विद्युत चुम्बकीय क्षेत्र का गणितीय विवरण: Difference between revisions
m (124 revisions imported from alpha:विद्युत_चुम्बकीय_क्षेत्र_का_गणितीय_विवरण) |
No edit summary |
||
Line 308: | Line 308: | ||
* {{cite book|last1=Hehl|first1=Friedrich|last2=Obukhov|first2=Yuri|title=Foundations of Classical Electrodynamics|date=2003|publisher=Birkhäuser|isbn=978-0-8176-4222-8|url=https://link.springer.com/978-1-4612-0051-2}} | * {{cite book|last1=Hehl|first1=Friedrich|last2=Obukhov|first2=Yuri|title=Foundations of Classical Electrodynamics|date=2003|publisher=Birkhäuser|isbn=978-0-8176-4222-8|url=https://link.springer.com/978-1-4612-0051-2}} | ||
* {{cite book|last1=Doran|first1=Chris|last2=Lasenby|first2=Anthony|title=Geometric Algebra for Physicists|date=2007|publisher=Cambridge Univ. Press|isbn=978-0-521-71595-9}} | * {{cite book|last1=Doran|first1=Chris|last2=Lasenby|first2=Anthony|title=Geometric Algebra for Physicists|date=2007|publisher=Cambridge Univ. Press|isbn=978-0-521-71595-9}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 24/03/2023]] | [[Category:Created On 24/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:गणितीय भौतिकी]] | |||
[[Category:विद्युत चुंबकत्व]] |
Latest revision as of 16:07, 27 April 2023
Articles about |
Electromagnetism |
---|
विद्युत चुम्बकीय क्षेत्र के विभिन्न गणितीय विवरण हैं जिनका उपयोग विद्युत चुंबकत्व के अध्ययन में किया जाता है, जो प्रकृति की चार मौलिक पारस्परिक क्रिया में से एक है। इस लेख में, कई दृष्टिकोणों पर चर्चा की गई है, चूंकि समीकरण विद्युत और चुंबकीय क्षेत्र, क्षमता और धाराओं के साथ आवेशों के संदर्भ में सामान्यतः अनुरूप हैं।
सदिश क्षेत्र दृष्टिकोण
विद्युत चुम्बकीय क्षेत्र का सबसे आम वर्णन दो त्रि-आयामी सदिश क्षेत्रों का उपयोग करता है जिन्हें विद्युत क्षेत्र और चुंबकीय क्षेत्र कहा जाता है। इन सदिश क्षेत्रों में प्रत्येक का मान, स्थान और समय के प्रत्येक बिंदु पर परिभाषित होता है और इस प्रकार अधिकांशतः उन्हें स्थान और समय के निर्देशांक के कार्यों के रूप में जना जाता है। जैसे, उन्हें अधिकांशतः E(x, y, z, t) (विद्युत क्षेत्र) और B(x, y, z, t) (चुंबकीय क्षेत्र) के रूप में लिखा जाता है।
यदि केवल विद्युत क्षेत्र (E) गैर-शून्य है, और समय में स्थिर है, तो क्षेत्र को इलेक्ट्रोस्टैटिक क्षेत्र कहा जाता है। इसी प्रकार, यदि केवल चुंबकीय क्षेत्र (बी) गैर-शून्य है और समय में स्थिर है, तो क्षेत्र को चुंबकीय क्षेत्र कहा जाता है। चूंकि, यदि विद्युत या चुंबकीय क्षेत्र में समय-निर्भरता है, तो मैक्सवेल के समीकरणों का उपयोग करके दोनों क्षेत्रों को एक युग्मित विद्युत चुम्बकीय क्षेत्र के रूप में एक साथ माना जाना चाहिए।
सदिश क्षेत्र दृष्टिकोण में मैक्सवेल के समीकरण
विद्युत और चुंबकीय क्षेत्रों का व्यवहार, चाहे इलेक्ट्रोस्टैटिक्स, मैग्नेटोस्टैटिक्स, या विद्युत का गतिविज्ञान (विद्युत चुम्बकीय क्षेत्र) की स्थितियों में, मैक्सवेल-हेविसाइड के समीकरणों द्वारा नियंत्रित होता है:
Maxwell's equations (vector fields) Gauss's law Gauss's law for magnetism Faraday's law Ampère–Maxwell law
जहां ρ चार्ज घनत्व है, जो समय और स्थिति पर निर्भर करता है, ε0 विद्युत स्थिरांक है, μ0 चुंबकीय स्थिरांक है, और J धारा प्रति इकाई क्षेत्र है, जो समय और स्थिति का एक कार्य भी है। समीकरण इस रूप को मात्राओं की अंतर्राष्ट्रीय प्रणाली के साथ लेते हैं।
जब केवल अपरिक्षेपी आइसोट्रोपिक रैखिक सामग्रियों से निपटने के समय, मैक्सवेल के समीकरणों को अधिकांशतः प्रश्न में रैखिक सामग्री की पारगम्यता और पारगम्यता के साथ मुक्त स्थान की पारगम्यता और पारगम्यता को बदलकर बाध्य आवेशों को अनदेखा करने के लिए संशोधित किया जाता है। कुछ सामग्रियों के लिए जिनके पास विद्युत चुम्बकीय क्षेत्रों के लिए अधिक जटिल प्रतिक्रियाएं हैं, इन गुणों को टेंसरों द्वारा प्रदर्शित किया जा सकता है, तेजी से क्षेत्र परिवर्तन (फैलाव (ऑप्टिक्स), ग्रीन-कुबो संबंध) का प्रत्युत्तर देने के लिए सामग्री की क्षमता से संबंधित समय-निर्भरता के साथ, और संभवतः बड़े आयाम क्षेत्रों (गैर रेखीय प्रकाशिकी ) के लिए गैर-रैखिक या गैर-स्थानीय सामग्री प्रतिक्रियाओं का प्रतिनिधित्व करने वाली क्षेत्र निर्भरता।
संभावित क्षेत्र दृष्टिकोण
कई बार विद्युत और चुंबकीय क्षेत्रों के उपयोग और गणना में, पहले प्रयोग किया गया दृष्टिकोण एक संबद्ध क्षमता की गणना करता है: विद्युत क्षमता, , विद्युत क्षेत्र के लिए, और चुंबकीय सदिश क्षमता, A, चुंबकीय क्षेत्र के लिए। विद्युत क्षमता एक अदिश क्षेत्र है, जबकि चुंबकीय क्षमता एक सदिश क्षेत्र है। यही कारण है कि कभी-कभी विद्युत क्षमता को अदिश क्षमता कहा जाता है और चुंबकीय क्षमता को सदिश क्षमता कहा जाता है। इन संभावनाओं का उपयोग उनके संबंधित क्षेत्रों को निम्नानुसार जाँचने के लिए किया जा सकता है:
संभावित सूत्रीकरण में मैक्सवेल के समीकरण
इन संबंधों को पश्चात वाले को क्षमता के संदर्भ में व्यक्त करने के लिए मैक्सवेल के समीकरणों में प्रतिस्थापित किया जा सकता है। चुंबकत्व के लिए फैराडे का नियम और गॉस का नियम (सजातीय समीकरण) किसी भी क्षमता के लिए समान रूप से सत्य सिद्ध करना होते हैं। इसका कारण यह है कि जिस तरह से क्षेत्र को अदिश और सदिश क्षमता के ग्रेडिएंट और कर्ल के रूप में व्यक्त किया जाता है। इन संभावनाओं के संदर्भ में सजातीय समीकरणों में कर्ल का विचलन सम्मलित है और ग्रेडिएंट का कर्ल , जो हमेशा शून्य होते हैं। मैक्सवेल के अन्य दो समीकरण (असमान समीकरण) वे हैं जो संभावित सूत्रीकरण में गतिकी का वर्णन करते हैं।
एक साथ लिए गए ये समीकरण मैक्सवेल के समीकरण जितने ही शक्तिशाली और पूर्ण हैं। इसके अतिरिक्त, समस्या कुछ सीमा तक कम हो गई है, क्योंकि विद्युत और चुंबकीय क्षेत्रों के पास हल करने के लिए छह घटक थे।[1] संभावित निर्माण में, केवल चार घटक होते हैं: विद्युत क्षमता और सदिश क्षमता के तीन घटक। चूंकि, विद्युत और चुंबकीय क्षेत्रों का उपयोग करते हुए मैक्सवेल के समीकरणों की तुलना में समीकरण अधिक अस्तव्यस्त हैं।
गेज स्वतंत्रता
इस तथ्य का लाभ उठाकर इन समीकरणों को सरल बनाया जा सकता है कि विद्युत और चुंबकीय क्षेत्र भौतिक रूप से सार्थक मात्राएँ हैं जिन्हें मापा जा सकता है; संभावनाएं नहीं हैं। क्षमता के रूप को सीमित करने की स्वतंत्रता है, बशर्ते कि यह परिणामी विद्युत और चुंबकीय क्षेत्र को प्रभावित न करे, जिसे गेज स्वतंत्रता कहा जाता है। विशेष रूप से इन समीकरणों के लिए, स्थिति और समय λ के दो-भिन्न अदिश फलन के किसी भी विकल्प के लिए, यदि (φ, A) किसी दिए गए सिस्टम के लिए एक समाधान है, जो एक और संभावित (φ′, A′) द्वारा दिया गया है:
कूलम्ब गेज
कूलम्ब गेज को इस तरह से चुना जाता है , जो मैग्नेटोस्टैटिक्स की स्थिति से मेल खाती है। λ के संदर्भ में, इसका मतलब है कि इसे समीकरण को संतुष्ट करना चाहिए।
उदाहरण के लिए, यदि स्थानीय समयानुसार दोपहर 1 बजे न्यू यॉर्क में कोई चार्ज स्थानांतरित किया जाता है, तो ऑस्ट्रेलिया में एक काल्पनिक पर्यवेक्षक जो विद्युत क्षमता को सीधे माप सकता है, वह न्यूयॉर्क समयानुसार दोपहर 1 बजे क्षमता में बदलाव को मापेगा। यह प्रतीत होता है कि विशेष सापेक्षता में कार्य-कारण का उल्लंघन करता है, अर्थात सूचना, संकेतों या प्रकाश की गति से तेज यात्रा करने वाली किसी भी चीज की असंभवता। इस स्पष्ट समस्या का समाधान इस तथ्य में निहित है कि, जैसा कि पहले कहा गया है, कोई भी पर्यवेक्षक क्षमता को माप नहीं सकता है; वे विद्युत और चुंबकीय क्षेत्र को मापते हैं। इसलिए, विद्युत क्षेत्र का निर्धारण करने में उपयोग किए जाने वाले ∇φ और ∂A/∂t का संयोजन विद्युत क्षेत्र के लिए विशेष सापेक्षता द्वारा लगाई गई गति सीमा को पुनर्स्थापित करता है, जिससे सभी अवलोकन योग्य मात्राएँ सापेक्षता के अनुरूप हो जाती हैं।
लॉरेंज गेज की स्थिति
एक गेज जो अधिकांशतः उपयोग किया जाता है वह लॉरेंज गेज की स्थिति है। इसमें अदिश फलन λ को इस प्रकार चुना जाता है कि
जैसा कि ऊपर बताया गया है, लॉरेंज गेज किसी भी अन्य गेज की तुलना में अधिक मान्य नहीं है क्योंकि क्षमता को सीधे मापा नहीं जा सकता है, चूंकि लॉरेंज गेज को लोरेंत्ज़ अपरिवर्तनीय होने से समीकरणों को लाभ है।
क्वांटम इलेक्ट्रोडायनामिक्स का विस्तार
वैद्युतचुम्बकीय क्षेत्रों का विहित परिमाणीकरण, अदिश और सदिश विभवों को ऊपर उठाकर आगे बढ़ता है; φ('x'), 'A'('x'), फील्ड से क्षेत्र संचालक तक। पिछले लॉरेंज गेज समीकरणों में 1/c2 = ε0μ0 को प्रतिस्थापित करने पर मिलता है:
जो क्वांटम इलेक्ट्रोडायनामिक्स में प्रयुक्त रूप है।
ज्यामितीय बीजगणित सूत्र
टेन्सर सूत्रीकरण के अनुरूप, दो वस्तुओं, एक क्षेत्र के लिए और एक धारा के लिए, प्रस्तुत किए जाते हैं। ज्यामितीय बीजगणित (जीए) में ये मल्टीवैक्टर हैं। फील्ड मल्टीसदिश, जिसे रीमैन-सिल्बरस्टीन सदिश के रूप में जाना जाता है,
तीन आयामों में, व्युत्पन्न की एक विशेष संरचना होती है जो क्रॉस उत्पाद की शुरूआत की अनुमति देती है:
व्युत्पन्न अब है:
विभेदक रूप दृष्टिकोण
फील्ड 2-रूप
निर्वात में, कहाँ ε = ε0 और μ = μ0 हर जगह स्थिर हैं, एक बार अवकल ज्यामिति और अवकल रूपों की भाषा का उपयोग करने के पश्चात मैक्सवेल के समीकरण काफी सरल हो जाते हैं। निम्नलिखित में,सीजीएस गॉसियन इकाइयां का उपयोग किया जाता है, एसआई इकाइयों का नहीं। (एसआई में परिवर्तित करने के लिए, गॉसियन इकाइयां देखें।) विद्युत और चुंबकीय क्षेत्रों को अब संयुक्त रूप से 4-आयामी अंतरिक्ष समय मैनिफोल्ड में 2-रूप एफ द्वारा वर्णित किया गया है। फैराडे टेंसर (विद्युत चुम्बकीय टेंसर) को मेट्रिक सिग्नेचर के साथ मिंकोव्स्की स्पेस में 2-रूप के रूप में लिखा जा सकता है (− + + +) जैसा
धारा 3-रूप, दोहरी धारा 1-रूप
यहाँ, 3-रूप J को विद्युत धारा रूप या धारा 3-रूप कहा जाता है:
जहां डी बाहरी व्युत्पन्न को दर्शाता है - एक प्राकृतिक समन्वय- और मीट्रिक-स्वतंत्र अंतर ऑपरेटर रूपों पर कार्य करता है, और (दोहरी) हॉज स्टार ऑपरेटर 2-रूपों के स्थान से (4 - 2) रूपों के स्थान में एक रेखीय रूपांतरण है, जो मिंकोस्की अंतरिक्ष में मीट्रिक द्वारा परिभाषित है (इस मीट्रिक के लिए किसी भी मीट्रिक अनुरूप ज्यामिति द्वारा भी चार आयामों में)। क्षेत्र प्राकृतिक इकाइयों में हैं जहां 1/4πε0 = 1।
चूंकि डी2 = 0, 3-रूप J धारा के संरक्षण (निरंतरता समीकरण) को संतुष्ट करता है:
नोट: अधिकांश साहित्य में, अंकन और को स्विच किया जाता है, जिससे कि एक 1-रूप है जिसे धारा कहा जाता है और एक 3-रूप है जिसे दोहरी धारा कहा जाता है।[5]
पदार्थ का रेखीय मैक्रोस्कोपिक प्रभाव
एक रेखीय, मैक्रोस्कोपिक सिद्धांत में, विद्युत चुम्बकीय क्षेत्र पर पदार्थ के प्रभाव को 2-रूपों के स्थान में अधिक सामान्य रैखिक परिवर्तन के माध्यम से वर्णित किया गया है। जिसे हम बुलाते है
जब क्षेत्रों को आधार रूपों के रैखिक संयोजनों (बाहरी उत्पाद) के रूप में व्यक्त किया जाता है तो θp,
इस सूत्रीकरण में, विद्युत चुंबकत्व तुरंत किसी भी 4-आयामी उन्मुख कई गुना या किसी भी कई गुना छोटे अनुकूलन के साथ सामान्यीकृत होता है।
वैकल्पिक मीट्रिक हस्ताक्षर
मीट्रिक हस्ताक्षर (+ − − −) के लिए कण भौतिक विज्ञानी की साइन परिपाटी मे,संभावित 1-रूप है
और मैक्सवेल टेंसर बन जाता है
घुमावदार स्पेसटाइम
पारंपरिक सूत्रीकरण
पदार्थ और ऊर्जा स्पेस-टाइम की वक्रता उत्पन्न करते हैं। यह सामान्य सापेक्षता का विषय है। स्पेसटाइम की वक्रता इलेक्ट्रोडायनामिक्स को प्रभावित करती है। ऊर्जा और गति वाला एक विद्युत चुम्बकीय क्षेत्र भी दिक्-काल में वक्रता उत्पन्न करता है। कर्व्ड स्पेसटाइम में मैक्सवेल के समीकरणों को फ्लैट स्पेसटाइम में सहसंयोजक व्युत्पन्न के साथ समीकरणों में सहपरिवर्ती व्युत्पन्न को बदलकर प्राप्त किया जा सकता है। (क्या यह उपयुक्त सामान्यीकरण है, इसके लिए अलग जांच की आवश्यकता है)। स्रोत और स्रोत-मुक्त समीकरण बन जाते हैं (सीजीएस-गाऊसी इकाइयां):
विभेदक रूपों के संदर्भ में सूत्रीकरण
विभेदक रूपों के संदर्भ में मैक्सवेल समीकरणों के निर्माण का उपयोग सामान्य सापेक्षता में परिवर्तन के बिना किया जा सकता है। अधिक पारंपरिक सामान्य सापेक्षतावादी सूत्रीकरण की तुल्यता को सहसंयोजक व्युत्पन्न के साथ विभेदक रूप को सूत्रीकरण के रूप में निम्नानुसार देखा जा सकता है। स्थानीय निर्देशांक xα चुनें जो खुले सेट के हर बिंदु पर 1-रूप dxα का आधार देता है जहां निर्देशांक परिभाषित होते हैं। इस आधार और सीजीएस-गाऊसी इकाइयों का उपयोग करके हम परिभाषित करते हैं
- प्रतिसममित क्षेत्र टेन्सर Fαβ, फ़ील्ड 2-फ़ॉर्म F के अनुरूप
- धारा-सदिश अपरिमित 3-रूप J
एप्सिलॉन टेन्सर 3-रूप डिफरेंशियल के साथ अनुबंधित होता है जो आवश्यक शर्तों की संख्या का 6 गुना उत्पादन करता है।
यहाँ जी हमेशा की तरह मीट्रिक टेंसर, gαβ का प्रतिनिधित्व करने वाले मैट्रिक्स का निर्धारक है। एक छोटी संगणना जो क्रिस्टोफेल प्रतीकों की समरूपता (अर्थात, लेवी-सिविता कनेक्शन की मरोड़-मुक्तता) और हॉज स्टार ऑपरेटर की सहसंयोजक स्थिरता का उपयोग करती है, तब पता चलता है कि यह समन्वय निकटतम में हमारे पास है:
- बियांची पहचान
- स्रोत समीकरण
- निरंतरता समीकरण
एक लाइन बंडल की वक्रता के रूप में क्लासिकल इलेक्ट्रोडायनामिक्स
मैक्सवेल के समीकरणों को तैयार करने का एक सुंदर और सहज उपाय जटिल लाइन बंडलों या प्रिंसिपल यू(1)-बंडल का उपयोग करना है, जिसके फाइबर पर यू(1) नियमित रूप से कार्य करता है। प्रमुख बंडल U(1) - कनेक्शन (गणित) ∇ लाइन बंडल पर एक वक्रता F = ∇2 है जो एक दो-रूप है जो स्वचालित रूप से dF = 0 को संतुष्ट करता है और इसे क्षेत्र-शक्ति के रूप में प्रस्तुत किया जा सकता है। यदि लाइन बंडल फ्लैट संदर्भ कनेक्शन d के साथ नगण्य है तो हम ∇ = d + A और F = dA लिख सकते हैं, जिसमें A 1-रूप विद्युत क्षमता और चुंबकीय सदिश क्षमता से बना है।
क्वांटम यांत्रिकी में, कनेक्शन का उपयोग सिस्टम की गतिशीलता को परिभाषित करने के लिए किया जाता है। यह सूत्रीकरण अहरोनोव-बोहम प्रभाव के प्राकृतिक विवरण की अनुमति देता है। इस प्रयोग में, एक लंबे चुंबकीय तार के माध्यम से एक स्थिर चुंबकीय क्षेत्र चलता है (उदाहरण के लिए, एक लोहे का तार अनुदैर्ध्य रूप से चुंबकित होता है)। इस तार के बाहर चुंबकीय प्रेरण शून्य है, सदिश क्षमता के विपरीत, जो अनिवार्य रूप से तार के अनुप्रस्थ काट के माध्यम से चुंबकीय प्रवाह पर निर्भर करता है और बाहर लुप्त नहीं होता है। चूंकि कोई विद्युत क्षेत्र भी नहीं है, जो प्रयोग के समय, ट्यूब के बाहर स्पेस-टाइम क्षेत्र में मैक्सवेल टेंसर F = 0 हो। इसका मतलब परिभाषा से है कि कनेक्शन ∇ वहां सपाट है।
चूंकि, जैसा कि उल्लेख किया गया है, कनेक्शन ट्यूब के माध्यम से चुंबकीय क्षेत्र पर निर्भर करता है क्योंकि ट्यूब को घेरने वाले एक गैर-संकुचित वक्र के साथ समरूपता उचित इकाइयों में ट्यूब के माध्यम से चुंबकीय प्रवाह है। ट्यूब के चारों ओर घूमने वाली इलेक्ट्रॉन तरंग पर एक डबल-स्लिट इलेक्ट्रॉन विवर्तन प्रयोग के साथ इसका क्वांटम-यांत्रिक रूप से पता लगाया जा सकता है। होलोनॉमी एक अतिरिक्त चरण परिवर्तन से मेल खाती है, जो विवर्तन पैटर्न में परिवर्तन की ओर ले जाती है।[6][7]
चर्चा
ऐसे प्रत्येक सूत्रीकरण का उपयोग करने के कारण निम्नलिखित हैं।
संभावित सूत्रीकरण
उन्नत उत्कृष्ट यांत्रिकी में यह अधिकांशतः उपयोगी होता है, और क्वांटम यांत्रिकी में अधिकांशतः आवश्यक होता है, मैक्सवेल के समीकरणों को विद्युत क्षमता (जिसे स्केलर क्षमता भी कहा जाता है) φ, और चुंबकीय सदिश क्षमता (एक सदिश क्षमता) A से जुड़े संभावित सूत्रीकरण में व्यक्त करने के लिए। उदाहरण के लिए, रेडियो एंटेना का विश्लेषण मैक्सवेल के सदिश और अदिश क्षमता का पूर्ण उपयोग चर को अलग करने के लिए करता है, एक सामान्य तकनीक जो अंतर समीकरणों के समाधान तैयार करने में उपयोग की जाती है। एक सार्वभौमिक उपायो से उन्हें हल करने के लिए सजातीय समीकरणों पर पॉइनकेयर लेम्मा का उपयोग करके संभावितों को प्रस्तुत किया जा सकता है (यह मानता है कि हम एक टोपोलॉजी रूप से सरल, उदाहरण के लिए अनुबंधित स्थान पर विचार करते हैं)। संभावनाओं को उपरोक्त सूची में परिभाषित किया गया है। वैकल्पिक रूप से, ये समीकरण E और B को विद्युत और चुंबकीय क्षमता के संदर्भ में परिभाषित करते हैं जो तब E और B के लिए समरूप समीकरणों को पहचान के रूप में संतुष्ट करते हैं। प्रतिस्थापन संभावित रूप में गैर-सजातीय मैक्सवेल समीकरण देता है।
'ए' और φ के कई अलग-अलग विकल्प दिए गए अवलोकन योग्य विद्युत और चुंबकीय क्षेत्र 'ई' और 'बी' के अनुरूप हैं, इसलिए संभावना में अधिक, (शास्त्रीय भौतिकी) रूप से अप्राप्य जानकारी सम्मलित है। चूंकि, संभावनाओं की गैर-विशिष्टता अच्छी तरह से समझी जाती है। स्थिति और समय के प्रत्येक अदिश कार्य के लिए λ(x, t), क्षमता को गेज परिवर्तन द्वारा बदला जा सकता है
गेज फिक्सिंग नामक प्रक्रिया का उपयोग करके संभावित समीकरणों को सरल बनाया जा सकता है। चूँकि क्षमताएँ केवल गेज तुल्यता तक परिभाषित की जाती हैं, हम क्षमता पर अतिरिक्त समीकरण लागू करने के लिए स्वतंत्र हैं, जब तक कि क्षमता के प्रत्येक जोड़े के लिए एक गेज समकक्ष जोड़ी होती है जो अतिरिक्त समीकरणों को संतुष्ट करती है (अर्थात यदि गेज फिक्सिंग समीकरण एक स्लाइस को गेज एक्शन के रूप में परिभाषित करते हैं)। गेज-फिक्स्ड क्षमता में अभी भी सभी गेज परिवर्तनों के अंतर्गत गेज की स्वतंत्रता है जो गेज फिक्सिंग समीकरणों को अपरिवर्तित छोड़ देता है। संभावित समीकरणों का निरीक्षण दो प्राकृतिक विकल्पों का सुझाव देता है। कूलम्ब गेज में, हम ∇ ⋅ A = 0 लगाते हैं जो ज्यादातर मैग्नेटो स्टैटिक्स के मामले में उपयोग किया जाता है जब हम c−2∂2A/∂t2 अवधि की उपेक्षा कर सकते हैं। लॉरेंज गेज में (डेन लुडविग लॉरेंज के नाम पर), हम लगाते हैं
प्रकट रूप से सहपरिवर्ती (टेंसर) दृष्टिकोण
मैक्सवेल के समीकरण विशेष आपेक्षिकता के साथ पूरी तरह से संगत हैं - अर्थात, यदि वे एक जड़त्वीय संदर्भ फ्रेम में मान्य हैं, तो वे स्वचालित रूप से हर दूसरे जड़त्वीय संदर्भ फ्रेम में मान्य हैं। वास्तव में, विशेष सापेक्षता के ऐतिहासिक विकास में मैक्सवेल के समीकरण महत्वपूर्ण थे। चूंकि मैक्सवेल के समीकरणों के सामान्य सूत्रीकरण में, विशेष सापेक्षता के साथ उनकी संगति स्पष्ट नहीं है; यह केवल एक श्रमसाध्य गणना द्वारा सिद्ध किया जा सकता है।
उदाहरण के लिए, चुंबक के क्षेत्र में गतिमान एक चालक पर विचार करें।[8] चुंबक के जड़त्वीय फ्रेम में वह चालक एक चुंबकीय बल का अनुभव करता है। लेकिन चुम्बक के सापेक्ष गतिमान चालक के फ्रेम में, चालक विद्युत क्षेत्र के कारण एक बल का अनुभव करता है। गति इन दो अलग-अलग संदर्भ फ़्रेमों में बिल्कुल संगत है, लेकिन यह गणितीय रूप से काफी भिन्न उपायो से उत्पन्न होती है।
इस कारण से और अन्य कारणों से, मैक्सवेल के समीकरणों को इस तरह से फिर से लिखना अधिकांशतः उपयोगी होता है जो "प्रकट रूप से सहसंयोजक" है - अर्थात विशेष सापेक्षता के साथ स्पष्ट रूप से संगत हो, यहां तक कि समीकरणों पर सिर्फ एक ग्लांस के साथ - सहपरिवर्ती और प्रतिपरिवर्ती चार-सदिशों और टेन्सर का उपयोग करते हुए। यह EM टेन्सर F, या 4-संभावित A का उपयोग करके किया जा सकता है, 4-धारा J के साथ - उत्कृष्ट विद्युत चुंबकत्व का सहपरिवर्ती सूत्रीकरण देखें।
विभेदक रूप दृष्टिकोण
चुंबकत्व के लिए गॉस का नियम और फैराडे-मैक्सवेल नियम को एक साथ समूहीकृत किया जा सकता है क्योंकि समीकरण सजातीय हैं, और क्षेत्र 'एफ' (एक 2-रूप) को व्यक्त करने वाली ज्यामितीय पहचान के रूप में देखा जा सकता है, जिसे 4-संभाव्य ए से प्राप्त किया जा सकता है। विद्युत के लिए गॉस का नियम और एम्पीयर-मैक्सवेल नियम को क्षेत्र की गति के गतिशील समीकरणों के रूप में देखा जा सकता है, जो संपर्क पद ए जे (गेज सिद्धांत सहसंयोजक व्युत्पन्न के माध्यम से प्रस्तुत किया गया) से कम से कम क्रिया के लैग्रैन्जियन (क्षेत्र सिद्धांत) सिद्धांत के माध्यम से प्राप्त होता है, और क्षेत्र को मैटर से जोड़ता है। अत्यधिक क्रिया के सिद्धांत के संदर्भ में मैक्सवेल के समीकरणों के क्षेत्र निर्माण के लिए, विद्युत चुम्बकीय टेन्सर देखें।
अधिकांशतः, फैराडे-मैक्सवेल समीकरण में व्युत्पन्न समय इस समीकरण को "गतिशील" कहने के लिए प्रेरित करता है, जो पूर्ववर्ती विश्लेषण के अर्थ में कुछ हद तक भ्रामक है। बल्कि यह अधिमानित समय दिशा चुनकर विशेष सापेक्षतावादी सहप्रसरण को विघात करने का एक विरूपण साक्ष्य है। इन क्षेत्र समीकरणों द्वारा प्रचारित स्वतंत्रता की भौतिक डिग्री प्राप्त करने के लिए, एक गतिज शब्द F ⋆F सम्मलित करना चाहिए A के लिए, और स्वतंत्रता की गैर-भौतिक डिग्री को ध्यान में रखना चाहिए जिसे गेज परिवर्तन A ↦ A − dα. द्वारा हटाया जा सकता है। गेज फिक्सिंग और फाद्दीव-पोपोव परछाप भी देखें।
ज्यामितीय कलन दृष्टिकोण
यह सूत्रीकरण बीजगणित का उपयोग करता है जो अंतरिक्ष-समय वितरण के परिचय के माध्यम से उत्पन्न होता है, जिसे साहचर्य (लेकिन क्रमविनिमेय नहीं) उत्पाद या ज्यामितीय उत्पाद कहा जाता है। बीजगणित के तत्व और संचालन सामान्यतः ज्यामितीय अर्थ से जुड़े हो सकते हैं। बीजगणित के सदस्यों को ग्रेड द्वारा विघटित किया जा सकता है (जैसा कि विभेदक रूपों के औपचारिकता में) और (ज्यामितीय) k-सदिश वाले सदिश के उत्पाद a (k − 1)-सदिश और a (k + 1)-सदिश में विघटित होते है। (k − 1)-सदिश घटक को आंतरिक उत्पाद और (k + 1)-सदिश घटक को बाहरी उत्पाद के साथ पहचाना जा सकता है। यह बीजगणितीय सुविधा है कि ज्यामितीय उत्पाद व्युत्क्रमणीय है, जबकि आंतरिक और बाहरी उत्पाद नहीं हैं। मैक्सवेल के समीकरणों में दिखाई देने वाले व्युत्पन्न सदिश हैं और विद्युत चुम्बकीय क्षेत्रों को फैराडे बाइसदिश एफ द्वारा दर्शाया गया है। यह सूत्रीकरण उतना ही सामान्य है जितना कि एक मीट्रिक टेन्सर के साथ विविध के लिए विभेदक रूप, क्योंकि ये स्वाभाविक रूप से आर-रूप के साथ पहचाने जाते हैं और इसके अनुरूप संचालित होते हैं। मैक्सवेल के समीकरण इस औपचारिकता में एक समीकरण तक कम हो जाते हैं। इस समीकरण को भागों में विभाजित किया जा सकता है जैसा कि तुलनात्मक कारणों से ऊपर किया गया है।
यह भी देखें
- घुंघराले पथरी
- विद्युत चुम्बकीय तरंग समीकरण
- प्रकाश की गति
- विद्युत स्थिरांक
- चुंबकीय स्थिरांक
- मुक्त स्थान
- निकट और दूर का क्षेत्र
- विद्युत चुम्बकीय
- विद्युत चुम्बकीय विकिरण
- क्वांटम इलेक्ट्रोडायनामिक्स
- विद्युत चुंबकत्व समीकरणों की सूची
टिप्पणियाँ
- ↑ Introduction to Electrodynamics by Griffiths
- ↑ Quantum Electrodynamics, Mathworld
- ↑ Oersted Medal Lecture David Hestenes "Reforming the Mathematical Language of Physics" (Am. J. Phys. 71 (2), February 2003, pp. 104–121) Online:http://geocalc.clas.asu.edu/html/Oersted-ReformingTheLanguage.html p26
- ↑ Harley Flanders (1963) Differential Forms with Applications to Physical Sciences, pages 44 to 46, Academic Press
- ↑ Misner, Charles W.; Thorne, Kip; Wheeler, John Archibald (1973). आकर्षण-शक्ति. W. H. Freeman. p. 81. ISBN 978-0-7167-0344-0.
- ↑ M. Murray (5 September 2008). "Line Bundles. Honours 1996" (PDF). University of Adelaide. Retrieved 2010-11-19.
- ↑ R. Bott (1985). "गणित और भौतिकी के बीच हाल की कुछ बातचीत पर". Canadian Mathematical Bulletin. 28 (2): 129–164. doi:10.4153/CMB-1985-016-3.
- ↑ Albert Einstein (1905) On the electrodynamics of moving bodies
संदर्भ
- Warnick, Karl; Russer, Peter (2014). "Differential Forms and Electromagnetic Field Theory" (PDF). Progress in Electromagnetics Research. 148: 83–112. doi:10.2528/PIER14063009.
- Russer, Peter (2006). Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering (2nd ed.). Artech House. ISBN 978-1-58053-907-4. (with worked problems in Warnick, Russer 2006 ISBN 1-59693-096-9)
- Hehl, Friedrich; Obukhov, Yuri (2003). Foundations of Classical Electrodynamics. Birkhäuser. ISBN 978-0-8176-4222-8.
- Doran, Chris; Lasenby, Anthony (2007). Geometric Algebra for Physicists. Cambridge Univ. Press. ISBN 978-0-521-71595-9.