मॉड्यूल (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 24: | Line 24: | ||
#<math> ( r s ) \cdot x = r \cdot ( s \cdot x ) </math> | #<math> ( r s ) \cdot x = r \cdot ( s \cdot x ) </math> | ||
#<math> 1 \cdot x = x .</math> | #<math> 1 \cdot x = x .</math> | ||
संक्रिया (·) को अदिश गुणन कहते हैं। अक्सर प्रतीक (·) को छोड़ दिया जाता है, लेकिन इस लेख में हम इसका उपयोग करते हैं और R में गुणन के लिए संसर्ग आरक्षित रखते हैं। | संक्रिया (·) को अदिश गुणन कहते हैं। अक्सर प्रतीक (·) को छोड़ दिया जाता है, लेकिन इस लेख में हम इसका उपयोग करते हैं और R में गुणन के लिए संसर्ग आरक्षित रखते हैं। कोई इस बात पर ज़ोर देने के लिए <sub>''R''</sub>''M'' लिख सकता है कि M एक बायाँ R-मॉड्यूल है। एक सही R-मॉड्यूल ''M<sub>R</sub>'' को ऑपरेशन के संदर्भ में समान रूप से {{nowrap|· : ''M'' × ''R'' → ''M''}}. परिभाषित किया गया है | ||
जिन लेखकों को [[एकात्मक बीजगणित]] होने के लिए वलय की आवश्यकता नहीं है, वे उपरोक्त परिभाषा में शर्त 4 को छोड़ | जिन लेखकों को [[एकात्मक बीजगणित]] होने के लिए वलय की आवश्यकता नहीं है, वे उपरोक्त परिभाषा में शर्त 4 को छोड़ दें; वे ऊपर परिभाषित संरचनाओं को "इकाई बाया R-मॉड्यूल" कहेंगे।। इस लेख में, [[रिंग थ्योरी की शब्दावली|वलय सिद्धांत की शब्दावली]] के अनुरूप, सभी वलयों और मॉड्यूल्स को एकात्मक माना जाता है।<ref name="DummitFoote">{{cite book | title=सार बीजगणित| publisher=John Wiley & Sons, Inc. |author1=Dummit, David S. |author2=Foote, Richard M. |name-list-style=amp | year=2004 | location=Hoboken, NJ | isbn=978-0-471-43334-7}}</ref> | ||
यदि | An (R, S)-बिमॉड्यूल एक विनिमेय समूह है जिसमें R के तत्वों द्वारा · बाएं अदिश गुणा · और S के तत्वों द्वारा दाएं अदिश गुणा * दोनों शामिल हैं, इसे एक साथ एक बाएं R-मॉड्यूल और एक दाएं S-मॉड्यूल बनाते हैं, R में सभी R, M में X, और S में S के लिए अतिरिक्त शर्त (''r'' · ''x'') ∗ ''s'' = ''r'' ⋅ (''x'' ∗ ''s'') को संतुष्ट करता हैं। | ||
यदि R [[क्रमविनिमेय अंगूठी|क्रमविनिमेय वलय]] है, तो बाएं R-मॉड्यूल दाएं R-मॉड्यूल के समान होते हैं और उन्हें केवल R-मॉड्यूल कहा जाता है। | |||
== उदाहरण == | == उदाहरण == | ||
Line 37: | Line 38: | ||
*'जेड'-मॉड्यूल की अवधारणा एक विनिमेय समूह की धारणा से सहमत है। अर्थात्, प्रत्येक विनिमेय समूह एक अनोखे तरीके से पूर्णांक 'Z' के वलय पर एक मॉड्यूल है। के लिये {{nowrap|''n'' > 0}}, होने देना {{nowrap|1=''n'' ⋅ ''x'' = ''x'' + ''x'' + ... + ''x''}} (एन योग), {{nowrap|1=0 ⋅ ''x'' = 0}}, तथा {{nowrap|1=(−''n'') ⋅ ''x'' = −(''n'' ⋅ ''x'')}}. इस तरह के एक मॉड्यूल के लिए एक आधार (रैखिक बीजगणित) की आवश्यकता नहीं है - मरोड़ वाले तत्वों वाले समूह नहीं हैं। (उदाहरण के लिए, पूर्णांक अंकगणितीय 3 के समूह में, एक भी तत्व नहीं मिल सकता है जो एक रैखिक रूप से स्वतंत्र सेट की परिभाषा को संतुष्ट करता है, क्योंकि जब एक पूर्णांक जैसे 3 या 6 एक तत्व को गुणा करता है, तो परिणाम 0 होता है। हालाँकि, यदि कोई [[परिमित क्षेत्र]] को वलय के रूप में लिए गए परिमित क्षेत्र पर एक मॉड्यूल के रूप में माना जाता है, यह एक सदिश स्थान है और इसका एक आधार है।) | *'जेड'-मॉड्यूल की अवधारणा एक विनिमेय समूह की धारणा से सहमत है। अर्थात्, प्रत्येक विनिमेय समूह एक अनोखे तरीके से पूर्णांक 'Z' के वलय पर एक मॉड्यूल है। के लिये {{nowrap|''n'' > 0}}, होने देना {{nowrap|1=''n'' ⋅ ''x'' = ''x'' + ''x'' + ... + ''x''}} (एन योग), {{nowrap|1=0 ⋅ ''x'' = 0}}, तथा {{nowrap|1=(−''n'') ⋅ ''x'' = −(''n'' ⋅ ''x'')}}. इस तरह के एक मॉड्यूल के लिए एक आधार (रैखिक बीजगणित) की आवश्यकता नहीं है - मरोड़ वाले तत्वों वाले समूह नहीं हैं। (उदाहरण के लिए, पूर्णांक अंकगणितीय 3 के समूह में, एक भी तत्व नहीं मिल सकता है जो एक रैखिक रूप से स्वतंत्र सेट की परिभाषा को संतुष्ट करता है, क्योंकि जब एक पूर्णांक जैसे 3 या 6 एक तत्व को गुणा करता है, तो परिणाम 0 होता है। हालाँकि, यदि कोई [[परिमित क्षेत्र]] को वलय के रूप में लिए गए परिमित क्षेत्र पर एक मॉड्यूल के रूप में माना जाता है, यह एक सदिश स्थान है और इसका एक आधार है।) | ||
*दशमलव भिन्न (नकारात्मक सहित) पूर्णांकों पर एक मॉड्यूल बनाते हैं। केवल [[सिंगलटन (गणित)]] रैखिक रूप से स्वतंत्र सेट हैं, लेकिन कोई सिंगलटन नहीं है जो आधार के रूप में काम कर सके, इसलिए मॉड्यूल का कोई आधार नहीं है और कोई रैंक नहीं है। | *दशमलव भिन्न (नकारात्मक सहित) पूर्णांकों पर एक मॉड्यूल बनाते हैं। केवल [[सिंगलटन (गणित)]] रैखिक रूप से स्वतंत्र सेट हैं, लेकिन कोई सिंगलटन नहीं है जो आधार के रूप में काम कर सके, इसलिए मॉड्यूल का कोई आधार नहीं है और कोई रैंक नहीं है। | ||
*यदि R कोई वलय है और n एक प्राकृत संख्या है, तो [[कार्तीय गुणन]]फल R<sup>n</sup> यदि हम घटक-वार संचालन का उपयोग करते हैं, तो R के ऊपर बाएँ और दाएँ R-मॉड्यूल दोनों हैं। इसलिए कब {{nowrap|1=''n'' = 1}}, | *यदि R कोई वलय है और n एक प्राकृत संख्या है, तो [[कार्तीय गुणन]]फल R<sup>n</sup> यदि हम घटक-वार संचालन का उपयोग करते हैं, तो R के ऊपर बाएँ और दाएँ R-मॉड्यूल दोनों हैं। इसलिए कब {{nowrap|1=''n'' = 1}}, Rएक आर-मॉड्यूल है, जहां अदिश गुणा सिर्फ वलय गुणन है। मुकदमा {{nowrap|1=''n'' = 0}} तुच्छ आर-मॉड्यूल {0} उत्पन्न करता है जिसमें केवल इसकी पहचान तत्व होता है। इस प्रकार के मॉड्यूल को मुक्त मॉड्यूल कहा जाता है और यदि R में अपरिवर्तनीय आधार संख्या है (उदाहरण के लिए कोई कम्यूटेटिव वलय या फ़ील्ड) संख्या n तो मुक्त मॉड्यूल का रैंक है। | ||
*यदि एम<sub>''n''</sub>(आर) की वलय है {{nowrap|''n'' × ''n''}} [[मैट्रिक्स (गणित)]] एक वलय R के ऊपर, M एक M है<sub>''n''</sub>(आर) -मॉड्यूल, और ई<sub>''i''</sub> है {{nowrap|''n'' × ''n''}} 1 के साथ मैट्रिक्स {{nowrap|(''i'', ''i'')}}-प्रविष्टि (और शून्य कहीं और), फिर ई<sub>''i''</sub>एम एक आर-मॉड्यूल है, क्योंकि {{nowrap|1=''re''<sub>''i''</sub>''m'' = ''e''<sub>''i''</sub>''rm'' ∈ ''e''<sub>''i''</sub>''M''}}. तो एम आर-मॉड्यूल के प्रत्यक्ष योग के रूप में टूट जाता है, {{nowrap|1=''M'' = ''e''<sub>1</sub>''M'' ⊕ ... ⊕ ''e''<sub>''n''</sub>''M''}}. इसके विपरीत, एक आर-मॉड्यूल एम दिया गया<sub>0</sub>, फिर एम<sub>0</sub><sup>⊕n</sup> एक एम है<sub>''n''</sub>(आर) -मॉड्यूल। वास्तव में, मॉड्यूल की श्रेणी | आर-मॉड्यूल की श्रेणी और एम की [[श्रेणी (गणित)]]।<sub>''n''</sub>(आर)-मॉड्यूल श्रेणियों के समकक्ष हैं। विशेष मामला यह है कि मॉड्यूल एम सिर्फ एक मॉड्यूल के रूप में | *यदि एम<sub>''n''</sub>(आर) की वलय है {{nowrap|''n'' × ''n''}} [[मैट्रिक्स (गणित)]] एक वलय R के ऊपर, M एक M है<sub>''n''</sub>(आर) -मॉड्यूल, और ई<sub>''i''</sub> है {{nowrap|''n'' × ''n''}} 1 के साथ मैट्रिक्स {{nowrap|(''i'', ''i'')}}-प्रविष्टि (और शून्य कहीं और), फिर ई<sub>''i''</sub>एम एक आर-मॉड्यूल है, क्योंकि {{nowrap|1=''re''<sub>''i''</sub>''m'' = ''e''<sub>''i''</sub>''rm'' ∈ ''e''<sub>''i''</sub>''M''}}. तो एम आर-मॉड्यूल के प्रत्यक्ष योग के रूप में टूट जाता है, {{nowrap|1=''M'' = ''e''<sub>1</sub>''M'' ⊕ ... ⊕ ''e''<sub>''n''</sub>''M''}}. इसके विपरीत, एक आर-मॉड्यूल एम दिया गया<sub>0</sub>, फिर एम<sub>0</sub><sup>⊕n</sup> एक एम है<sub>''n''</sub>(आर) -मॉड्यूल। वास्तव में, मॉड्यूल की श्रेणी | आर-मॉड्यूल की श्रेणी और एम की [[श्रेणी (गणित)]]।<sub>''n''</sub>(आर)-मॉड्यूल श्रेणियों के समकक्ष हैं। विशेष मामला यह है कि मॉड्यूल एम सिर्फ एक मॉड्यूल के रूप में R है, फिर आर<sup>n</sup> एक एम है<sub>''n''</sub>(आर) -मॉड्यूल। | ||
*यदि एस एक [[खाली सेट]] [[सेट (गणित)]] है, एम एक बाएं आर-मॉड्यूल है, और एम<sup>एस</sup> सभी कार्यों (गणित) का संग्रह है {{nowrap|''f'' : ''S'' → ''M''}}, फिर एम में जोड़ और अदिश गुणन के साथ<sup>S</sup> द्वारा बिंदुवार परिभाषित किया गया है {{nowrap|1=(''f'' + ''g'')(''s'') = ''f''(''s'') + ''g''(''s'')}} तथा {{nowrap|1=(''rf'')(''s'') = ''rf''(''s'')}}, एम<sup>एस</sup> एक बायां आर-मॉड्यूल है। सही आर-मॉड्यूल केस अनुरूप है। विशेष रूप से, यदि | *यदि एस एक [[खाली सेट]] [[सेट (गणित)]] है, एम एक बाएं आर-मॉड्यूल है, और एम<sup>एस</sup> सभी कार्यों (गणित) का संग्रह है {{nowrap|''f'' : ''S'' → ''M''}}, फिर एम में जोड़ और अदिश गुणन के साथ<sup>S</sup> द्वारा बिंदुवार परिभाषित किया गया है {{nowrap|1=(''f'' + ''g'')(''s'') = ''f''(''s'') + ''g''(''s'')}} तथा {{nowrap|1=(''rf'')(''s'') = ''rf''(''s'')}}, एम<sup>एस</sup> एक बायां आर-मॉड्यूल है। सही आर-मॉड्यूल केस अनुरूप है। विशेष रूप से, यदि R कम्यूटेटिव है तो आर-मॉड्यूल समरूपता का संग्रह {{nowrap|''h'' : ''M'' → ''N''}} (नीचे देखें) एक आर-मॉड्यूल है (और वास्तव में एन का एक सबमॉड्यूल है<sup>एम </सुप>). | ||
*यदि X एक [[चिकना कई गुना]] है, तो X से [[वास्तविक संख्या]]ओं तक के [[चिकना समारोह]] एक वलय C बनाते हैं<sup>∞</sup>(एक्स). एक्स पर परिभाषित सभी चिकनी [[वेक्टर क्षेत्र|सदिश क्षेत्र]] का सेट सी पर एक मॉड्यूल बनाता है<sup>∞</sup>(X), और इसी प्रकार [[टेंसर क्षेत्र]] और X पर [[विभेदक रूप]] भी करते हैं। आम तौर पर, किसी भी [[वेक्टर बंडल|सदिश बंडल]] के सेक्शन C पर एक [[प्रक्षेपी मॉड्यूल]] बनाते हैं।<sup>∞</sup>(X), और हंस के प्रमेय द्वारा, प्रत्येक प्रक्षेपी मॉड्यूल कुछ बंडल के अनुभागों के मॉड्यूल के लिए समरूप है; सी की श्रेणी (गणित)।<sup>∞</sup>(X)-मॉड्यूल और X के ऊपर सदिश बंडलों की श्रेणी श्रेणियों की समतुल्यता है। | *यदि X एक [[चिकना कई गुना]] है, तो X से [[वास्तविक संख्या]]ओं तक के [[चिकना समारोह]] एक वलय C बनाते हैं<sup>∞</sup>(एक्स). एक्स पर परिभाषित सभी चिकनी [[वेक्टर क्षेत्र|सदिश क्षेत्र]] का सेट सी पर एक मॉड्यूल बनाता है<sup>∞</sup>(X), और इसी प्रकार [[टेंसर क्षेत्र]] और X पर [[विभेदक रूप]] भी करते हैं। आम तौर पर, किसी भी [[वेक्टर बंडल|सदिश बंडल]] के सेक्शन C पर एक [[प्रक्षेपी मॉड्यूल]] बनाते हैं।<sup>∞</sup>(X), और हंस के प्रमेय द्वारा, प्रत्येक प्रक्षेपी मॉड्यूल कुछ बंडल के अनुभागों के मॉड्यूल के लिए समरूप है; सी की श्रेणी (गणित)।<sup>∞</sup>(X)-मॉड्यूल और X के ऊपर सदिश बंडलों की श्रेणी श्रेणियों की समतुल्यता है। | ||
*यदि | *यदि R कोई वलय है और मैं R में कोई [[अंगूठी आदर्श|वलय आदर्श]] है, तो मैं एक बाएं आर-मॉड्यूल है, और R में समान रूप से सही आदर्श दाएं आर-मॉड्यूल हैं। | ||
*यदि R एक वलय है, तो हम विपरीत वलय R को परिभाषित कर सकते हैं<sup>op</sup> जिसमें समान [[अंतर्निहित सेट]] और समान जोड़ ऑपरेशन है, लेकिन विपरीत गुणन: यदि {{nowrap|1=''ab'' = ''c''}} | *यदि R एक वलय है, तो हम विपरीत वलय R को परिभाषित कर सकते हैं<sup>op</sup> जिसमें समान [[अंतर्निहित सेट]] और समान जोड़ ऑपरेशन है, लेकिन विपरीत गुणन: यदि {{nowrap|1=''ab'' = ''c''}} R में, फिर {{nowrap|1=''ba'' = ''c''}} R में<sup>ऑप</sup>। किसी भी बाएं आर-मॉड्यूल एम को तब R पर एक सही मॉड्यूल के रूप में देखा जा सकता है<sup>op</sup>, और R के ऊपर किसी भी दाएँ मॉड्यूल को R के ऊपर एक बायाँ मॉड्यूल माना जा सकता है<sup>ऑप</sup>। | ||
* झूठे बीजगणित की शब्दावली # प्रतिनिधित्व सिद्धांत (सहयोगी बीजगणित) इसके सार्वभौमिक आवरण बीजगणित पर मॉड्यूल हैं। | * झूठे बीजगणित की शब्दावली # प्रतिनिधित्व सिद्धांत (सहयोगी बीजगणित) इसके सार्वभौमिक आवरण बीजगणित पर मॉड्यूल हैं। | ||
*यदि R और S एक वलय समरूपता वाले वलय हैं {{nowrap|''φ'' : ''R'' → ''S''}}, तो प्रत्येक एस-मॉड्यूल एम परिभाषित करके एक आर-मॉड्यूल है {{nowrap|1=''rm'' = ''φ''(''r'')''m''}}. विशेष रूप से, एस ही एक ऐसा आर-मॉड्यूल है। | *यदि R और S एक वलय समरूपता वाले वलय हैं {{nowrap|''φ'' : ''R'' → ''S''}}, तो प्रत्येक एस-मॉड्यूल एम परिभाषित करके एक आर-मॉड्यूल है {{nowrap|1=''rm'' = ''φ''(''r'')''m''}}. विशेष रूप से, एस ही एक ऐसा आर-मॉड्यूल है। | ||
Line 48: | Line 49: | ||
== सबमॉड्यूल और समरूपता == | == सबमॉड्यूल और समरूपता == | ||
मान लीजिए एम एक बाएं आर-मॉड्यूल है और एन एम का एक [[उपसमूह]] है। फिर एन एक 'सबमॉड्यूल' (या अधिक स्पष्ट रूप से एक आर-सबमॉड्यूल) है यदि एन में किसी भी एन और | मान लीजिए एम एक बाएं आर-मॉड्यूल है और एन एम का एक [[उपसमूह]] है। फिर एन एक 'सबमॉड्यूल' (या अधिक स्पष्ट रूप से एक आर-सबमॉड्यूल) है यदि एन में किसी भी एन और R में किसी भी R के लिए उत्पाद {{nowrap|''r'' ⋅ ''n''}} (या {{nowrap|''n'' ⋅ ''r''}} एक सही आर-मॉड्यूल के लिए) एन में है। | ||
यदि X किसी R-मॉड्यूल का कोई [[सबसेट]] है, तो X द्वारा फैलाए गए सबमॉड्यूल को परिभाषित किया जाता है <math display="inline">\langle X \rangle = \,\bigcap_{N\supseteq X} N</math> जहाँ N, M के सबमॉड्यूल्स पर चलता है जिसमें X, या स्पष्ट रूप से होता है <math display="inline">\left\{\sum_{i=1}^k r_ix_i \mid r_i \in R, x_i \in X\right\}</math>, जो टेंसर उत्पादों की परिभाषा में महत्वपूर्ण है।<ref>{{Cite web|url=http://people.maths.ox.ac.uk/mcgerty/Algebra%20II.pdf|title=बीजगणित II: छल्ले और मॉड्यूल|last=Mcgerty|first=Kevin|date=2016}}</ref> किसी दिए गए मॉड्यूल एम के सबमिड्यूल का सेट, दो बाइनरी ऑपरेशंस + और ∩ के साथ, एक [[जाली (आदेश)]] बनाता है जो '[[मॉड्यूलर जाली]]' को संतुष्ट करता है: | यदि X किसी R-मॉड्यूल का कोई [[सबसेट]] है, तो X द्वारा फैलाए गए सबमॉड्यूल को परिभाषित किया जाता है <math display="inline">\langle X \rangle = \,\bigcap_{N\supseteq X} N</math> जहाँ N, M के सबमॉड्यूल्स पर चलता है जिसमें X, या स्पष्ट रूप से होता है <math display="inline">\left\{\sum_{i=1}^k r_ix_i \mid r_i \in R, x_i \in X\right\}</math>, जो टेंसर उत्पादों की परिभाषा में महत्वपूर्ण है।<ref>{{Cite web|url=http://people.maths.ox.ac.uk/mcgerty/Algebra%20II.pdf|title=बीजगणित II: छल्ले और मॉड्यूल|last=Mcgerty|first=Kevin|date=2016}}</ref> किसी दिए गए मॉड्यूल एम के सबमिड्यूल का सेट, दो बाइनरी ऑपरेशंस + और ∩ के साथ, एक [[जाली (आदेश)]] बनाता है जो '[[मॉड्यूलर जाली]]' को संतुष्ट करता है: | ||
दिए गए सबमॉड्यूल यू, एन<sub>1</sub>, एन<sub>2</sub> एम का ऐसा है {{nowrap|''N''<sub>1</sub> ⊂ ''N''<sub>2</sub>}}, तो निम्नलिखित दो सबमॉड्यूल बराबर हैं: {{nowrap|1=(''N''<sub>1</sub> + ''U'') ∩ ''N''<sub>2</sub> = ''N''<sub>1</sub> + (''U'' ∩ ''N''<sub>2</sub>)}}. | दिए गए सबमॉड्यूल यू, एन<sub>1</sub>, एन<sub>2</sub> एम का ऐसा है {{nowrap|''N''<sub>1</sub> ⊂ ''N''<sub>2</sub>}}, तो निम्नलिखित दो सबमॉड्यूल बराबर हैं: {{nowrap|1=(''N''<sub>1</sub> + ''U'') ∩ ''N''<sub>2</sub> = ''N''<sub>1</sub> + (''U'' ∩ ''N''<sub>2</sub>)}}. | ||
यदि एम और एन शेष आर-मॉड्यूल हैं, तो एक [[नक्शा (गणित)]] {{nowrap|''f'' : ''M'' → ''N''}} एक मॉड्यूल होमोमोर्फिज्म है | | यदि एम और एन शेष आर-मॉड्यूल हैं, तो एक [[नक्शा (गणित)]] {{nowrap|''f'' : ''M'' → ''N''}} एक मॉड्यूल होमोमोर्फिज्म है | R का होमोमोर्फिज्म-मॉड्यूल अगर किसी भी ''एम'' के लिए, ''एन'' में ''एम'' और ''आर'', ''एस'' में R '', | ||
:<math>f(r \cdot m + s \cdot n) = r \cdot f(m) + s \cdot f(n)</math>. | :<math>f(r \cdot m + s \cdot n) = r \cdot f(m) + s \cdot f(n)</math>. | ||
यह, गणितीय वस्तुओं के किसी भी [[समरूपता]] की तरह, केवल एक मानचित्रण है जो वस्तुओं की संरचना को संरक्षित करता है। आर-मॉड्यूल के समरूपता का दूसरा नाम एक आर-रैखिक नक्शा है। | यह, गणितीय वस्तुओं के किसी भी [[समरूपता]] की तरह, केवल एक मानचित्रण है जो वस्तुओं की संरचना को संरक्षित करता है। आर-मॉड्यूल के समरूपता का दूसरा नाम एक आर-रैखिक नक्शा है। | ||
Line 61: | Line 62: | ||
एक मॉड्यूल समरूपता का कर्नेल (बीजगणित)। {{nowrap|''f'' : ''M'' → ''N''}} एम का सबमॉड्यूल है जिसमें सभी तत्व शामिल हैं जो एफ द्वारा शून्य पर भेजे जाते हैं, और एफ की [[छवि (गणित)]] एम के सभी तत्वों एम के लिए मान एफ (एम) से मिलकर एन का सबमॉड्यूल है।<ref>{{Cite web|url=https://faculty.math.illinois.edu/~r-ash/Algebra/Chapter4.pdf|title=मॉड्यूल मूल बातें|last=Ash|first=Robert|website=Abstract Algebra: The Basic Graduate Year}}</ref> समूहों और सदिश स्थानों से परिचित [[समरूपता प्रमेय]] आर-मॉड्यूल के लिए भी मान्य हैं। | एक मॉड्यूल समरूपता का कर्नेल (बीजगणित)। {{nowrap|''f'' : ''M'' → ''N''}} एम का सबमॉड्यूल है जिसमें सभी तत्व शामिल हैं जो एफ द्वारा शून्य पर भेजे जाते हैं, और एफ की [[छवि (गणित)]] एम के सभी तत्वों एम के लिए मान एफ (एम) से मिलकर एन का सबमॉड्यूल है।<ref>{{Cite web|url=https://faculty.math.illinois.edu/~r-ash/Algebra/Chapter4.pdf|title=मॉड्यूल मूल बातें|last=Ash|first=Robert|website=Abstract Algebra: The Basic Graduate Year}}</ref> समूहों और सदिश स्थानों से परिचित [[समरूपता प्रमेय]] आर-मॉड्यूल के लिए भी मान्य हैं। | ||
एक वलय | एक वलय R दिया गया है, सभी बाएं आर-मॉड्यूल का सेट उनके मॉड्यूल होमोमोर्फिज्म के साथ एक [[एबेलियन श्रेणी|विनिमेय श्रेणी]] बनाता है, जिसे आर-'मॉड' द्वारा दर्शाया गया है ([[मॉड्यूल की श्रेणी]] देखें)। | ||
== मॉड्यूल के प्रकार == | == मॉड्यूल के प्रकार == | ||
Line 67: | Line 68: | ||
; अंतिम रूप से उत्पन्न: एक आर-मॉड्यूल एम [[अंतिम रूप से उत्पन्न मॉड्यूल]] है यदि बहुत सारे तत्व x मौजूद हैं<sub>1</sub>, ..., एक्स<sub>''n''</sub> M में ऐसा है कि M का प्रत्येक तत्व वलय R से गुणांक वाले उन तत्वों का एक [[रैखिक संयोजन]] है। | ; अंतिम रूप से उत्पन्न: एक आर-मॉड्यूल एम [[अंतिम रूप से उत्पन्न मॉड्यूल]] है यदि बहुत सारे तत्व x मौजूद हैं<sub>1</sub>, ..., एक्स<sub>''n''</sub> M में ऐसा है कि M का प्रत्येक तत्व वलय R से गुणांक वाले उन तत्वों का एक [[रैखिक संयोजन]] है। | ||
; चक्रीय: एक मॉड्यूल को [[चक्रीय मॉड्यूल]] कहा जाता है यदि यह एक तत्व द्वारा उत्पन्न होता है। | ; चक्रीय: एक मॉड्यूल को [[चक्रीय मॉड्यूल]] कहा जाता है यदि यह एक तत्व द्वारा उत्पन्न होता है। | ||
; नि: शुल्क: एक नि: शुल्क मॉड्यूल | मुक्त आर-मॉड्यूल एक ऐसा मॉड्यूल है जिसका एक आधार है, या समकक्ष है, जो वलय | ; नि: शुल्क: एक नि: शुल्क मॉड्यूल | मुक्त आर-मॉड्यूल एक ऐसा मॉड्यूल है जिसका एक आधार है, या समकक्ष है, जो वलय R की प्रतियों के मॉड्यूल के [[प्रत्यक्ष योग]] के लिए आइसोमोर्फिक है। ये ऐसे मॉड्यूल हैं जो सदिश रिक्त स्थान की तरह व्यवहार करते हैं। | ||
; प्रक्षेपी: प्रक्षेपी मॉड्यूल मुक्त मॉड्यूल के प्रत्यक्ष योग हैं और उनके कई वांछनीय गुणों को साझा करते हैं। | ; प्रक्षेपी: प्रक्षेपी मॉड्यूल मुक्त मॉड्यूल के प्रत्यक्ष योग हैं और उनके कई वांछनीय गुणों को साझा करते हैं। | ||
; इंजेक्शन: [[इंजेक्शन मॉड्यूल]] को प्रोजेक्टिव मॉड्यूल के लिए दो तरह से परिभाषित किया गया है। | ; इंजेक्शन: [[इंजेक्शन मॉड्यूल]] को प्रोजेक्टिव मॉड्यूल के लिए दो तरह से परिभाषित किया गया है। | ||
Line 88: | Line 89: | ||
फ़ील्ड k पर समूह G का प्रतिनिधित्व समूह वलय k [G] पर एक मॉड्यूल है। | फ़ील्ड k पर समूह G का प्रतिनिधित्व समूह वलय k [G] पर एक मॉड्यूल है। | ||
यदि एम एक बाएं आर-मॉड्यूल है, तो | यदि एम एक बाएं आर-मॉड्यूल है, तो R में एक तत्व R की क्रिया को मानचित्र के रूप में परिभाषित किया गया है {{nowrap|''M'' → ''M''}} जो प्रत्येक x को rx (या सही मॉड्यूल के मामले में xr) भेजता है, और अनिवार्य रूप से विनिमेय समूह का एक [[समूह समरूपता]] है {{nowrap|(''M'', +)}}. एम के सभी समूह एंडोमोर्फिज्म के सेट को अंत के रूप में दर्शाया गया है<sub>'''Z'''</sub>(एम) और इसके अलावा और कार्य संरचना के तहत एक वलय बनाता है, और R के एक वलय तत्व R को अपनी क्रिया में भेजना वास्तव में R से अंत तक एक वलय समरूपता को परिभाषित करता है<sub>'''Z'''</sub>(एम)। | ||
ऐसा वलय होमोमोर्फिज्म {{nowrap|''R'' → End<sub>'''Z'''</sub>(''M'')}} विनिमेय समूह एम पर | ऐसा वलय होमोमोर्फिज्म {{nowrap|''R'' → End<sub>'''Z'''</sub>(''M'')}} विनिमेय समूह एम पर R का प्रतिनिधित्व कहा जाता है; बाएं आर-मॉड्यूल को परिभाषित करने का एक वैकल्पिक और समतुल्य तरीका यह कहना है कि एक बाएं आर-मॉड्यूल एक विनिमेय समूह एम है जो इसके ऊपर R के प्रतिनिधित्व के साथ है। ऐसा प्रतिनिधित्व {{nowrap|''R'' → End<sub>'''Z'''</sub>(''M'')}} M पर R की वलय क्रिया भी कहा जा सकता है। | ||
एक प्रतिनिधित्व को वफादार कहा जाता है अगर और केवल अगर नक्शा {{nowrap|''R'' → End<sub>'''Z'''</sub>(''M'')}} [[इंजेक्शन]] है। मॉड्यूल के संदर्भ में, इसका मतलब यह है कि यदि | एक प्रतिनिधित्व को वफादार कहा जाता है अगर और केवल अगर नक्शा {{nowrap|''R'' → End<sub>'''Z'''</sub>(''M'')}} [[इंजेक्शन]] है। मॉड्यूल के संदर्भ में, इसका मतलब यह है कि यदि R R का एक तत्व है जैसे कि {{nowrap|1=''rx'' = 0}} एम में सभी एक्स के लिए, फिर {{nowrap|1=''r'' = 0}}. प्रत्येक विनिमेय समूह पूर्णांक या कुछ मॉड्यूलर अंकगणित, 'जेड'/एन'जेड' पर एक वफादार मॉड्यूल है। | ||
=== सामान्यीकरण === | === सामान्यीकरण === |
Revision as of 12:39, 15 December 2022
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (May 2015) (Learn how and when to remove this template message) |
Algebraic structure → Ring theory Ring theory |
---|
Algebraic structures |
---|
गणित में, एक मॉड्यूल सदिश स्थान की धारणा का एक सामान्यीकरण है जिसमें अदिश (गणित) के क्षेत्र (गणित) को एक वलय (गणित) द्वारा प्रतिस्थापित किया जाता है। 'मॉड्यूल' की अवधारणा विनिमेय समूह की धारणा को भी सामान्यीकृत करती है, क्योंकि विनिमेय समूह पूर्णांकों के वलय के ऊपर के मॉड्यूल हैं।
सदिश स्थान की तरह, एक मॉड्यूल एक योज्य विनिमेय समूह है, और अदिश गुणन वलय या मॉड्यूल के तत्वों के बीच जोड़ के संचालन पर वितरण गुण है और वलय गुणन के साथ अर्धसमूह क्रिया है।
मॉड्यूल समूह (गणित) के प्रतिनिधित्व सिद्धांत से बहुत निकट से संबंधित हैं। वह क्रम विनिमेय बीजगणित और अनुरूपता बीजगणित के केंद्रीय विचारों में से एक हैं, और बीजगणितीय ज्यामिति और बीजगणितीय टोपोलॉजी में व्यापक रूप से उपयोग किए जाते हैं।
परिचय और परिभाषा
प्रेरणा
सदिश स्थान में, अदिशों का समुच्चय एक क्षेत्र होता है और अदिश गुणन द्वारा सदिशों पर कार्य करता है, जो वितरण नियम जैसे कुछ स्वयंसिद्धों के अधीन होता है। एक मॉड्यूल में, अदिशों को केवल एक वलय (गणित) आवश्यकता होती है, इसलिए मॉड्यूल अवधारणा एक महत्वपूर्ण सामान्यीकरण का प्रतिनिधित्व करती है। क्रमविनिमेय बीजगणित में, दोनों आदर्श (वलय सिद्धांत) और भागफल के वलय मॉड्यूल हैं, ताकि आदर्शों या भागफल के वलय के बारे में कई तर्कों को मॉड्यूल के बारे में एक ही तर्क में जोड़ा जा सके। गैर-क्रमविनिमेय बीजगणित में, बाएं आदर्शों, आदर्शों और मॉड्यूल के बीच का अंतर अधिक स्पष्ट हो जाता है, चूंकि कुछ वलयों-सैद्धांतिक स्थितियों को या तो बाएं आदर्शों या बाएं मॉड्यूल के बारे में व्यक्त किया जा सकता है।
मॉड्यूल के अधिकांश सिद्धांत में अच्छी तरह से व्यवहार वाली वलय पर मॉड्यूल के दायरे में संभव के रूप में सदिश रिक्त स्थान के कई वांछनीय गुणों का विस्तार होता है, जैसे कि एक प्रमुख आदर्श डोमेन। चूंकि, सदिश रिक्त स्थान की तुलना में मॉड्यूल थोड़ा अधिक जटिल हो सकते हैं; उदाहरण के लिए, सभी मॉड्यूल का आधार (रैखिक बीजगणित) नहीं होता है, और यहां तक कि जो ऐसा करते है, मुफ्त मॉड्यूल के लिए, एक अद्वितीय रैंक की आवश्यकता नहीं होती है यदि अंतर्निहित वलय अपरिवर्तनीय आधार संख्या की स्थिति को पूरा नहीं करती है, जिसमें हमेशा एक (संभवतः अनंत) होता है। आधार जिसकी कार्डिनैलिटी तब अद्वितीय है। (इन अंतिम दो अभिकथनों को सामान्य रूप से पसंद के स्वयंसिद्ध की आवश्यकता होती है, लेकिन परिमित-आयामी रिक्त स्थान या कुछ अच्छी तरह से व्यवहार किए गए अनंत-आयामी रिक्त स्थान जैसे Lp रिक्त स्थान के मामले में नहीं।)
औपचारिक परिभाषा
मान लीजिए कि R एक वलय (गणित) है, और 1 इसकी गुणात्मक तत्समक है।
एक 'बायाँ R-मॉड्यूल' M में एक विनिमेय समूह (M, +) और एक ऑपरेशन R × M → M होता है जैसे कि सभी r, s में R और x, y में M के लिए, हमारे पास है
संक्रिया (·) को अदिश गुणन कहते हैं। अक्सर प्रतीक (·) को छोड़ दिया जाता है, लेकिन इस लेख में हम इसका उपयोग करते हैं और R में गुणन के लिए संसर्ग आरक्षित रखते हैं। कोई इस बात पर ज़ोर देने के लिए RM लिख सकता है कि M एक बायाँ R-मॉड्यूल है। एक सही R-मॉड्यूल MR को ऑपरेशन के संदर्भ में समान रूप से · : M × R → M. परिभाषित किया गया है
जिन लेखकों को एकात्मक बीजगणित होने के लिए वलय की आवश्यकता नहीं है, वे उपरोक्त परिभाषा में शर्त 4 को छोड़ दें; वे ऊपर परिभाषित संरचनाओं को "इकाई बाया R-मॉड्यूल" कहेंगे।। इस लेख में, वलय सिद्धांत की शब्दावली के अनुरूप, सभी वलयों और मॉड्यूल्स को एकात्मक माना जाता है।[1]
An (R, S)-बिमॉड्यूल एक विनिमेय समूह है जिसमें R के तत्वों द्वारा · बाएं अदिश गुणा · और S के तत्वों द्वारा दाएं अदिश गुणा * दोनों शामिल हैं, इसे एक साथ एक बाएं R-मॉड्यूल और एक दाएं S-मॉड्यूल बनाते हैं, R में सभी R, M में X, और S में S के लिए अतिरिक्त शर्त (r · x) ∗ s = r ⋅ (x ∗ s) को संतुष्ट करता हैं।
यदि R क्रमविनिमेय वलय है, तो बाएं R-मॉड्यूल दाएं R-मॉड्यूल के समान होते हैं और उन्हें केवल R-मॉड्यूल कहा जाता है।
उदाहरण
- यदि के एक क्षेत्र (गणित) है, तो के-सदिश रिक्त स्थान (के पर सदिश रिक्त स्थान) और के-मॉड्यूल समान हैं।
- यदि K एक क्षेत्र है, और K[x] एक अविभाजित बहुपद वलय है, तो एक बहुपद वलय#Modules|K[x]-मॉड्यूल M, M पर x की एक अतिरिक्त क्रिया के साथ एक K-मॉड्यूल है जो की क्रिया के साथ संचार करता है एम पर के। दूसरे शब्दों में, एक के [एक्स] -मॉड्यूल एक के-सदिश स्पेस एम है जो एम से एम के रैखिक मानचित्र के साथ संयुक्त है। इस उदाहरण के लिए एक प्रमुख आदर्श डोमेन पर अंतिम रूप से जेनरेट किए गए मॉड्यूल के लिए संरचना प्रमेय को लागू करना दिखाता है वाजिब विहित रूप और जॉर्डन सामान्य रूप रूपों का अस्तित्व।
- 'जेड'-मॉड्यूल की अवधारणा एक विनिमेय समूह की धारणा से सहमत है। अर्थात्, प्रत्येक विनिमेय समूह एक अनोखे तरीके से पूर्णांक 'Z' के वलय पर एक मॉड्यूल है। के लिये n > 0, होने देना n ⋅ x = x + x + ... + x (एन योग), 0 ⋅ x = 0, तथा (−n) ⋅ x = −(n ⋅ x). इस तरह के एक मॉड्यूल के लिए एक आधार (रैखिक बीजगणित) की आवश्यकता नहीं है - मरोड़ वाले तत्वों वाले समूह नहीं हैं। (उदाहरण के लिए, पूर्णांक अंकगणितीय 3 के समूह में, एक भी तत्व नहीं मिल सकता है जो एक रैखिक रूप से स्वतंत्र सेट की परिभाषा को संतुष्ट करता है, क्योंकि जब एक पूर्णांक जैसे 3 या 6 एक तत्व को गुणा करता है, तो परिणाम 0 होता है। हालाँकि, यदि कोई परिमित क्षेत्र को वलय के रूप में लिए गए परिमित क्षेत्र पर एक मॉड्यूल के रूप में माना जाता है, यह एक सदिश स्थान है और इसका एक आधार है।)
- दशमलव भिन्न (नकारात्मक सहित) पूर्णांकों पर एक मॉड्यूल बनाते हैं। केवल सिंगलटन (गणित) रैखिक रूप से स्वतंत्र सेट हैं, लेकिन कोई सिंगलटन नहीं है जो आधार के रूप में काम कर सके, इसलिए मॉड्यूल का कोई आधार नहीं है और कोई रैंक नहीं है।
- यदि R कोई वलय है और n एक प्राकृत संख्या है, तो कार्तीय गुणनफल Rn यदि हम घटक-वार संचालन का उपयोग करते हैं, तो R के ऊपर बाएँ और दाएँ R-मॉड्यूल दोनों हैं। इसलिए कब n = 1, Rएक आर-मॉड्यूल है, जहां अदिश गुणा सिर्फ वलय गुणन है। मुकदमा n = 0 तुच्छ आर-मॉड्यूल {0} उत्पन्न करता है जिसमें केवल इसकी पहचान तत्व होता है। इस प्रकार के मॉड्यूल को मुक्त मॉड्यूल कहा जाता है और यदि R में अपरिवर्तनीय आधार संख्या है (उदाहरण के लिए कोई कम्यूटेटिव वलय या फ़ील्ड) संख्या n तो मुक्त मॉड्यूल का रैंक है।
- यदि एमn(आर) की वलय है n × n मैट्रिक्स (गणित) एक वलय R के ऊपर, M एक M हैn(आर) -मॉड्यूल, और ईi है n × n 1 के साथ मैट्रिक्स (i, i)-प्रविष्टि (और शून्य कहीं और), फिर ईiएम एक आर-मॉड्यूल है, क्योंकि reim = eirm ∈ eiM. तो एम आर-मॉड्यूल के प्रत्यक्ष योग के रूप में टूट जाता है, M = e1M ⊕ ... ⊕ enM. इसके विपरीत, एक आर-मॉड्यूल एम दिया गया0, फिर एम0⊕n एक एम हैn(आर) -मॉड्यूल। वास्तव में, मॉड्यूल की श्रेणी | आर-मॉड्यूल की श्रेणी और एम की श्रेणी (गणित)।n(आर)-मॉड्यूल श्रेणियों के समकक्ष हैं। विशेष मामला यह है कि मॉड्यूल एम सिर्फ एक मॉड्यूल के रूप में R है, फिर आरn एक एम हैn(आर) -मॉड्यूल।
- यदि एस एक खाली सेट सेट (गणित) है, एम एक बाएं आर-मॉड्यूल है, और एमएस सभी कार्यों (गणित) का संग्रह है f : S → M, फिर एम में जोड़ और अदिश गुणन के साथS द्वारा बिंदुवार परिभाषित किया गया है (f + g)(s) = f(s) + g(s) तथा (rf)(s) = rf(s), एमएस एक बायां आर-मॉड्यूल है। सही आर-मॉड्यूल केस अनुरूप है। विशेष रूप से, यदि R कम्यूटेटिव है तो आर-मॉड्यूल समरूपता का संग्रह h : M → N (नीचे देखें) एक आर-मॉड्यूल है (और वास्तव में एन का एक सबमॉड्यूल हैएम </सुप>).
- यदि X एक चिकना कई गुना है, तो X से वास्तविक संख्याओं तक के चिकना समारोह एक वलय C बनाते हैं∞(एक्स). एक्स पर परिभाषित सभी चिकनी सदिश क्षेत्र का सेट सी पर एक मॉड्यूल बनाता है∞(X), और इसी प्रकार टेंसर क्षेत्र और X पर विभेदक रूप भी करते हैं। आम तौर पर, किसी भी सदिश बंडल के सेक्शन C पर एक प्रक्षेपी मॉड्यूल बनाते हैं।∞(X), और हंस के प्रमेय द्वारा, प्रत्येक प्रक्षेपी मॉड्यूल कुछ बंडल के अनुभागों के मॉड्यूल के लिए समरूप है; सी की श्रेणी (गणित)।∞(X)-मॉड्यूल और X के ऊपर सदिश बंडलों की श्रेणी श्रेणियों की समतुल्यता है।
- यदि R कोई वलय है और मैं R में कोई वलय आदर्श है, तो मैं एक बाएं आर-मॉड्यूल है, और R में समान रूप से सही आदर्श दाएं आर-मॉड्यूल हैं।
- यदि R एक वलय है, तो हम विपरीत वलय R को परिभाषित कर सकते हैंop जिसमें समान अंतर्निहित सेट और समान जोड़ ऑपरेशन है, लेकिन विपरीत गुणन: यदि ab = c R में, फिर ba = c R मेंऑप। किसी भी बाएं आर-मॉड्यूल एम को तब R पर एक सही मॉड्यूल के रूप में देखा जा सकता हैop, और R के ऊपर किसी भी दाएँ मॉड्यूल को R के ऊपर एक बायाँ मॉड्यूल माना जा सकता हैऑप।
- झूठे बीजगणित की शब्दावली # प्रतिनिधित्व सिद्धांत (सहयोगी बीजगणित) इसके सार्वभौमिक आवरण बीजगणित पर मॉड्यूल हैं।
- यदि R और S एक वलय समरूपता वाले वलय हैं φ : R → S, तो प्रत्येक एस-मॉड्यूल एम परिभाषित करके एक आर-मॉड्यूल है rm = φ(r)m. विशेष रूप से, एस ही एक ऐसा आर-मॉड्यूल है।
सबमॉड्यूल और समरूपता
मान लीजिए एम एक बाएं आर-मॉड्यूल है और एन एम का एक उपसमूह है। फिर एन एक 'सबमॉड्यूल' (या अधिक स्पष्ट रूप से एक आर-सबमॉड्यूल) है यदि एन में किसी भी एन और R में किसी भी R के लिए उत्पाद r ⋅ n (या n ⋅ r एक सही आर-मॉड्यूल के लिए) एन में है।
यदि X किसी R-मॉड्यूल का कोई सबसेट है, तो X द्वारा फैलाए गए सबमॉड्यूल को परिभाषित किया जाता है जहाँ N, M के सबमॉड्यूल्स पर चलता है जिसमें X, या स्पष्ट रूप से होता है , जो टेंसर उत्पादों की परिभाषा में महत्वपूर्ण है।[2] किसी दिए गए मॉड्यूल एम के सबमिड्यूल का सेट, दो बाइनरी ऑपरेशंस + और ∩ के साथ, एक जाली (आदेश) बनाता है जो 'मॉड्यूलर जाली' को संतुष्ट करता है: दिए गए सबमॉड्यूल यू, एन1, एन2 एम का ऐसा है N1 ⊂ N2, तो निम्नलिखित दो सबमॉड्यूल बराबर हैं: (N1 + U) ∩ N2 = N1 + (U ∩ N2).
यदि एम और एन शेष आर-मॉड्यूल हैं, तो एक नक्शा (गणित) f : M → N एक मॉड्यूल होमोमोर्फिज्म है | R का होमोमोर्फिज्म-मॉड्यूल अगर किसी भी एम के लिए, एन में एम और आर, एस में R ,
- .
यह, गणितीय वस्तुओं के किसी भी समरूपता की तरह, केवल एक मानचित्रण है जो वस्तुओं की संरचना को संरक्षित करता है। आर-मॉड्यूल के समरूपता का दूसरा नाम एक आर-रैखिक नक्शा है।
एक विशेषण मॉड्यूल समरूपता f : M → N मॉड्यूल समाकृतिकता कहा जाता है, और दो मॉड्यूल एम और एन को 'आइसोमोर्फिक' कहा जाता है। दो आइसोमॉर्फिक मॉड्यूल सभी व्यावहारिक उद्देश्यों के लिए समान हैं, केवल उनके तत्वों के संकेतन में भिन्न हैं।
एक मॉड्यूल समरूपता का कर्नेल (बीजगणित)। f : M → N एम का सबमॉड्यूल है जिसमें सभी तत्व शामिल हैं जो एफ द्वारा शून्य पर भेजे जाते हैं, और एफ की छवि (गणित) एम के सभी तत्वों एम के लिए मान एफ (एम) से मिलकर एन का सबमॉड्यूल है।[3] समूहों और सदिश स्थानों से परिचित समरूपता प्रमेय आर-मॉड्यूल के लिए भी मान्य हैं।
एक वलय R दिया गया है, सभी बाएं आर-मॉड्यूल का सेट उनके मॉड्यूल होमोमोर्फिज्म के साथ एक विनिमेय श्रेणी बनाता है, जिसे आर-'मॉड' द्वारा दर्शाया गया है (मॉड्यूल की श्रेणी देखें)।
मॉड्यूल के प्रकार
- अंतिम रूप से उत्पन्न
- एक आर-मॉड्यूल एम अंतिम रूप से उत्पन्न मॉड्यूल है यदि बहुत सारे तत्व x मौजूद हैं1, ..., एक्सn M में ऐसा है कि M का प्रत्येक तत्व वलय R से गुणांक वाले उन तत्वों का एक रैखिक संयोजन है।
- चक्रीय
- एक मॉड्यूल को चक्रीय मॉड्यूल कहा जाता है यदि यह एक तत्व द्वारा उत्पन्न होता है।
- नि
- शुल्क: एक नि: शुल्क मॉड्यूल | मुक्त आर-मॉड्यूल एक ऐसा मॉड्यूल है जिसका एक आधार है, या समकक्ष है, जो वलय R की प्रतियों के मॉड्यूल के प्रत्यक्ष योग के लिए आइसोमोर्फिक है। ये ऐसे मॉड्यूल हैं जो सदिश रिक्त स्थान की तरह व्यवहार करते हैं।
- प्रक्षेपी
- प्रक्षेपी मॉड्यूल मुक्त मॉड्यूल के प्रत्यक्ष योग हैं और उनके कई वांछनीय गुणों को साझा करते हैं।
- इंजेक्शन
- इंजेक्शन मॉड्यूल को प्रोजेक्टिव मॉड्यूल के लिए दो तरह से परिभाषित किया गया है।
- फ्लैट
- एक मॉड्यूल को फ्लैट मॉड्यूल कहा जाता है यदि आर-मॉड्यूल के किसी भी सटीक अनुक्रम के साथ इसके मॉड्यूल के टेंसर उत्पाद लेने से सटीकता बनी रहती है।
- मरोड़ रहित
- एक मॉड्यूल को मरोड़ रहित मॉड्यूल कहा जाता है यदि यह अपने बीजगणितीय दोहरे में एम्बेड होता है।
- सरल
- एक साधारण मॉड्यूल S एक ऐसा मॉड्यूल है जो {0} नहीं है और जिसके केवल सबमॉड्यूल {0} और S हैं। सरल मॉड्यूल को कभी-कभी इरेड्यूसिबल कहा जाता है।[4]
- सेमीसिम्पल
- एक अर्ध-सरल मॉड्यूल सरल मॉड्यूल का प्रत्यक्ष योग (परिमित या नहीं) है। ऐतिहासिक रूप से इन मॉड्यूल को पूरी तरह से कम करने योग्य भी कहा जाता है।
- अविघटनीय
- एक गैर-शून्य मॉड्यूल एक गैर-शून्य मॉड्यूल है जिसे दो गैर-शून्य सबमॉड्यूल के मॉड्यूल के प्रत्यक्ष योग के रूप में नहीं लिखा जा सकता है। प्रत्येक सरल मॉड्यूल अविघटनीय है, लेकिन ऐसे अविघटनीय मॉड्यूल हैं जो सरल नहीं हैं (जैसे वर्दी मॉड्यूल)।
- वफादार
- एक वफादार मॉड्यूल एम वह है जहां प्रत्येक की कार्रवाई होती है r ≠ 0 R में M पर nontrivial है (अर्थात r ⋅ x ≠ 0 एम में कुछ एक्स के लिए)। समान रूप से, M का सर्वनाश (वलय थ्योरी) शून्य आदर्श है।
- मरोड़-मुक्त
- एक मरोड़-मुक्त मॉड्यूल एक वलय पर एक मॉड्यूल होता है जैसे कि 0 वलय के एक नियमित तत्व (गैर शून्य-विभाजक) द्वारा विलोपित एकमात्र तत्व है, समकक्ष rm = 0 तात्पर्य r = 0 या m = 0.
- नोथेरियन
- एक नोथेरियन मॉड्यूल एक मॉड्यूल है जो सबमॉड्यूल पर आरोही श्रृंखला की स्थिति को संतुष्ट करता है, अर्थात, सबमॉड्यूल की प्रत्येक बढ़ती हुई श्रृंखला बारीक कई चरणों के बाद स्थिर हो जाती है। समान रूप से, प्रत्येक सबमॉड्यूल सूक्ष्म रूप से उत्पन्न होता है।
- आर्टिनियन
- एक आर्टिनियन मॉड्यूल एक मॉड्यूल है जो सबमॉड्यूल पर अवरोही श्रृंखला की स्थिति को संतुष्ट करता है, अर्थात, सबमॉड्यूल की प्रत्येक घटती श्रृंखला बारीक कई चरणों के बाद स्थिर हो जाती है।
- ग्रेडेड
- एक वर्गीकृत मॉड्यूल प्रत्यक्ष योग के रूप में अपघटन के साथ एक मॉड्यूल है M = ⨁x Mx एक वर्गीकृत वलय पर R = ⨁x Rx ऐसा है कि RxMy ⊂ Mx+y सभी एक्स और वाई के लिए।
- यूनिफ़ॉर्म
- एक यूनिफ़ॉर्म मॉड्यूल एक ऐसा मॉड्यूल होता है जिसमें नॉनज़रो सबमॉड्यूल्स के सभी जोड़े नॉनज़रो इंटरसेक्शन होते हैं।
आगे की धारणाएँ
प्रतिनिधित्व सिद्धांत से संबंध
फ़ील्ड k पर समूह G का प्रतिनिधित्व समूह वलय k [G] पर एक मॉड्यूल है।
यदि एम एक बाएं आर-मॉड्यूल है, तो R में एक तत्व R की क्रिया को मानचित्र के रूप में परिभाषित किया गया है M → M जो प्रत्येक x को rx (या सही मॉड्यूल के मामले में xr) भेजता है, और अनिवार्य रूप से विनिमेय समूह का एक समूह समरूपता है (M, +). एम के सभी समूह एंडोमोर्फिज्म के सेट को अंत के रूप में दर्शाया गया हैZ(एम) और इसके अलावा और कार्य संरचना के तहत एक वलय बनाता है, और R के एक वलय तत्व R को अपनी क्रिया में भेजना वास्तव में R से अंत तक एक वलय समरूपता को परिभाषित करता हैZ(एम)।
ऐसा वलय होमोमोर्फिज्म R → EndZ(M) विनिमेय समूह एम पर R का प्रतिनिधित्व कहा जाता है; बाएं आर-मॉड्यूल को परिभाषित करने का एक वैकल्पिक और समतुल्य तरीका यह कहना है कि एक बाएं आर-मॉड्यूल एक विनिमेय समूह एम है जो इसके ऊपर R के प्रतिनिधित्व के साथ है। ऐसा प्रतिनिधित्व R → EndZ(M) M पर R की वलय क्रिया भी कहा जा सकता है।
एक प्रतिनिधित्व को वफादार कहा जाता है अगर और केवल अगर नक्शा R → EndZ(M) इंजेक्शन है। मॉड्यूल के संदर्भ में, इसका मतलब यह है कि यदि R R का एक तत्व है जैसे कि rx = 0 एम में सभी एक्स के लिए, फिर r = 0. प्रत्येक विनिमेय समूह पूर्णांक या कुछ मॉड्यूलर अंकगणित, 'जेड'/एन'जेड' पर एक वफादार मॉड्यूल है।
सामान्यीकरण
एक वलय R एक एकल वस्तु (श्रेणी सिद्धांत) के साथ एक पूर्ववर्ती श्रेणी 'R' से मेल खाता है। इस समझ के साथ, एक बायाँ आर-मॉड्यूल 'आर' से विनिमेय समूहों की श्रेणी के लिए सिर्फ एक सहसंयोजक योगात्मक फ़ंक्टर है। विनिमेय समूहों की श्रेणी 'एबी', और दायाँ आर-मॉड्यूल कॉन्ट्रावेरिएंट योगात्मक कारक हैं। इससे पता चलता है कि, यदि 'सी' कोई पूर्ववर्ती श्रेणी है, तो 'सी' से 'एबी' तक एक सहसंयोजक योज्य फ़ैक्टर को 'सी' पर सामान्यीकृत बाएं मॉड्यूल माना जाना चाहिए। ये फ़ंक्टर एक फ़ैक्टर श्रेणी 'C'-'मॉड' बनाते हैं जो मॉड्यूल श्रेणी R-'मॉड' का स्वाभाविक सामान्यीकरण है।
कम्यूटेटिव वलय्स पर मॉड्यूल को एक अलग दिशा में सामान्यीकृत किया जा सकता है: एक वलय वाली जगह लें (X, OX) और O के पूले (गणित) पर विचार करेंX-मॉड्यूल (मॉड्यूल का शीफ देखें)। ये एक श्रेणी O बनाते हैंX-मॉड, और आधुनिक बीजगणितीय ज्यामिति में एक महत्वपूर्ण भूमिका निभाते हैं। यदि X में केवल एक बिंदु है, तो यह क्रमविनिमेय वलय O पर पुराने अर्थों में एक मॉड्यूल श्रेणी हैX(एक्स)।
कोई मोटी हो जाओ पर मॉड्यूल पर भी विचार कर सकता है। वलय्स के ऊपर मॉड्यूल विनिमेय समूह हैं, लेकिन सेमीवलय्स पर मॉड्यूल केवल विनिमेय मोनोइड्स हैं। मॉड्यूल के अधिकांश अनुप्रयोग अभी भी संभव हैं। विशेष रूप से, किसी भी सेमीवलय एस के लिए, एस पर मैट्रिसेस एक सेमीवलय बनाते हैं, जिस पर एस से तत्वों के टुपल्स एक मॉड्यूल होते हैं (केवल इस सामान्यीकृत अर्थ में)। यह सैद्धांतिक कंप्यूटर विज्ञान से सेमीवलय को शामिल करते हुए सदिश स्थान की अवधारणा के एक और सामान्यीकरण की अनुमति देता है।
निकट-अंगूठियों पर, निकट-वलय मॉड्यूल पर विचार कर सकते हैं, मॉड्यूल के एक गैर-अबेलियन सामान्यीकरण।[citation needed]
यह भी देखें
- ग्रुप वलय
- बीजगणित (वलय सिद्धांत)
- मॉड्यूल (मॉडल सिद्धांत)
- मॉड्यूल स्पेक्ट्रम
- विनाशक (वलय सिद्धांत)
टिप्पणियाँ
- ↑ Dummit, David S. & Foote, Richard M. (2004). सार बीजगणित. Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-0-471-43334-7.
- ↑ Mcgerty, Kevin (2016). "बीजगणित II: छल्ले और मॉड्यूल" (PDF).
- ↑ Ash, Robert. "मॉड्यूल मूल बातें" (PDF). Abstract Algebra: The Basic Graduate Year.
- ↑ Jacobson (1964), p. 4, Def. 1; Irreducible Module at PlanetMath.
संदर्भ
- F.W. Anderson and K.R. Fuller: Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, 2nd Ed., Springer-Verlag, New York, 1992, ISBN 0-387-97845-3, ISBN 3-540-97845-3
- Nathan Jacobson. Structure of rings. Colloquium publications, Vol. 37, 2nd Ed., AMS Bookstore, 1964, ISBN 978-0-8218-1037-8
इस पेज में लापता आंतरिक लिंक की सूची
- सदिश स्थल
- अदिश (गणित)
- वलय (गणित)
- वितरण की जाने वाली संपत्ति
- क्रमविनिमेय बीजगणित
- अंक शास्त्र
- समरूप बीजगणित
- वितरण कानून
- भागफल की वलय
- पसंद का स्वयंसिद्ध
- bimodule
- बहुपद की वलय
- रैखिक नक्शा
- एक प्रमुख आदर्श डोमेन पर सूक्ष्म रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय
- तर्कसंगत विहित रूप
- मरोड़ तत्व
- प्राकृतिक संख्या
- दशमलव भाग
- मॉड्यूलर अंकगणित
- श्रेणियों की समानता
- समारोह (गणित)
- विपरीत वलय
- वलय समरूपता
- सार्वभौमिक लिफाफा बीजगणित
- द्विभाजित
- गिरी (बीजगणित)
- मॉड्यूल का प्रत्यक्ष योग
- सटीक क्रम
- अपघटनीय मॉड्यूल
- विनाशक (वलय सिद्धांत)
- मरोड़ मुक्त मॉड्यूल
- शून्य भाजक
- समूह की वलय
- समारोह रचना
- पूर्वगामी श्रेणी
- चक्राकार स्थान
- शीफ (गणित)
- मॉड्यूल का पुलिंदा
- पास के वलय
बाहरी संबंध
- "Module", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- module at the nLab