबसे अधिक स्थिर समस्थानिक हैं। टिन मुख्य रूप से [[ खनिज ]] [[ कैसिटराइट |कैसिटराइट]] से प्राप्त होता है जहां यह [[ टिन डाइऑक्साइड ]]SnO . के रूप में होता हैI
 
यह धातु चांदी व अन्य धातु में आसानी से [[ ऑक्सीकरण |ऑक्सीकृत नहीं होता हैI इस धातु का इस्तेमाल युद्ध आदि में]] अन्य धातुओं को कोट करने के लिए होता हैI 3000 ईसा पूर्व से बड़े पैमाने पर इस्तेमाल किया जाने वाला पहला मिश्र धातु, कांस्य, टिन और तांबे का मिश्र धातु थाI. 600 ईसा पूर्व के बाद शुद्ध धात्विक [[ टिन का डब्बा |टिन के डब्बे का उत्पादन शुरू हुआ]] [[ पारितोषिक ]] जो 85-90% टिन का मिश्र धातु है शेष आमतौर पर तांबा [[ सुरमा |सुरमा ,]]सीसा से युक्त हैI  आधुनिक समय में टिन का उपयोग कई मिश्र धातुओं में किया जाता हैI विशेष रूप से इसका उपयोग टिन/लीड सॉफ्ट सेलर्स जिसमें आमतौर पर 60% या अधिक टिन होता है,उसके लिए किया जाता है। कम विषाक्तता के कारण टिन-प्लेटेड धातु का उपयोग खाद्य पैकेजिंग के लिए भी किया जाता हैI


=== सुरमा ===
=== सुरमा ===
{{main|Antimony}}
{{main|सुरमा}}
सुरमा ({{lang-la|stibium}}) एक जहरीला रासायनिक तत्व है जिसका प्रतीक Sb और 51 की परमाणु संख्या है। एक चमकदार ग्रे [[ धातु के रूप-रंग का एक अधातु पदार्थ ]], यह प्रकृति में मुख्य रूप से [[ सल्फाइड खनिज ]] [[ स्टिफ़नर ]] (Sb) के रूप में पाया जाता है।<sub>2</sub>S<sub>3</sub>) सुरमा यौगिकों को प्राचीन काल से जाना जाता है और सौंदर्य प्रसाधनों के लिए उपयोग किया जाता था, धातु सुरमा को भी जाना जाता था लेकिन ज्यादातर सीसा के रूप में पहचाना जाता था।


कुछ समय के लिए चीन सुरमा और इसके यौगिकों का सबसे बड़ा उत्पादक रहा है, जिसमें अधिकांश उत्पादन [[ खुद ]] में [[ मेरा मेरा ]] से होता है। कई वाणिज्यिक और घरेलू उत्पादों में पाए जाने वाले [[ अग्निरोधी ]] युक्त क्लोरीन और ब्रोमीन के लिए सुरमा यौगिक प्रमुख योजक हैं। धातु सुरमा के लिए सबसे बड़ा अनुप्रयोग सीसा और टिन के लिए मिश्र धातु सामग्री के रूप में है। यह मिश्र धातुओं के गुणों में सुधार करता है जिनका उपयोग सोल्डर, बुलेट और [[ बॉल बियरिंग ]] में किया जाता है। एक उभरता हुआ अनुप्रयोग [[ माइक्रोइलेक्ट्रॉनिक्स ]] में सुरमा का उपयोग है।
सुरमा जहरीला रासायनिक तत्व है जिसका प्रतीक Sb और 51 की परमाणु संख्या है। चमकदार ग्रे [[ धातु के रूप-रंग का एक अधातु पदार्थ | धातु के रूप-रंग का यह अधातु पदार्थ]] प्रकृति में मुख्य रूप से [[ सल्फाइड खनिज ]][[ स्टिफ़नर ]]Sb के रूप में पाया जाता है। सुरमा यौगिकों को प्राचीन काल से जाना जाता है और सौंदर्य प्रसाधनों के लिए उपयोग किया जाता थाI
 
कुछ समय के लिए चीन सुरमा और इसके यौगिकों का सबसे बड़ा उत्पादक देश रहा हैI कई वाणिज्यिक और घरेलू उत्पादों में पाए जाने वाले [[ अग्निरोधी |अग्निरोधी]] युक्त क्लोरीन और ब्रोमीन के लिए सुरमा यौगिक प्रमुख योजक हैं। धातु सुरमा के लिए सबसे बड़ा अनुप्रयोग सीसा और टिन के लिए मिश्र धातु सामग्री के रूप में है। यह मिश्र धातुओं के गुणों में सुधार करता है जिनका उपयोग सोल्डर, बुलेट और [[ बॉल बियरिंग ]] में किया जाता है। [[ माइक्रोइलेक्ट्रॉनिक्स ]] में सुरमा का उभरता हुआ अनुप्रयोग है।


=== टेल्यूरियम ===
=== टेल्यूरियम ===
{{main|Tellurium}}
{{main|Tellurium}}
टेल्यूरियम एक रासायनिक तत्व है जिसका प्रतीक टी और परमाणु संख्या 52 है। एक भंगुर, हल्का विषाक्त, दुर्लभ, चांदी-सफेद धातु जो टिन के समान दिखता है, टेल्यूरियम रासायनिक रूप से [[ सेलेनियम ]] और [[ गंधक ]] से संबंधित है। यह कभी-कभी मूल रूप में, मौलिक क्रिस्टल के रूप में पाया जाता है। ब्रह्मांड में टेल्यूरियम पृथ्वी की तुलना में कहीं अधिक सामान्य है। प्लेटिनम की तुलना में पृथ्वी की पपड़ी में रासायनिक तत्वों की इसकी अत्यधिक प्रचुरता आंशिक रूप से इसकी उच्च परमाणु संख्या के कारण है, लेकिन इसके कारण एक वाष्पशील [[ हाइड्राइड ]] के गठन के कारण भी है जिसके कारण तत्व गैस के रूप में अंतरिक्ष में खो गया है। ग्रह का गर्म नेबुलर गठन।
टेल्यूरियम वह रासायनिक तत्व है जिसका प्रतीक टी और परमाणु संख्या 52 है। एक भंगुर, हल्का विषाक्त, दुर्लभ, चांदी-सफेद धातु जो टिन के समान दिखता हैI टेल्यूरियम रासायनिक रूप से [[ सेलेनियम ]]तथा[[ गंधक ]]से संबंधित है। यह कभी-कभी मूल रूप में मौलिक क्रिस्टल के रूप में पाया जाता है। ब्रह्मांड में टेल्यूरियम पृथ्वी की तुलना में कहीं अधिक सामान्य है। प्लेटिनम की तुलना में पृथ्वी की सतह पर रासायनिक तत्वों की अत्यधिक प्रचुरता इसकी उच्च परमाणु संख्या के कारण हैI


टेल्यूरियम की खोज 1782 में [[ ट्रांसिल्वेनिया ]] ([[ रोमानिया ]] का आज का हिस्सा) में फ्रांज-जोसेफ मुलर वॉन रीचेंस्टीन द्वारा टेल्यूरियम और सोने वाले खनिज में की गई थी। [[ मार्टिन हेनरिक क्लैप्रोथ ]] ने 1798 में नए तत्व का नाम पृथ्वी के लैटिन शब्द 'टेलस' के नाम पर रखा। सोने के टेलुराइड खनिज (टेलुराइड, कोलोराडो के नाम के लिए जिम्मेदार) सबसे उल्लेखनीय प्राकृतिक सोने के यौगिक हैं। हालांकि, वे टेल्यूरियम का व्यावसायिक रूप से महत्वपूर्ण स्रोत नहीं हैं, जिसे आमतौर पर तांबे और सीसा उत्पादन के उप-उत्पाद के रूप में निकाला जाता है।
टेल्यूरियम की खोज 1782 में [[ ट्रांसिल्वेनिया | ट्रांसिल्वेनिया जिसे आज]] [[ रोमानिया |रोमानिया]] के हिस्से के तौर पर जानते हैं I इसकी खोज फ्रांज-जोसेफ मुलर वॉन रीचेंस्टीन द्वारा टेल्यूरियम और सोने वाले खनिज के रूप में में की गई थी। [[ मार्टिन हेनरिक क्लैप्रोथ ]]ने 1798 में नए तत्व का नाम पृथ्वी के लैटिन शब्द 'टेलस' के नाम पर रखा। सोने के टेलुराइड खनिज सबसे उल्लेखनीय प्राकृतिक सोने के यौगिक हैं। हालांकि वे टेल्यूरियम का व्यावसायिक रूप से महत्वपूर्ण स्रोत नहीं हैं जिसे आमतौर पर तांबे और सीसा उत्पादन के उप-उत्पाद के रूप में उपयोग किया जाता हैI


टेल्यूरियम का व्यावसायिक रूप से मुख्य रूप से मिश्र धातुओं में उपयोग किया जाता है, सबसे पहले स्टील और तांबे में मशीनेबिलिटी में सुधार करने के लिए उपयोग किया जाता है। [[ फोटोवोल्टिक मॉड्यूल ]] में और अर्धचालक सामग्री के रूप में अनुप्रयोग भी टेल्यूरियम उत्पादन के काफी अंश का उपभोग करते हैं।
टेल्यूरियम का व्यावसायिक रूप से प्रयोग मुख्य रूप से मिश्र धातुओं में किया जाता हैI सबसे पहले स्टील और तांबे में की गुणवत्ता में सुधार करने के लिए इसका उपयोग होता थाI[[ फोटोवोल्टिक मॉड्यूल ]]में अर्धचालक सामग्री के रूप में भी टेल्यूरियम के अंश का उपभोग होता हैI


=== आयोडीन ===
=== आयोडीन ===
{{main|Iodine}}
{{main|आयोडीन}}
आयोडीन एक रासायनिक तत्व है जिसका प्रतीक I और परमाणु क्रमांक 53 है। यह नाम प्राचीन यूनानी भाषा से लिया गया है {{lang|grc|ἰοειδής}} ioeidēs, जिसका अर्थ है बैंगनी या बैंगनी, मौलिक आयोडीन वाष्प के रंग के कारण।<ref>Online Etymology Dictionary, s.v. [http://www.etymonline.com/index.php?term=iodine ''iodine'']. Retrieved 2012-02-07.</ref>
आयोडीन और इसके यौगिकों का उपयोग मुख्य रूप से [[ पोषण ]] में और औद्योगिक रूप से [[ सिरका अम्ल ]] और कुछ पॉलिमर के उत्पादन में किया जाता है। आयोडीन की अपेक्षाकृत उच्च परमाणु संख्या, कम विषाक्तता, और कार्बनिक यौगिकों से लगाव में आसानी ने इसे आधुनिक चिकित्सा में कई [[ रेडियोकंट्रास्ट ]] | एक्स-रे कंट्रास्ट सामग्री का हिस्सा बना दिया है। आयोडीन में केवल एक स्थिर समस्थानिक होता है। चिकित्सा अनुप्रयोगों में कई आयोडीन रेडियोआइसोटोप का भी उपयोग किया जाता है।


पृथ्वी पर आयोडीन मुख्य रूप से अत्यधिक पानी में घुलनशील आयोडाइड I के रूप में पाया जाता है<sup>-</sup>, जो इसे महासागरों और नमकीन पूलों में केंद्रित करता है। अन्य [[ हलोजन ]] की तरह, मुक्त आयोडीन मुख्य रूप से एक द्विपरमाणुक अणु I . के रूप में होता है<sub>2</sub>, और फिर केवल कुछ समय के लिए मुक्त ऑक्सीजन जैसे ऑक्सीडेंट द्वारा आयोडाइड से ऑक्सीकृत होने के बाद। ब्रह्मांड में और पृथ्वी पर, आयोडीन की उच्च परमाणु संख्या इसे रासायनिक तत्वों की अपेक्षाकृत प्रचुरता बनाती है। हालाँकि, समुद्र के पानी में इसकी उपस्थिति ने इसे जीव विज्ञान में एक भूमिका दी है (नीचे देखें)।
आयोडीन वह रासायनिक तत्व है जिसका प्रतीक I व परमाणु क्रमांक 53 है। यह नाम प्राचीन यूनानी भाषा से लिया गया हैI जिसका अर्थ है बैंगनी या बैंगनीI आयोडीन और इसके यौगिकों का उपयोग मुख्य रूप से [[ सिरका अम्ल |सिरका अम्ल एवं]] कुछ पॉलिमर के उत्पादन में किया जाता है। आज के समय में आयोडीन तत्व एक्स-रे कंट्रास्ट सामग्री का हिस्सा बना दिया गया है। चिकित्सा अनुप्रयोगों में कई जगह आयोडीन रेडियोआइसोटोप का भी उपयोग किया जाता है।
 
पृथ्वी पर आयोडीन मुख्य रूप से पानी में अत्यधिक घुलनशील आयोडाइड के रूप में पाया जाता है जो इसे महासागरों और नमकीन पूलों में केंद्रित करता है। ब्रह्मांड में आयोडीन की उच्च परमाणु संख्या तत्व देखने को मिलती है जिसके कारण इस तत्व की धातु की सर्वाधिक प्रचुरता पायी जाती हैI हालाँकि समुद्र के पानी में इसकी उपस्थिति के चलते इसे जैविक भूमिका प्रदान की गयी हैI


=== क्सीनन ===
=== क्सीनन ===
{{main|Xenon}}
{{main|Xenon}}
क्सीनन एक रासायनिक तत्व है जिसका रासायनिक प्रतीक Xe और परमाणु क्रमांक 54 है। एक रंगहीन, भारी, गंधहीन [[ नोबल गैस ]], क्सीनन पृथ्वी के वायुमंडल में बहुत कम मात्रा में पाई जाती है।<ref>{{cite encyclopedia
क्सीनन एक रासायनिक तत्व है जिसका रासायनिक प्रतीक Xe और परमाणु क्रमांक 54 है। यह रंगहीन, भारी, गंधहीन [[ नोबल गैस |गैस]] हैI क्सीनन पृथ्वी के वायुमंडल में बहुत कम मात्रा में पाई जाती है।<ref>{{cite encyclopedia
  |author=Staff|year=2007
  |author=Staff|year=2007
  |url=http://www.infoplease.com/ce6/sci/A0852881.html
  |url=http://www.infoplease.com/ce6/sci/A0852881.html
  |title=क्सीनन|encyclopedia=Columbia Electronic Encyclopedia
  |title=क्सीनन|encyclopedia=Columbia Electronic Encyclopedia
  |edition=6th|publisher=Columbia University Press
  |edition=6th|publisher=Columbia University Press
  |access-date=2007-10-23}}</ref> हालांकि आम तौर पर अक्रियाशील, क्सीनन कुछ [[ रासायनिक प्रतिक्रिया ]]ओं से गुजर सकता है जैसे कि [[ क्सीनन हेक्साफ्लोरोप्लाटिनेट ]] का निर्माण, संश्लेषित होने वाला पहला [[ महान गैस यौगिक ]]।<ref name="lanl">{{cite web
  |access-date=2007-10-23}}</ref> हालांकि आम तौर पर यह अक्रियाशील होती हैI क्सीनन 40 से अधिक अस्थिर समस्थानिक भी हैं जो [[ रेडियोधर्मी क्षय | रेडियोधर्मी प्रक्रिया]] से गुजरते हैं। क्सीनन समस्थानिक अनुपात सौर मंडल के प्रारंभिक इतिहास के अध्ययन के लिए एक महत्वपूर्ण उपकरण हैं।<ref name="kaneoka">{{cite journal
|author1=Husted, Robert |author2=Boorman, Mollie |date=December 15, 2003
|url=http://periodic.lanl.gov/54.shtml|title=क्सीनन|publisher=Los Alamos National Laboratory, Chemical Division
|access-date=2007-09-26
}}</ref><ref>{{cite book
|last=Rabinovich|first=Viktor Abramovich
|author2=Vasserman, A. A. |author3=Nedostup, V. I. |author4= Veksler, L. S. |title=नियॉन, आर्गन, क्रिप्टन और क्सीनन के थर्मोफिजिकल गुण|year=1988|edition=English-language
|publisher=Hemisphere Publishing Corp.
|location=Washington, DC|isbn=0-89116-675-0
|bibcode=1988wdch...10.....R
}}—National Standard Reference Data Service of the USSR. Volume 10.</ref><ref name="beautiful">{{cite magazine
|url=http://www.chem.umn.edu/class/2301/barany03f/fun/beautiful1.pdf
|title=इसकी सबसे खूबसूरत पर रसायन शास्त्र|access-date=2007-09-13
|last=Freemantel
|first=Michael
|date=August 25, 2003
|magazine=Chemical & Engineering News
|url-status=dead
|archive-url=https://web.archive.org/web/20160106203608/http://www.chem.umn.edu/class/2301/barany03f/fun/beautiful1.pdf
|archive-date=January 6, 2016
}}</ref>
प्राकृतिक रूप से पाए जाने वाले क्सीनन में [[ क्सीनन के समस्थानिक ]] होते हैं। 40 से अधिक अस्थिर समस्थानिक भी हैं जो [[ रेडियोधर्मी क्षय ]] से गुजरते हैं। क्सीनन के समस्थानिक अनुपात सौर मंडल के प्रारंभिक इतिहास के अध्ययन के लिए एक महत्वपूर्ण उपकरण हैं।<ref name="kaneoka">{{cite journal
  |last=Kaneoka|first=Ichiro|title=क्सीनन की अंदरूनी कहानी|journal=Science|year=1998|volume=280|issue=5365
  |last=Kaneoka|first=Ichiro|title=क्सीनन की अंदरूनी कहानी|journal=Science|year=1998|volume=280|issue=5365
  |pages=851–852|doi=10.1126/science.280.5365.851b|s2cid=128502357}}</ref> रेडियोधर्मी क्सीनन-135 परमाणु विखंडन के परिणामस्वरूप [[ आयोडीन-135 ]] से उत्पन्न होता है, और यह परमाणु रिएक्टरों में सबसे महत्वपूर्ण [[ न्यूट्रॉन अवशोषक ]] के रूप में कार्य करता है।<ref name="stacey">{{cite book
  |pages=851–852|doi=10.1126/science.280.5365.851b|s2cid=128502357}}</ref> रेडियोधर्मी क्सीनन-135 परमाणु विखंडन के परिणामस्वरूप [[ आयोडीन-135 |आयोडीन-135]] से उत्पन्न होता हैI यह परमाणु रिएक्टरों में सबसे महत्वपूर्ण [[ न्यूट्रॉन अवशोषक ]] के रूप में कार्य करता है।<ref name="stacey">{{cite book
  |first=Weston M.|last=Stacey|year=2007
  |first=Weston M.|last=Stacey|year=2007
  |title=परमाणु रिएक्टर भौतिकी|page=213
  |title=परमाणु रिएक्टर भौतिकी|page=213
  |url=https://books.google.com/books?id=y1UgcgVSXSkC&pg=PA213|publisher=Wiley-VCH|isbn=978-3-527-40679-1}}</ref>
  |url=https://books.google.com/books?id=y1UgcgVSXSkC&pg=PA213|publisher=Wiley-VCH|isbn=978-3-527-40679-1}}</ref>
[[ क्सीनन फ्लैश लैंप ]] में क्सीनन का उपयोग किया जाता है<ref name="burke">{{cite web
 
[[ क्सीनन फ्लैश लैंप | क्सीनन फ्लैश लैंप]] में इसका उपयोग किया जाता हैI<ref name="burke">{{cite web
  |author=Anonymous|title=इतिहास|url=http://www.millisecond-cine.com/history.html
  |author=Anonymous|title=इतिहास|url=http://www.millisecond-cine.com/history.html
  |archive-url=https://web.archive.org/web/20060822141910/http://www.millisecond-cine.com/history.html
  |archive-url=https://web.archive.org/web/20060822141910/http://www.millisecond-cine.com/history.html
Line 227: Line 209:
  |publisher=Millisecond Cinematography
  |publisher=Millisecond Cinematography
  |access-date=2007-11-07
  |access-date=2007-11-07
}}</ref> और [[ क्सीनन आर्क लैंप ]],<ref name="mellor">{{cite book
}}</ref>  शुरुआती दौर में लेजर के रूप में इसका उपयोग सर्वाधिक होता थाI लेजर डिजाइनों में [[ लेजर पम्पिंग | लेजर पम्पिंग]] के रूप में क्सीनन फ्लैश लैंप का इस्तेमाल किया गया था।<ref name="toyserkani">{{cite book
  |first=David|last=Mellor|year=2000|page=[https://archive.org/details/soundpersonsguid0000mell/page/186 186]
|title=वीडियो के लिए ध्वनि व्यक्ति की मार्गदर्शिका|publisher=Focal Press
|isbn=0-240-51595-1|url=https://archive.org/details/soundpersonsguid0000mell|url-access=registration}}</ref> और एक [[ सामान्य संज्ञाहरण ]] के रूप में।<ref name="Sanders">{{cite journal
|author1=Sanders, Robert D. |author2=Ma, Daqing |author3=Maze, Mervyn |title=क्सीनन: नैदानिक ​​अभ्यास में मौलिक संज्ञाहरण|journal=British Medical Bulletin
|year=2005|volume=71|issue=1|pages=115–35
|doi=10.1093/bmb/ldh034
|pmid=15728132|doi-access=free}}</ref> पहले [[ एक्साइमर लेजर ]] डिजाइन में क्सीनन [[ डिमर (रसायन विज्ञान) ]] अणु (Xe .) का उपयोग किया गया था<sub>2</sub>) इसके [[ सक्रिय लेजर माध्यम ]] के रूप में,<ref name="basov">{{cite journal
|doi=10.1070/QE1971v001n01ABEH003011
|last=Basov|first=N. G.
|author2=Danilychev, V. A. |author3=Popov, Yu. M.
  |title=वैक्यूम पराबैंगनी क्षेत्र में उत्तेजित उत्सर्जन|journal=Soviet Journal of Quantum Electronics
|year=1971|volume=1|issue=1|pages=18–22|bibcode = 1971QuEle...1...18B }}</ref> और शुरुआती लेजर डिजाइनों में [[ लेजर पम्पिंग ]] के रूप में क्सीनन फ्लैश लैंप का इस्तेमाल किया गया था।<ref name="toyserkani">{{cite book
  |last=Toyserkani|first=E.|year=2004
  |last=Toyserkani|first=E.|year=2004
  |author2=Khajepour, A. |author3=Corbin, S. |page=48
  |author2=Khajepour, A. |author3=Corbin, S. |page=48
  |title=लेजर क्लैडिंग|publisher=CRC Press
  |title=लेजर क्लैडिंग|publisher=CRC Press
  |isbn=0-8493-2172-7|url=https://books.google.com/books?id=zfvbyCHzVqMC&pg=PA48}}</ref> क्सीनन का उपयोग काल्पनिक रूप से कमजोर रूप से परस्पर क्रिया करने वाले बड़े कणों की खोज के लिए भी किया जा रहा है<ref name="ball">{{cite journal
  |isbn=0-8493-2172-7|url=https://books.google.com/books?id=zfvbyCHzVqMC&pg=PA48}}</ref> क्सीनन का उपयोग [[ अंतरिक्ष यान |अंतरिक्ष यान]] में आयन प्रणोदकों के प्रणोदक के रूप में परस्पर क्रिया करने वाले बड़े कणों की खोज के लिए भी किया जा रहा है<ref name="ball">{{cite journal
  |last=Ball|first=Philip|date=May 1, 2002
  |last=Ball|first=Philip|date=May 1, 2002
  |url=http://www.nature.com/news/2002/020429/full/news020429-6.html
  |url=http://www.nature.com/news/2002/020429/full/news020429-6.html
  |title=क्सीनन WIMPs को बाहर करता है|journal=Nature
  |title=क्सीनन WIMPs को बाहर करता है|journal=Nature
  |access-date=2007-10-08}}</ref> और [[ अंतरिक्ष यान ]] में आयन प्रणोदकों के प्रणोदक के रूप में।<ref name="saccoccia">{{cite news
  |access-date=2007-10-08}}</ref> <ref name="saccoccia">{{cite news
  |last=Saccoccia|first=G. |author2=del Amo, J. G. |author3=Estublier, D.
  |last=Saccoccia|first=G. |author2=del Amo, J. G. |author3=Estublier, D.
  |title=आयन इंजन को चंद्रमा पर मिला स्मार्ट-1|date=August 31, 2006|publisher=ESA
  |title=आयन इंजन को चंद्रमा पर मिला स्मार्ट-1|date=August 31, 2006|publisher=ESA
  |url=http://www.esa.int/SPECIALS/SMART-1/SEMLZ36LARE_0.html|access-date=2007-10-01}}</ref>
  |url=http://www.esa.int/SPECIALS/SMART-1/SEMLZ36LARE_0.html|access-date=2007-10-01}}</ref>




Line 261: Line 232:
टेक्नेटियम, रूथेनियम, रोडियम, पैलेडियम, सिल्वर, टिन और सुरमा की कोई जैविक भूमिका नहीं है। हालांकि उच्च जीवों में कैडमियम की कोई ज्ञात जैविक भूमिका नहीं है, समुद्री [[ डायटम ]] में कैडमियम पर निर्भर [[ कार्बोनिक एनहाइड्रेज़ ]] पाया गया है। इंडियम की कोई जैविक भूमिका नहीं है और यह विषाक्त और साथ ही सुरमा हो सकता है।
टेक्नेटियम, रूथेनियम, रोडियम, पैलेडियम, सिल्वर, टिन और सुरमा की कोई जैविक भूमिका नहीं है। हालांकि उच्च जीवों में कैडमियम की कोई ज्ञात जैविक भूमिका नहीं है, समुद्री [[ डायटम ]] में कैडमियम पर निर्भर [[ कार्बोनिक एनहाइड्रेज़ ]] पाया गया है। इंडियम की कोई जैविक भूमिका नहीं है और यह विषाक्त और साथ ही सुरमा हो सकता है।


टेल्यूरियम की कोई जैविक भूमिका नहीं है, हालांकि कवक इसे सल्फर और सेलेनियम के स्थान पर [[ एमिनो एसिड ]] जैसे [[ टेलुरोसिस्टीन ]] और [[ टेलुरोमेथियोनिन ]] में शामिल कर सकता है।<ref name="tellurium-fungi">{{Cite journal|doi = 10.1007/BF02917437|title = टेल्यूरियम-सहिष्णु कवक में अमीनो एसिड और प्रोटीन में टेल्यूरियम का समावेश|year = 1989|last1 = Ramadan|first1 = Shadia E.|last2 = Razak|first2 = A. A.|last3 = Ragab|first3 = A. M.|last4 = El-Meleigy|first4 = M.|journal = Biological Trace Element Research|volume = 20|pages = 225–32|pmid = 2484755|issue = 3|s2cid = 9439946}}</ref> मनुष्यों में, टेल्यूरियम को आंशिक रूप से [[ डाइमिथाइल टेलुराइड ]] में मेटाबोलाइज़ किया जाता है, (CH .)<sub>3</sub>)<sub>2</sub>ते, [[ लहसुन ]] जैसी गंध वाली एक गैस जो टेल्यूरियम विषाक्तता या जोखिम के शिकार लोगों की सांस में छोड़ी जाती है।
टेल्यूरियम की कोई जैविक भूमिका नहीं हैIहालांकि कवक इसे सल्फर और सेलेनियम के स्थान पर [[ एमिनो एसिड ]] जैसे [[ टेलुरोसिस्टीन ]] और [[ टेलुरोमेथियोनिन ]] में शामिल कर सकता है।<ref name="tellurium-fungi">{{Cite journal|doi = 10.1007/BF02917437|title = टेल्यूरियम-सहिष्णु कवक में अमीनो एसिड और प्रोटीन में टेल्यूरियम का समावेश|year = 1989|last1 = Ramadan|first1 = Shadia E.|last2 = Razak|first2 = A. A.|last3 = Ragab|first3 = A. M.|last4 = El-Meleigy|first4 = M.|journal = Biological Trace Element Research|volume = 20|pages = 225–32|pmid = 2484755|issue = 3|s2cid = 9439946}}</ref> मनुष्यों में टेल्यूरियम को आंशिक रूप से [[ डाइमिथाइल टेलुराइड ]] में मेटाबोलाइज़ किया जाता है, (CH .)<sub>3</sub>)<sub>2</sub>ते, [[ लहसुन ]] जैसी गंध वाली एक गैस जो टेल्यूरियम विषाक्तता या जोखिम के शिकार लोगों की सांस में छोड़ी जाती है।
 
आयोडीन जैविक क्रियाओं में जीवन द्वारा व्यापक रूप से उपयोग किया जाने वाला सबसे भारी [[ आवश्यक तत्व |आवश्यक तत्व]] हैI केवल [[ टंगस्टन ]], बैक्टीरिया की कुछ प्रजातियों द्वारा एंजाइमों में नियोजित होता है।  [[ आयोडीन की कमी |आयोडीन की कमी]] लगभग दो अरब लोगों को प्रभावित करती है और यह तत्व बौद्धिक अक्षमताओं की प्रमुख रोकथाम के लिए जरूरी कारक हैI <ref name="mcneil">{{Cite news|url=https://www.nytimes.com/2006/12/16/health/16iodine.html?fta=y|title=दुनिया के आईक्यू को बढ़ाने में, सीक्रेट्स इन द साल्ट|last=McNeil|first=Donald G. Jr|date=2006-12-16|work=New York Times|access-date=2008-12-04}}</ref> आयोडीन की आवश्यकता जानवरों की जैविक पूर्ती के लिए होती हैI  इसका उपयोग [[ थायराइड हार्मोन |थायराइड हार्मोन]] को संश्लेषित करने के लिए करते हैंI  आयोडीन के [[ रेडियोआइसोटोप |रेडियोआइसोटोप]] गैर-रेडियोधर्मी आयोडीन के साथ थायरॉयड ग्रंथि में केंद्रित होते हैं। रेडियोआइसोटोप [[ आयोडीन -131 |आयोडीन -131 जो]] थायरॉइड ग्रंथि में केंद्रित जरूरी तत्व हैI
 


आयोडीन जैविक क्रियाओं में जीवन द्वारा व्यापक रूप से उपयोग किया जाने वाला सबसे भारी [[ आवश्यक तत्व ]] है (केवल [[ टंगस्टन ]], बैक्टीरिया की कुछ प्रजातियों द्वारा एंजाइमों में नियोजित, भारी होता है)। कई मिट्टी में आयोडीन की दुर्लभता, क्रस्ट-तत्व के रूप में प्रारंभिक कम बहुतायत और वर्षा जल द्वारा घुलनशील आयोडाइड के लीचिंग के कारण, भूमि जानवरों और अंतर्देशीय मानव आबादी में कई कमी की समस्या पैदा हुई है। [[ आयोडीन की कमी ]] लगभग दो अरब लोगों को प्रभावित करती है और बौद्धिक अक्षमताओं का प्रमुख रोकथाम योग्य कारण है।<ref name="mcneil">{{Cite news|url=https://www.nytimes.com/2006/12/16/health/16iodine.html?fta=y|title=दुनिया के आईक्यू को बढ़ाने में, सीक्रेट्स इन द साल्ट|last=McNeil|first=Donald G. Jr|date=2006-12-16|work=New York Times|access-date=2008-12-04}}</ref> उच्च जानवरों द्वारा आयोडीन की आवश्यकता होती है, जो इसका उपयोग [[ थायराइड हार्मोन ]] को संश्लेषित करने के लिए करते हैं, जिसमें तत्व होता है। इस कार्य के कारण, आयोडीन के [[ रेडियोआइसोटोप ]] गैर-रेडियोधर्मी आयोडीन के साथ थायरॉयड ग्रंथि में केंद्रित होते हैं। रेडियोआइसोटोप [[ आयोडीन -131 ]], जिसमें उच्च [[ विखंडन उत्पाद उपज ]] है, थायरॉइड में केंद्रित है, और परमाणु विखंडन उत्पादों के सबसे कैंसरजन्य उत्पादों में से एक है।


क्सीनन की कोई जैविक भूमिका नहीं है, और इसे सामान्य संज्ञाहरण के रूप में प्रयोग किया जाता है।{{reflist|group=note}}
क्सीनन की कोई जैविक भूमिका नहीं है, और इसे सामान्य संज्ञाहरण के रूप में प्रयोग किया जाता है।{{reflist|group=note}}
Line 344: Line 317:
*क्सीनन -135
*क्सीनन -135
*बड़े पैमाने पर कणों को कमजोर रूप से बातचीत करना
*बड़े पैमाने पर कणों को कमजोर रूप से बातचीत करना
*फेंकने योग्य
*आयन थ्रस्टर
*आयन थ्रस्टर
*नाइट्रोजन नियतन
*नाइट्रोजन नियतन

Revision as of 18:16, 25 November 2022

तत्वों के रासायनिक व्यवहार में आवर्ती या आवधिक प्रवृत्तियों को चित्रित करने के लिए आवर्त सारणी को पंक्तियों में रखा गया हैI इन आवृति सारणियों को व्यवस्थित करने का कारण यह है जब इनकी परमाणु संख्या में बढ़ोत्तरी होती है तो क्रमानुसार नई पंक्ति शुरू होती हैI परमाणु संख्या में वृद्धि के चलते रासायनिक व्यवहार दोहराने की प्रक्रिया का प्रारम्भ होती हैI जिसका जिसके अंतर्गत समान व्यवहार की प्रवृत्ति वाले तत्वों जैसे ऊर्ध्वाधर स्तंभ की संरचना बनती हैI पांचवीं अवधि में 18 तत्व होते हैं जो रूबिडीयाम से शुरू होते हैं और क्सीनन के साथ समाप्त होते हैं। नियमानुसार आवर्त 5 तत्व पहले अपने 5s इलेक्ट्रॉन कवच पूर्ण करने की क्रिया करते हैंI उसी क्रम में 4डी, 5पी कोश और रोडियाम जैसे अपवाद भी शामिल हैंI

भौतिक गुण

जब तक सीसा तत्व का को ई स्थिर समस्थानिक नहीं होता तबतक सारणी में टेक्नेटियम दो तत्वों में से एक हैI साथ ही मोलिब्डेनम और आयोडीन दो ऐसे भारी तत्व हैं जो जैविक गुण के लिए जाने जाते हैंI नाइओबियम में सभी तत्वों की सबसे बड़ी चुंबकीय शक्ति का प्रवेश गहरायी से होता हैI

[1] जिक्रोन क्रिस्टल के मुख्य घटकों में से है जो वर्तमान में पृथ्वी की सतह में सबसे पुराना खनिज है। इसके बाद कई धातुओं जैसे रोडियम धातु की खोज हुईI जिसका उपयोग आमतौर पर गहनों में किया जाता है क्योंकि वे अविश्वसनीय रूप से चमकदार होते हैं।

तत्व और उनके गुण

Chemical element Block Electron configuration
 
37 Rb Rubidium s-block [Kr] 5s1
38 Sr Strontium s-block [Kr] 5s2
39 Y Yttrium d-block [Kr] 4d1 5s2
40 Zr Zirconium d-block [Kr] 4d2 5s2
41 Nb Niobium d-block [Kr] 4d4 5s1 (*)
42 Mo Molybdenum d-block [Kr] 4d5 5s1 (*)
43 Tc Technetium d-block [Kr] 4d5 5s2
44 Ru Ruthenium d-block [Kr] 4d7 5s1 (*)
45 Rh Rhodium d-block [Kr] 4d8 5s1 (*)
46 Pd Palladium d-block [Kr] 4d10 (*)
47 Ag Silver d-block [Kr] 4d10 5s1 (*)
48 Cd Cadmium d-block [Kr] 4d10 5s2
49 In Indium p-block [Kr] 4d10 5s2 5p1
50 Sn Tin p-block [Kr] 4d10 5s2 5p2
51 Sb Antimony p-block [Kr] 4d10 5s2 5p3
52 Te Tellurium p-block [Kr] 4d10 5s2 5p4
53 I Iodine p-block [Kr] 4d10 5s2 5p5
54 Xe Xenon p-block [Kr] 4d10 5s2 5p6

(*) मैडेलुंग नियम का अपवाद

एस-ब्लॉक तत्व

रुबिडियम

रुबिडियम आवर्त 5 में रखा गया पहला तत्व है। यह क्षार धातु है जो आवर्त सारणी में सबसे अधिक प्रतिक्रियाशील समूह है जिसमें अन्य क्षार धातुओं और अन्य 5 तत्वों के साथ गुण और समानताएं हैं। उदाहरण के लिए रूबिडियम में 5 इलेक्ट्रॉन कोश होते हैं जो अन्य सभी अवधि 5 तत्वों में पाया जाने वाला एक गुण है जबकि इसके इलेक्ट्रॉन विन्यास का अंत अन्य सभी क्षार धातुओं के समान हैI रुबिडियम भी बढ़ती प्रतिक्रियाशीलता रसायन विज्ञान की प्रवृत्ति का अनुसरण करता है क्योंकि क्षार धातुओं में परमाणु संख्या बढ़ जाती है क्योंकि यह पोटेशियम की तुलना में अधिक प्रतिक्रियाशील है लेकिन सीज़ियम धातु से कम है। इसके अलावापोटैशियम और रूबिडियम दोनों ही प्रज्वलन के समय लगभग समान रंग प्रकट करते हैंI शोधकर्ताओं को इन दो प्रथम समूह तत्वों के बीच अंतर करने के लिए विभिन्न तरीकों का उपयोग करना चाहिए।[2] रूबिडियम अन्य क्षार धातुओं के समान हवा में रेडोक्स के लिए अतिसंवेदनशील है इसलिए यह आसानी से रूबिडियम ऑक्साइड में बदल जाता हैI इस धातु का रासायनिक सूत्र Rb2 O हैI


स्ट्रोंटियम

स्ट्रोंटियम 5वें आवर्त सारणी में रखा गया दूसरा तत्व है। यह पृथ्वी से जनित क्षारीय धातु है I यह अपेक्षाकृत प्रतिक्रियाशील समूह है हालांकि क्षार धातुओं के रूप में प्रतिक्रियाशील नहीं होते हैं। रूबिडियम की तरह इसमें 5 इलेक्ट्रॉन के गोले या ऊर्जा स्तर होते हैं और मैडेलंग नियम के अनुसार इसके 5s इलेक्ट्रॉन शेल # सबशेल्स में दो इलेक्ट्रॉन होते हैं। स्ट्रोंटियम नरम धातु हैI पानी के संपर्क में आने पर अत्यधिक प्रतिक्रियाशील है। यह ऑक्सीजन और हाइड्रोजन दोनोंपरमाणुओं के साथ मिलकर स्ट्रोंटियम हाइड्रॉक्साइड एवं शुद्ध हाइड्रोजन गैस बनाता है जो हवा में तेजी से फैलता है। यह रूबिडियम की तरह हवा में रेडॉक्स और पीले रंग में बदल जाता है। यह आग में तेज लाल लौ के साथ प्रजव्वलित होता है I

डी-ब्लॉक तत्व

यत्रियम

एट्रियमरासायनिक तत्व है जिसका प्रतीक Y और परमाणु संख्या 39 है। यह एक चांदी-धातु संक्रमण धातु है जो रासायनिक रूप से लैंथेनाइड के समान हैI इसे अक्सर दुर्लभ पृथ्वी तत्व के रूप में वर्गीकृत किया गया है।[3] येट्रियम लगभग हमेशा दुर्लभ पृथ्वी खनिज में लैंथेनाइड्स के साथ संयुक्त पाया जाता हैI प्रकृति में कभी भी मुक्त तत्व के रूप में नहीं पाया जाता है। इसका एकमात्र स्थिर समस्थानिक 89Y, इसका एकमात्र प्राकृतिक रूप से पाया जाने वाला आइसोटोप भी है।

1787 मेंकार्ल एक्सल अरहेनियस ने स्वीडन में येटरबी के पास नया खनिज पायाI उन्होंने एक गांव के नाम पर इसका नाम गैडोलीनियम रखा। जोहान गैडोलिन ने 1789 में अरहेनियस के नमूने में येट्रियम ऑक्साइड की खोज की थी [4] जिसेएंडर्स गुस्ताफ एकेबर्ग ने नए ऑक्साइड यत्रिया नाम दिया। एलिमेंटल यट्रियम को पहली बार 1828 में फ्रेडरिक वोहलर द्वारा अलग किया गया था।[5]यट्रियम का सबसे महत्वपूर्ण उपयोग टेलीविजन सेट कैथोड रे ट्यूब ,सीआरटी डिस्प्ले और एलईडी में इस्तेमाल होने वाले लाल भास्वर बनाने में होता हैI [6] इसके अन्य उपयोगों में इलेक्ट्रोड, इलेक्ट्रोलाइट, इलेक्ट्रॉनिक फिल्टर उत्पाद शामिल हैंI हालाँकि एट्रियम की कोई ज्ञात जैविक भूमिका नहीं हैI एट्रियम यौगिकों के संपर्क में आने से मनुष्यों में फेफड़ों की बीमारी हो सकती है।[7]


ज़िरकोनियम

ज़िरकोनियम एक रासायनिक तत्व है जिसका प्रतीक Zr और परमाणु क्रमांक 40 है। ज़िरकोनियम का नाम खनिज ज़िक्रोन से लिया गया है। इसका परमाणु द्रव्यमान 91.224 है। यह चमकदार, धूसर-सफेद मजबूत धातु है जो टाइटेनियम जैसा दिखता है। ज़िरकोनियम का उपयोग मुख्य रूप से एक अपवर्तक और ओपेसिफायर के रूप में किया जाता हैI हालांकि मामूली मात्रा में जंग के लिए इसके मजबूत प्रतिरोध के लिए मिश्र धातु एजेंट के रूप में उपयोग किया जाता है। जिरकोनियम मुख्य रूप से खनिज जिक्रोन से प्राप्त होता है जो कि उपयोग में जिरकोनियम का सबसे महत्वपूर्ण रूप है।

ज़िरकोनियम क्रमशः ज़िरकोनियम डाइऑक्साइड एवंजिरकोनोसिन डाइक्लोराइड जैसे विभिन्न प्रकार के अकार्बनिक रसायन और ऑर्गोमेटेलिक यौगिक का निर्माण करता हैI इसमें पांच समस्थानिक प्राकृतिक रूप से पाए जाते हैं जिनमें से तीन स्थिर होते हैं। ज़िरकोनियम यौगिकों की कोई भी कोई अहम जैविक भूमिका नहीं है।

नाइओबियम

नाइओबियम या कोलम्बियम रासायनिक तत्व है। इसका प्रतीक Nb और परमाणु संख्या 41 हैI यह ग्रे रंग की नमनीय धातु हैI यह तत्व अक्सर पायरोक्लोर खनिज में पाया जाता हैI नाइओबियमकोलम्बाईट का मुख्य वाणिज्यिक स्रोत है। यह नाम ग्रीक पौराणिक कथाओं से आया है जिसका अर्थ है नीओब और टैंटलस की बेटी।

नाइओबियम में टैंटलम तत्व के समान भौतिक और रासायनिक गुण होते हैंI इसलिए दोनों को भेद करना मुश्किल होता है। अंग्रेजी रसायनज्ञ चार्ल्स हैचेट ने 1801 में टैंटलम के समान नए तत्व की सूचना दी और इसे कोलम्बियम नाम दिया। 1809 में अंग्रेजी रसायनज्ञ विलियम हाइड वोलास्टोन ने निष्कर्ष निकाला कि टैंटलम और कोलंबियम समान थे जो की पूर्णतया सही नहीं हैI जर्मन रसायनज्ञ हेनरिक रोज़ ने 1846 में निर्धारित किया कि टैंटलम अयस्क का दूसरा तत्व है जिसे उन्होंने नाइओबियम नाम दिया। 1864 और 1865 में वैज्ञानिक निष्कर्षों की श्रृंखला ने स्पष्ट किया कि नाइओबियम और कोलम्बियम एक ही तत्व थेI एक सदी के लिए दोनों ही तत्वों नामों का परस्पर उपयोग किया गया था। आधिकारिक तौर पर 1949 में इन्हें नाइओबियम के रूप में अपनाया गया था।

20 वीं शताब्दी की शुरुआत में पहली बार नाइओबियम का व्यावसायिक रूप से उपयोग किया गया था। ब्राज़िल नाइओबियमफेरोनियोबियम का प्रमुख उत्पादक है जो नाइओबियम और लोहे की मिश्र धातु है। नाइओबियम का उपयोग ज्यादातर मिश्र धातुओं में किया जाता हैI विशेष इस्पात में इसका सबसे बड़ा हिस्सा गैस पाइपलाइन परिवहन में उपयोग किया जाता है। हालांकि मिश्र धातुओं में अधिकतम 0.1% ही होता है, लेकिन नाइओबियम का छोटा प्रतिशत स्टील की ताकत में सुधार करता है। नाइओबियम लोहे की मिश्र धातु के उपयोग की स्थिरता जेट इंजन एवं रॉकेट इंजन में महत्वपूर्ण है। नाइओबियम का उपयोग विभिन्न अतिचालकता सामग्री में किया जाता है। नाइओबियम के अन्य अनुप्रयोगों में वेल्डिंग परमाणु उद्योग, इलेक्ट्रॉनिक्स, प्रकाशिकी, मुद्राशास्त्र और गहनों में इसका उपयोग शामिल है।

मोलिब्डेनम

मोलिब्डेनम समूह 6 का रासायनिक तत्व है जिसका प्रतीक MO और परमाणु संख्या 42 है। यह नाम प्राचीन ग्रीक से नियो-लैटिन मोलिब्डेनम से लिया गया है जिसका अर्थ है सीसा होता है I यह शब्द लुवियन भाषा एवं लिडियन भाषा के ऋण शब्द के रूप में प्रस्तावित हैI[8] कुछ जगह इसे सीसा अयस्क के रूप में जानकर भ्रमित किया गया था।[9] चांदी धातु में मोलिब्डेनम तत्व स्थित होता है I किसी भी तत्व में छठा गलनांक के रूप में होता हैI मोलिब्डेनम पृथ्वी पर मूल धातु के रूप में नहीं होता हैI बल्कि खनिजों में विभिन्न ऑक्सीकरण अवस्था में पाया जाता है। औद्योगिक रूप से मोलिब्डेनम रासायनिक यौगिक का उपयोग उच्च दबाव और उच्च तापमान अनुप्रयोगों में वर्णक और कटैलिसीस रासायनिक तत्व के तौर पर विद्यमान है I

मोलिब्डेनम खनिजों को लंबे समय से जाना जाता है लेकिन इस तत्व की खोज 1778 में कार्ल विल्हेम शीले द्वारा की गई थीI धातु को पहली बार 1781 में पीटर जैकब हेलमेट द्वारा अलग किया गया था। अधिकांश मोलिब्डेनम यौगिक पानी में कम घुलनशील होते हैंI मोलिब्डेट आयन MoO42− में घुलनशील होता हैI यह तब बनता है जब मोलिब्डेनम युक्त खनिज ऑक्सीजन और पानी के संपर्क में आते हैं।

टेक्नेटियम

टेक्नेटियम रासायनिक तत्व है जिसका परमाणु क्रमांक 43 और प्रतीक Tc है। यह बिना किसी स्थिर समस्थानिक के सबसे कम परमाणु क्रमांक वाला तत्व हैI इसका हर रूप रेडियोधर्मी है। लगभग सभी टेक्नेटियम कृत्रिम रूप से निर्मित होते हैं और प्रकृति में केवल थोड़ी मात्रा में पाए जाते हैं। स्वाभाविक रूप से उतपन्न होने वाला टेक्नेटियम यूरेनियम अयस्क में सहज विखंडन उत्पाद के रूप में या मोलिब्डेनम अयस्क में न्यूट्रॉन कैप्चर के रूप में होता है। सिल्वर ग्रे क्रिस्टलीय धातु के रासायनिक गुण यूरेनियम अयस्क एवं मैंगनीज के बीच पाए जाते हैं।

टेक्नेटियम तत्व की खोज के पहले ही दिमित्री मेंडेलीव द्वारा इसके गुणों की भविष्यवाणी की गई थी। 1937 में टेक्नेटियम विशेष रूप से टेक्नेटियम-97 आइसोटोप उत्पादित होने वाला मुख्य रूप से पहला कृत्रिम तत्व बन गयाI इसका नाम ग्रीक भाषा से उत्पन्न हुआI

इसका अल्पकालिक गामा किरण -उत्सर्जक परमाणु आइसोमर-टेक्नेटियम-99m-का उपयोग विभिन्न प्रकार के नैदानिक ​​​​परीक्षणों के लिए परमाणु चिकित्सा में किया जाता है। टेक्नेटियम-99 का उपयोग बीटा कण के गामा किरण-मुक्त स्रोत के रूप में किया जाता है। व्यावसायिक रूप से उत्पादित टेक्नेटियम के लंबे समय तक रहने वाले आइसोटोप परमाणु रिएक्टरों में यूरेनियम-235 के परमाणु विखंडन के उप-उत्पाद हैंI यह परमाणु ईंधन चक्र से निकाले जाते हैं। टेक्नेटियम के किसी भी समस्थानिक का आधा जीवन 4.2 मिलियन वर्ष से अधिक लंबा नहीं होता हैI

रूथेनियम

रूथेनियम रासायनिक तत्व है जिसका प्रतीक आरयू और परमाणु संख्या 44 है। यह प्लैटिनम समूह की दुर्लभ धातु है। प्लैटिनम समूह की अन्य धातुओं की तरह रूथेनियम भी अधिकांश रसायनों के लिए निष्क्रिय है। रूस के वैज्ञानिक कार्ल अर्नेस्ट क्लॉस ने 1844 में रूथेनियम तत्व की खोज की एवं इसका नाम रूथेनिया के नाम पर रखा जिसकी व्युत्पत्ति लैटिन शब्द से हुई हैI रूथेनियम आमतौर पर प्लेटिनम अयस्कों का घटक है I दुनिया भर में इसका वार्षिक उत्पादन मात्र 12 टन है। रूथेनियम का उपयोग अधिकांश तौर पर विद्युत प्रतिरोधक एवं फिल्म प्रतिरोधों के उत्पादन के लिए किया जाता है। प्लैटिनम मिश्रित धातु में इसका उपयोग होता हैI

रोडियम

रोडियम वह रासायनिक तत्व है जिसका उपयोग दुर्लभ सफेद चांदी में होता हैI यह तत्व प्लैटिनम समूह का सदस्य है। इसका रासायनिक प्रतीक Rh व परमाणु क्रमांक 45 है। यह समस्थानिक से 103Rh से निर्मित हैI स्वाभाविक रूप से रोडियम मुक्त धातु के रूप में पाई जाती हैI यह समान धातुओं के साथ मिश्रित होती है और कभी भी रासायनिक यौगिक के रूप में नहीं होती है। यह सबसे दुर्लभ कीमती और सबसे महंगी धातुओं में से एक हैI

1803 में विलियम हाइड वोलास्टन द्वारा ऐसे ही अयस्क में रासायनिक तत्वों की खोज थीI विश्व में इस रोडियम तत्व का उत्पादन लगभग 80% उत्प्रेरक के तौर पर होता है I रोडियम धातु जंग और सबसे आक्रामक रसायनों के खिलाफ निष्क्रिय हैI रोडियम की दुर्लभता के कारण इसे प्लैटिनम के साथ मिश्रित किया जाता है I इसका उपयोग उच्च तापमान और संक्षारण प्रतिरोधी कोटिंग्स में किया जाता है। सफ़ेद सोने की धातुए में ऑप्टिकल युक्त या चमक को प्रभावी बनाने के लिए रोडियम का उपयोग किया जाता है जबकि चांदी युक्त धातु में धूमिल प्रतिरोधक के लिए रोडियम चढ़ाया जाता है।

पैलेडियम

पैलेडियम रासायनिक प्रतीक पीडी और 46 की परमाणु संख्या के साथ एक रासायनिक तत्व है। यह विलियम हाइड वोलास्टन द्वारा 1803 में खोजी गई एक दुर्लभ और चमकदार चांदी-सफेद धातु है। उन्होंने इसका नाम 2 पलास के नाम पर रखाI इसका नाम ग्रीक पौराणिक कथाओं की देवी एथेना के नाम पर रखा गया थाI पैलेडियम, प्लैटिनम, रोडियम, इरिडियम और आज़मियम तत्वों का समूह बनाते हैं जिन्हें प्लैटिनम समूह धातु "पीजीएम" कहा जाता है। इनमें समान रासायनिक गुण होते हैं लेकिन इसका गलनांक सबसे कम होता है।

पैलेडियम और अन्य प्लैटिनम समूह धातुओं के अद्वितीय गुण उनके व्यापक उपयोग के लिए जिम्मेदार हैं। प्लैटिनम की आपूर्ति का आधे से अधिक भागउत्प्रेरक परिवर्तक में ट्रांसफर हो जाता है I जो ऑटो एग्जॉस्ट हाइड्रोकार्बन, कार्बन मोनोआक्साइड,नाइट्रोजन डाइऑक्साइड 90% हानिकारक गैसों को कम हानिकारक पदार्थों जैसे नाइट्रोजन, कार्बन आदि तत्व में परिवर्तित कर देता हैI पैलेडियम का उपयोग इलेक्ट्रॉनिक्स, दंत चिकित्सा , चिकित्सा, हाइड्रोजन शुद्धिकरण, रासायनिक अनुप्रयोगों और भूजल उपचार में भी किया जाता है। पैलेडियम ईंधन कोशिकाओं के लिए उपयोग की जाने वाली तकनीक में महत्वपूर्ण भूमिका निभाता हैI जो बिजली, गर्मी और पानी का उत्पादन करने के लिए हाइड्रोजन और ऑक्सीजन को परस्पर जोड़ती है।

चांदी

चांदी एक धात्विक रासायनिक तत्व है जिसका रासायनिक प्रतीक Ag और परमाणु संख्या 47 हैI यह नरम, सफेद, चमकदार धातु होती हैI इसमें किसी भी तत्व की उच्चतम विद्युत चालकता और किसी भी धातु की उच्चतम तापीय चालकता है। धातु प्राकृतिक रूप से शुद्ध, सोने और अन्य धातुओं के साथ मिश्र धातु के रूप में, और खनिजों में जैसे कि अर्जेन्ट्स और क्लोरार्गाइराइट में पायी जाती है। अधिकांश चांदी का उत्पादन तांबा, सोना, सीसा ,जस्ता शोधन के उपोत्पाद के रूप में किया जाता है।

चांदी को लंबे समय से कीमती धातु के रूप में महत्व दिया गया हैI इसका उपयोग गहने, गहने, उच्च मूल्य वाले टेबलवेयर, बर्तन और मुद्रा सिक्के बनाने के लिए किया जाता है। आज चांदी धातु का उपयोग विद्युत संपर्कों,विद्युत कंडक्टर में, दर्पणों में और रासायनिक प्रतिक्रियाओं के उत्प्रेरण में भी किया जाता है। इसके यौगिकों का उपयोग फ़ोटोग्राफिक फिल्म में किया जाता हैI इसके अतिरिक्त इसका इस्तेमालसिल्वर नाइट्रेट घोल एवं अन्य यौगिक जैसे कीटाणुनाशक और माइक्रोबायोसाइड के रूप में किया जाता है। जबकि चांदी के कई चिकित्सा रोगाणुरोधी उपयोग एंटीबायोटिक दवाओं द्वारा प्रतिस्थापित किए गए हैंI इसके नैदानिक ​​​​क्षमता के शोध जारी है।

कैडमियम

डमियम का प्रतीक सीडी और परमाणु संख्या 48 है। यह नरम, नीला-सफेद धातु रासायनिक रूप से समूह 12 तत्व , जस्ता और पारा में दो अन्य स्थिर धातुओं के समान है। जस्ता की तरह ही यह अधिकांश यौगिकों में ऑक्सीकरण अवस्था A+2 को प्राथमिकता देता है I कैडमियम में मौलिक या सामान्य ऑक्सीकरण में डी या एफ इलेक्ट्रॉन नहीं होते हैं। पृथ्वी की सतह में कैडमियम की औसत सांद्रता 0.1 और 0.5 भाग प्रति मिलियन पीपीएम के बीच स्थित होती है। इसे 1817 में एक साथ फ्रेडरिक स्ट्रोमेयर एवंकार्ल सैमुअल लेबेरेच्ट हरमन द्वारा जर्मनी में जस्ता कार्बोनेट के रूप में खोजा गया था।

अधिकांश जस्ता अयस्कों में कैडमियम मामूली घटक के रूप में स्थित होता हैI यह वर्णक के रूप में और संक्षारण प्रतिरोधी के लिए उपयोग किया जाता था जबकि कैडमियम यौगिक का उपयोग प्लास्टिक को स्थिर करने के लिए किया जाता था। निकल-कैडमियम बैटरी, कैडमियम टेलुराइड एवं सौर पैनलों में इसका उपयोग के कम हो रहा है।

पी-ब्लॉक तत्व

ईण्डीयुम

इंडियम एक रासायनिक तत्व है जिसका प्रतीक इन और परमाणु संख्या 49 है। यह दुर्लभ बहुत नरम और आसानी से गलने योग्य मिश्र धातु हैI अन्य धातु रासायनिक रूप से यह धातु गैलियम और थालियम के समान हैI यह धातु इन दोनों के बीच के मध्यवर्ती गुण को दर्शाता है। इंडियम की खोज 1863 में की गई थी जिंक अयस्क इंडियम का प्राथमिक स्रोत बना है जहां यह यौगिक रूप में पाया जाता है। इंडियम का वर्तमान प्राथमिक अनुप्रयोग लिक्विड क्रिस्टल डिस्प्ले और टच स्क्रीन में इंडियम टिन ऑक्साइड से पारदर्शी इलेक्ट्रोड बनाने के लिए किया जाता हैI वैश्विक खनन उत्पादन के लिए बड़े पैमाने पर इसका उपयोग होता हैI व्यापक रूप से पतली फिल्मों में परतें बनाने के लिए भी इस तत्व का उपयोग किया जाता हैI

इंडियम किसी भी जीव द्वारा उपयोग किए जाने के लिए उचित तत्व नहीं है। रेडियोधर्मी इंडियम-111 का उपयोग रासायनिक आधार पर बहुत कम मात्रा में परमाणु चिकित्सा परीक्षणों में किया जाता हैI शरीर में लेबल किए गए प्रोटीन और ईण्डीयुम ल्यूकोसाइट इमेजिंग के लिए रेडियोट्रेसर के रूप में विस्तृत प्रयोग होता है।

टिन

टिन रासायनिक तत्व का प्रतीक Sn और परमाणु क्रमांक 50 है। यह आवर्त सारणी के समूह 14 में एक मुख्य-समूह तत्व में शामिल हैI टिनजर्मेनियम और लेड दोनों के लिए रासायनिक समानता प्रस्तुत करता हैI इसकी दो संभावित ऑक्सीकरण अवस्थाएँ हैंI टिन धातुओं में 49 वां सबसे प्रचुर तत्व है और इसमें 10 स्थिर समस्थानिक हैं जो आवर्त सारणी में सबसे अधिक स्थिर समस्थानिक हैं। टिन मुख्य रूप से खनिज कैसिटराइट से प्राप्त होता है जहां यह टिन डाइऑक्साइड SnO . के रूप में होता हैI

यह धातु चांदी व अन्य धातु में आसानी से ऑक्सीकृत नहीं होता हैI इस धातु का इस्तेमाल युद्ध आदि में अन्य धातुओं को कोट करने के लिए होता हैI 3000 ईसा पूर्व से बड़े पैमाने पर इस्तेमाल किया जाने वाला पहला मिश्र धातु, कांस्य, टिन और तांबे का मिश्र धातु थाI. 600 ईसा पूर्व के बाद शुद्ध धात्विक टिन के डब्बे का उत्पादन शुरू हुआ पारितोषिक जो 85-90% टिन का मिश्र धातु है शेष आमतौर पर तांबा सुरमा ,सीसा से युक्त हैI आधुनिक समय में टिन का उपयोग कई मिश्र धातुओं में किया जाता हैI विशेष रूप से इसका उपयोग टिन/लीड सॉफ्ट सेलर्स जिसमें आमतौर पर 60% या अधिक टिन होता है,उसके लिए किया जाता है। कम विषाक्तता के कारण टिन-प्लेटेड धातु का उपयोग खाद्य पैकेजिंग के लिए भी किया जाता हैI

सुरमा

सुरमा जहरीला रासायनिक तत्व है जिसका प्रतीक Sb और 51 की परमाणु संख्या है। चमकदार ग्रे धातु के रूप-रंग का यह अधातु पदार्थ प्रकृति में मुख्य रूप से सल्फाइड खनिज स्टिफ़नर Sb के रूप में पाया जाता है। सुरमा यौगिकों को प्राचीन काल से जाना जाता है और सौंदर्य प्रसाधनों के लिए उपयोग किया जाता थाI

कुछ समय के लिए चीन सुरमा और इसके यौगिकों का सबसे बड़ा उत्पादक देश रहा हैI कई वाणिज्यिक और घरेलू उत्पादों में पाए जाने वाले अग्निरोधी युक्त क्लोरीन और ब्रोमीन के लिए सुरमा यौगिक प्रमुख योजक हैं। धातु सुरमा के लिए सबसे बड़ा अनुप्रयोग सीसा और टिन के लिए मिश्र धातु सामग्री के रूप में है। यह मिश्र धातुओं के गुणों में सुधार करता है जिनका उपयोग सोल्डर, बुलेट और बॉल बियरिंग में किया जाता है। माइक्रोइलेक्ट्रॉनिक्स में सुरमा का उभरता हुआ अनुप्रयोग है।

टेल्यूरियम

टेल्यूरियम वह रासायनिक तत्व है जिसका प्रतीक टी और परमाणु संख्या 52 है। एक भंगुर, हल्का विषाक्त, दुर्लभ, चांदी-सफेद धातु जो टिन के समान दिखता हैI टेल्यूरियम रासायनिक रूप से सेलेनियम तथागंधक से संबंधित है। यह कभी-कभी मूल रूप में मौलिक क्रिस्टल के रूप में पाया जाता है। ब्रह्मांड में टेल्यूरियम पृथ्वी की तुलना में कहीं अधिक सामान्य है। प्लेटिनम की तुलना में पृथ्वी की सतह पर रासायनिक तत्वों की अत्यधिक प्रचुरता इसकी उच्च परमाणु संख्या के कारण हैI

टेल्यूरियम की खोज 1782 में ट्रांसिल्वेनिया जिसे आज रोमानिया के हिस्से के तौर पर जानते हैं I इसकी खोज फ्रांज-जोसेफ मुलर वॉन रीचेंस्टीन द्वारा टेल्यूरियम और सोने वाले खनिज के रूप में में की गई थी। मार्टिन हेनरिक क्लैप्रोथ ने 1798 में नए तत्व का नाम पृथ्वी के लैटिन शब्द 'टेलस' के नाम पर रखा। सोने के टेलुराइड खनिज सबसे उल्लेखनीय प्राकृतिक सोने के यौगिक हैं। हालांकि वे टेल्यूरियम का व्यावसायिक रूप से महत्वपूर्ण स्रोत नहीं हैं जिसे आमतौर पर तांबे और सीसा उत्पादन के उप-उत्पाद के रूप में उपयोग किया जाता हैI

टेल्यूरियम का व्यावसायिक रूप से प्रयोग मुख्य रूप से मिश्र धातुओं में किया जाता हैI सबसे पहले स्टील और तांबे में की गुणवत्ता में सुधार करने के लिए इसका उपयोग होता थाIफोटोवोल्टिक मॉड्यूल में अर्धचालक सामग्री के रूप में भी टेल्यूरियम के अंश का उपभोग होता हैI

आयोडीन

आयोडीन वह रासायनिक तत्व है जिसका प्रतीक I व परमाणु क्रमांक 53 है। यह नाम प्राचीन यूनानी भाषा से लिया गया हैI जिसका अर्थ है बैंगनी या बैंगनीI आयोडीन और इसके यौगिकों का उपयोग मुख्य रूप से सिरका अम्ल एवं कुछ पॉलिमर के उत्पादन में किया जाता है। आज के समय में आयोडीन तत्व एक्स-रे कंट्रास्ट सामग्री का हिस्सा बना दिया गया है। चिकित्सा अनुप्रयोगों में कई जगह आयोडीन रेडियोआइसोटोप का भी उपयोग किया जाता है।

पृथ्वी पर आयोडीन मुख्य रूप से पानी में अत्यधिक घुलनशील आयोडाइड के रूप में पाया जाता है जो इसे महासागरों और नमकीन पूलों में केंद्रित करता है। ब्रह्मांड में आयोडीन की उच्च परमाणु संख्या तत्व देखने को मिलती है जिसके कारण इस तत्व की धातु की सर्वाधिक प्रचुरता पायी जाती हैI हालाँकि समुद्र के पानी में इसकी उपस्थिति के चलते इसे जैविक भूमिका प्रदान की गयी हैI

क्सीनन

क्सीनन एक रासायनिक तत्व है जिसका रासायनिक प्रतीक Xe और परमाणु क्रमांक 54 है। यह रंगहीन, भारी, गंधहीन गैस हैI क्सीनन पृथ्वी के वायुमंडल में बहुत कम मात्रा में पाई जाती है।[10] हालांकि आम तौर पर यह अक्रियाशील होती हैI क्सीनन 40 से अधिक अस्थिर समस्थानिक भी हैं जो रेडियोधर्मी प्रक्रिया से गुजरते हैं। क्सीनन समस्थानिक अनुपात सौर मंडल के प्रारंभिक इतिहास के अध्ययन के लिए एक महत्वपूर्ण उपकरण हैं।[11] रेडियोधर्मी क्सीनन-135 परमाणु विखंडन के परिणामस्वरूप आयोडीन-135 से उत्पन्न होता हैI यह परमाणु रिएक्टरों में सबसे महत्वपूर्ण न्यूट्रॉन अवशोषक के रूप में कार्य करता है।[12]

क्सीनन फ्लैश लैंप में इसका उपयोग किया जाता हैI[13] शुरुआती दौर में लेजर के रूप में इसका उपयोग सर्वाधिक होता थाI लेजर डिजाइनों में लेजर पम्पिंग के रूप में क्सीनन फ्लैश लैंप का इस्तेमाल किया गया था।[14] क्सीनन का उपयोग अंतरिक्ष यान में आयन प्रणोदकों के प्रणोदक के रूप में परस्पर क्रिया करने वाले बड़े कणों की खोज के लिए भी किया जा रहा है[15] [16]


जैविक भूमिका

रूबिडियम, स्ट्रोंटियम, येट्रियम, ज़िरकोनियम और नाइओबियम की कोई जैविक भूमिका नहीं है। येट्रियम इंसानों में फेफड़ों की बीमारी का कारण बन सकता है।

मोलिब्डेनम युक्त एंजाइमों का उपयोग कुछ बैक्टीरिया द्वारा वायुमंडलीय आणविक नाइट्रोजन में रासायनिक बंध न को तोड़ने के लिए उत्प्रेरक के रूप में किया जाता है, जिससे जैविक नाइट्रोजन स्थिरीकरण होता है। कम से कम 50 मोलिब्डेनम युक्त एंजाइम अब बैक्टीरिया और जानवरों में जाने जाते हैं, हालांकि नाइट्रोजन निर्धारण में केवल बैक्टीरिया और साइनोबैक्टीरियल एंजाइम शामिल होते हैं। शेष एंजाइमों के विविध कार्यों के कारण, मोलिब्डेनम उच्च जीवों (यूकैर्योसाइटों ) में जीवन के लिए एक आवश्यक तत्व है, हालांकि सभी बैक्टीरिया में नहीं।

टेक्नेटियम, रूथेनियम, रोडियम, पैलेडियम, सिल्वर, टिन और सुरमा की कोई जैविक भूमिका नहीं है। हालांकि उच्च जीवों में कैडमियम की कोई ज्ञात जैविक भूमिका नहीं है, समुद्री डायटम में कैडमियम पर निर्भर कार्बोनिक एनहाइड्रेज़ पाया गया है। इंडियम की कोई जैविक भूमिका नहीं है और यह विषाक्त और साथ ही सुरमा हो सकता है।

टेल्यूरियम की कोई जैविक भूमिका नहीं हैIहालांकि कवक इसे सल्फर और सेलेनियम के स्थान पर एमिनो एसिड जैसे टेलुरोसिस्टीन और टेलुरोमेथियोनिन में शामिल कर सकता है।[17] मनुष्यों में टेल्यूरियम को आंशिक रूप से डाइमिथाइल टेलुराइड में मेटाबोलाइज़ किया जाता है, (CH .)3)2ते, लहसुन जैसी गंध वाली एक गैस जो टेल्यूरियम विषाक्तता या जोखिम के शिकार लोगों की सांस में छोड़ी जाती है।

आयोडीन जैविक क्रियाओं में जीवन द्वारा व्यापक रूप से उपयोग किया जाने वाला सबसे भारी आवश्यक तत्व हैI केवल टंगस्टन , बैक्टीरिया की कुछ प्रजातियों द्वारा एंजाइमों में नियोजित होता है। आयोडीन की कमी लगभग दो अरब लोगों को प्रभावित करती है और यह तत्व बौद्धिक अक्षमताओं की प्रमुख रोकथाम के लिए जरूरी कारक हैI [18] आयोडीन की आवश्यकता जानवरों की जैविक पूर्ती के लिए होती हैI इसका उपयोग थायराइड हार्मोन को संश्लेषित करने के लिए करते हैंI आयोडीन के रेडियोआइसोटोप गैर-रेडियोधर्मी आयोडीन के साथ थायरॉयड ग्रंथि में केंद्रित होते हैं। रेडियोआइसोटोप आयोडीन -131 जो थायरॉइड ग्रंथि में केंद्रित जरूरी तत्व हैI


क्सीनन की कोई जैविक भूमिका नहीं है, और इसे सामान्य संज्ञाहरण के रूप में प्रयोग किया जाता है।


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • प्रमुख
  • मैडेलुंग नियम
  • ऋणावेशित सूक्ष्म अणु का विन्यास
  • अलकाली धातु
  • ज्योति
  • वायु
  • प्रसार
  • क्षारीय धातु
  • पीला
  • अवधि (आवर्त सारणी)
  • उर्जा स्तर
  • एल्कलाइन अर्थ मेटल
  • परमाणु क्रमांक
  • आइसोटोप
  • Ytterby
  • तत्व का पता लगाएं
  • अकार्बनिक रसायन शास्त्र
  • आग रोक
  • निओबे
  • न्यूमिज़माटिक्स
  • ग्रीक पौराणिक कथाएँ
  • चुम्बकीय अनुनाद इमेजिंग
  • प्राचीन यूनानी
  • ग्रहण
  • अनातोलियन भाषाएं
  • अधिक दबाव
  • देशी धातु
  • पिगमेंट
  • गलनांक द्वारा तत्वों की सूची
  • लाल विशाल
  • परमाणु समावयवी
  • नाभिकीय औषधि
  • परमाणु रिऐक्टर
  • हाफ लाइफ
  • टेक्नेटियम के समस्थानिक
  • प्लेटिनम समूह
  • स्टर्लिंग सिल्वर
  • सफेद सोना
  • न्यूट्रॉन का पता लगाना
  • बहुमूल्य धातु
  • सोना
  • विशेषण
  • संयोजक (रसायन विज्ञान)
  • कार्बन डाइआक्साइड
  • पैलेडियम एक निवेश के रूप में
  • भाप
  • ईंधन सेल
  • स्थिर जल आग्नेय परिसर
  • थंडर बे जिला
  • नाइट्रोजन डाइऑक्साइड
  • दवा
  • सिक्का
  • ताँबा
  • निस्संक्रामक
  • इलेक्ट्रिकल कंडक्टीविटी
  • जेवर
  • ऊष्मीय चालकता
  • जिंक कार्बोनेट
  • रंग
  • सौर पेनल
  • हवाई जहाज
  • फ़्यूज़िबल मिश्र धातु
  • मुख्य समूह तत्व
  • पीतल
  • लचीला
  • मिलाप
  • टिन प्लेटिंग
  • सेमीकंडक्टर
  • रासायनिक तत्वों की प्रचुरता
  • दो परमाणुओंवाला
  • सौर प्रणाली
  • क्सीनन -135
  • बड़े पैमाने पर कणों को कमजोर रूप से बातचीत करना
  • आयन थ्रस्टर
  • नाइट्रोजन नियतन
  • बौद्धिक विकलांग
  • थाइरॉयड ग्रंथि
  • कासीनजन

संदर्भ

  1. Gray, Theodore (2009). तत्व: ब्रह्मांड में प्रत्येक ज्ञात परमाणु का एक दृश्य अन्वेषण. New York: Black Dog & Leventhal Publishers. ISBN 978-1-57912-814-2.
  2. "लौ परीक्षण". Webmineral.com. Retrieved 2012-08-13.
  3. IUPAC contributors (2005). N G Connelly; T Damhus; R M Hartshorn; A T Hutton (eds.). अकार्बनिक रसायन विज्ञान का नामकरण: IUPAC अनुशंसाएँ 2005 (PDF). RSC Publishing. p. 51. ISBN 0-85404-438-8. Archived from the original (PDF) on 2009-03-04. Retrieved 2007-12-17. {{cite book}}: |author= has generic name (help)
  4. Van der Krogt 2005
  5. CRC contributors (2007–2008). "Yttrium". In Lide, David R. (ed.). केमेस्ट्री और फ़ीजिक्स के लिए सीआरसी हैंडबुक. Vol. 4. New York: CRC Press. p. 41. ISBN 978-0-8493-0488-0. {{cite book}}: |author= has generic name (help)
  6. Cotton, Simon A. (2006-03-15). "Scandium, Yttrium & the Lanthanides: Inorganic & Coordination Chemistry". अकार्बनिक रसायन विज्ञान का विश्वकोश. doi:10.1002/0470862106.ia211. ISBN 0-470-86078-2.
  7. OSHA contributors (2007-01-11). "येट्रियम और यौगिकों के लिए व्यावसायिक सुरक्षा और स्वास्थ्य दिशानिर्देश". United States Occupational Safety and Health Administration. Archived from the original on 2013-03-02. Retrieved 2008-08-03. {{cite web}}: |author= has generic name (help) (public domain text)
  8. Melchert, Craig. "Lydian . से ऋण शब्द के रूप में ग्रीक मोलिब्डोस" (PDF). University of North Carolina at Chapel Hill. Archived from the original (PDF) on 2008-10-12. Retrieved 2011-04-23.
  9. editor-in-chief David R. Lide. (1994). "Molybdenum". In Lide, David R. (ed.). केमेस्ट्री और फ़ीजिक्स के लिए सीआरसी हैंडबुक. Vol. 4. Chemical Rubber Publishing Company. p. 18. ISBN 0-8493-0474-1. {{cite book}}: |author= has generic name (help)
  10. Staff (2007). "क्सीनन". Columbia Electronic Encyclopedia (6th ed.). Columbia University Press. Retrieved 2007-10-23.
  11. Kaneoka, Ichiro (1998). "क्सीनन की अंदरूनी कहानी". Science. 280 (5365): 851–852. doi:10.1126/science.280.5365.851b. S2CID 128502357.
  12. Stacey, Weston M. (2007). परमाणु रिएक्टर भौतिकी. Wiley-VCH. p. 213. ISBN 978-3-527-40679-1.
  13. Anonymous. "इतिहास". Millisecond Cinematography. Archived from the original on 2006-08-22. Retrieved 2007-11-07.
  14. Toyserkani, E.; Khajepour, A.; Corbin, S. (2004). लेजर क्लैडिंग. CRC Press. p. 48. ISBN 0-8493-2172-7.
  15. Ball, Philip (May 1, 2002). "क्सीनन WIMPs को बाहर करता है". Nature. Retrieved 2007-10-08.
  16. Saccoccia, G.; del Amo, J. G.; Estublier, D. (August 31, 2006). "आयन इंजन को चंद्रमा पर मिला स्मार्ट-1". ESA. Retrieved 2007-10-01.
  17. Ramadan, Shadia E.; Razak, A. A.; Ragab, A. M.; El-Meleigy, M. (1989). "टेल्यूरियम-सहिष्णु कवक में अमीनो एसिड और प्रोटीन में टेल्यूरियम का समावेश". Biological Trace Element Research. 20 (3): 225–32. doi:10.1007/BF02917437. PMID 2484755. S2CID 9439946.
  18. McNeil, Donald G. Jr (2006-12-16). "दुनिया के आईक्यू को बढ़ाने में, सीक्रेट्स इन द साल्ट". New York Times. Retrieved 2008-12-04.