टेंसर संकुचन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{for|टेंसर क्षेत्रों और उनके संकुचन के मॉड्यूल-सैद्धांतिक निर्माण|मॉड्यूल के टेन्सर उत्पाद # अंतर ज्यामिति से उदाहरण: टेंसर फ़ील्ड}} | {{for|टेंसर क्षेत्रों और उनके संकुचन के मॉड्यूल-सैद्धांतिक निर्माण|मॉड्यूल के टेन्सर उत्पाद # अंतर ज्यामिति से उदाहरण: टेंसर फ़ील्ड}} | ||
[[बहुरेखीय बीजगणित]] में, [[टेन्सर]] संकुचन टेन्सर पर ऑपरेशन है जो परिमित-[[आयाम|आयामी]] सदिश स्थान और इसकी [[दोहरी वेक्टर अंतरिक्ष|दोहरी]] की [[प्राकृतिक जोड़ी]] से उत्पन्न होता है। घटकों में, यह टेन्सर (एस) के स्केलर घटकों के उत्पादों के योग के रूप में व्यक्त किया जाता है, जो डमी सूचकांक के लिए [[योग सम्मेलन]] को प्रारम्भ करने के कारण होता है जो अभिव्यक्ति में | [[बहुरेखीय बीजगणित]] में, [[टेन्सर]] संकुचन टेन्सर पर ऑपरेशन है जो परिमित-[[आयाम|आयामी]] सदिश स्थान और इसकी [[दोहरी वेक्टर अंतरिक्ष|दोहरी]] की [[प्राकृतिक जोड़ी]] से उत्पन्न होता है। घटकों में, यह टेन्सर (एस) के स्केलर घटकों के उत्पादों के योग के रूप में व्यक्त किया जाता है, जो डमी सूचकांक के लिए [[योग सम्मेलन]] को प्रारम्भ करने के कारण होता है जो अभिव्यक्ति में होते हैं। मिश्रित टेन्सर का संकुचन तब होता है जब टेन्सर के शाब्दिक सूचकांकों (एक सबस्क्रिप्ट, दूसरा सुपरस्क्रिप्ट) के बराबर स्थित की जाती है और इसका योग किया जाता है। [[आइंस्टीन संकेतन]] में इस योग को अंकन में बनाया गया है। परिणाम 2 से घटाए गए क्रम के साथ और टेन्सर है। | ||
टेंसर संकुचन को [[ट्रेस (रैखिक बीजगणित)]] के सामान्यीकरण के रूप में देखा जा सकता है। | टेंसर संकुचन को [[ट्रेस (रैखिक बीजगणित)]] के सामान्यीकरण के रूप में देखा जा सकता है। | ||
== सार सूत्रीकरण == | == सार सूत्रीकरण == | ||
मान लीजिए कि V [[क्षेत्र (गणित)]] k पर सदिश समष्टि है। संकुचन ऑपरेशन का मूल, और सबसे सरल स्थितियां ,''V'' की [[दोहरी जगह|दोहरी स्थान]] ''V<sup>∗</sup>'' के साथ [[प्राकृतिक परिवर्तन]] जोड़ी | मान लीजिए कि V [[क्षेत्र (गणित)]] k पर सदिश समष्टि है। संकुचन ऑपरेशन का मूल, और सबसे सरल स्थितियां ,''V'' की [[दोहरी जगह|दोहरी स्थान]] ''V<sup>∗</sup>'' के साथ [[प्राकृतिक परिवर्तन]] जोड़ी है। युग्मन टेंसर इन दो स्थानों के टेंसर उत्पाद से क्षेत्र k में [[रैखिक परिवर्तन]] है | ||
: <math> C : V \otimes V^* \rightarrow k </math> | : <math> C : V \otimes V^* \rightarrow k </math> | ||
Line 12: | Line 12: | ||
: <math> \langle f, v \rangle = f(v) </math> | : <math> \langle f, v \rangle = f(v) </math> | ||
जहाँ f, ''V''<sup>∗</sup> में है और v, V में है। मानचित्र C, प्रकार {{nowrap|(1, 1)}} के टेन्सर पर संकुचन संचालन को परिभाषित करता है , जो तत्व है <math>V^* \otimes V </math> | जहाँ f, ''V''<sup>∗</sup> में है और v, V में है। मानचित्र C, प्रकार {{nowrap|(1, 1)}} के टेन्सर पर संकुचन संचालन को परिभाषित करता है , जो तत्व है <math>V^* \otimes V </math> ध्यान दें कि परिणाम [[अदिश (गणित)]] (k का तत्व) है। ''k'' मध्य प्राकृतिक समरूपता का उपयोग करना <math>V \otimes V^* </math> और V से V तक रैखिक परिवर्तनों का स्थान,<ref name="natural iso">Let {{nowrap|L(''V'', ''V'')}} be the space of linear transformations from ''V'' to ''V''. Then the natural map | ||
:<math>V^* \otimes V \rightarrow L(V,V) </math> | :<math>V^* \otimes V \rightarrow L(V,V) </math> | ||
Line 84: | Line 84: | ||
: <math> \operatorname{div} V = V^\alpha {}_{\alpha} = 0 </math> | : <math> \operatorname{div} V = V^\alpha {}_{\alpha} = 0 </math> | ||
V के लिए | V के लिए निरंतरता समीकरण है। | ||
सामान्यतः, उच्च-श्रेणी के टेंसर क्षेत्रों पर विभिन्न विचलन संचालन को निम्नानुसार परिभाषित किया जा सकता है। यदि T प्रतिपरिवर्ती सूचकांक वाला टेन्सर क्षेत्र है, सहपरिवर्ती भिन्नता को लेते हुए और चुने हुए प्रतिपरिवर्ती सूचकांक को नवीन सहपरिवर्ती सूचकांक के साथ अनुबंधित करते हुए भिन्नताके परिणामस्वरूप T की समानता में अल्प श्रेणी के नवीन टेंसर का परिणाम होता है।<ref name="o'neill"/> | सामान्यतः, उच्च-श्रेणी के टेंसर क्षेत्रों पर विभिन्न विचलन संचालन को निम्नानुसार परिभाषित किया जा सकता है। यदि T प्रतिपरिवर्ती सूचकांक वाला टेन्सर क्षेत्र है, सहपरिवर्ती भिन्नता को लेते हुए और चुने हुए प्रतिपरिवर्ती सूचकांक को नवीन सहपरिवर्ती सूचकांक के साथ अनुबंधित करते हुए भिन्नताके परिणामस्वरूप T की समानता में अल्प श्रेणी के नवीन टेंसर का परिणाम होता है।<ref name="o'neill"/> | ||
Line 105: | Line 105: | ||
''R'' क्रमविनिमेय वलय होता है और M को R पर परिमित स्वतंत्र [[मॉड्यूल (गणित)]] होता है। संकुचन M के पूर्ण (मिश्रित) टेन्सर बीजगणित पर उचित उसी प्रकार से संचालित होता है जैसा कि क्षेत्र पर वेक्टर रिक्त स्थान के स्थिति में होता है। (महत्वपूर्ण तथ्य यह है कि इस स्थिति में प्राकृतिक जोड़ी सही है।) | ''R'' क्रमविनिमेय वलय होता है और M को R पर परिमित स्वतंत्र [[मॉड्यूल (गणित)]] होता है। संकुचन M के पूर्ण (मिश्रित) टेन्सर बीजगणित पर उचित उसी प्रकार से संचालित होता है जैसा कि क्षेत्र पर वेक्टर रिक्त स्थान के स्थिति में होता है। (महत्वपूर्ण तथ्य यह है कि इस स्थिति में प्राकृतिक जोड़ी सही है।) | ||
सामान्यतः, O<sub>X</sub> को [[टोपोलॉजिकल स्पेस|स्थलीय स्थान]] ''X'' पर | सामान्यतः, O<sub>X</sub> को [[टोपोलॉजिकल स्पेस|स्थलीय स्थान]] ''X'' पर [[शीफ (गणित)|क्रमविनिमेय]] वलयों का समूह होता है। ''O''<sub>X</sub> जटिल मैनिफोल्ड, [[विश्लेषणात्मक स्थान]], या योजना (गणित) का [[संरचना शीफ]] हो सकता है। ''M'' को ''O''<sub>X</sub> पर मॉड्यूल का [[स्थानीय रूप से मुक्त शीफ|स्थानीय रूप से स्वतंत्र शीफ]] होता है। तब M का दोहरा उत्तम व्यवहार करता है और संकुचन संचालन इस संदर्भ में समझ में आता है।<ref name="hartshorne"/> | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 08:30, 3 May 2023
बहुरेखीय बीजगणित में, टेन्सर संकुचन टेन्सर पर ऑपरेशन है जो परिमित-आयामी सदिश स्थान और इसकी दोहरी की प्राकृतिक जोड़ी से उत्पन्न होता है। घटकों में, यह टेन्सर (एस) के स्केलर घटकों के उत्पादों के योग के रूप में व्यक्त किया जाता है, जो डमी सूचकांक के लिए योग सम्मेलन को प्रारम्भ करने के कारण होता है जो अभिव्यक्ति में होते हैं। मिश्रित टेन्सर का संकुचन तब होता है जब टेन्सर के शाब्दिक सूचकांकों (एक सबस्क्रिप्ट, दूसरा सुपरस्क्रिप्ट) के बराबर स्थित की जाती है और इसका योग किया जाता है। आइंस्टीन संकेतन में इस योग को अंकन में बनाया गया है। परिणाम 2 से घटाए गए क्रम के साथ और टेन्सर है।
टेंसर संकुचन को ट्रेस (रैखिक बीजगणित) के सामान्यीकरण के रूप में देखा जा सकता है।
सार सूत्रीकरण
मान लीजिए कि V क्षेत्र (गणित) k पर सदिश समष्टि है। संकुचन ऑपरेशन का मूल, और सबसे सरल स्थितियां ,V की दोहरी स्थान V∗ के साथ प्राकृतिक परिवर्तन जोड़ी है। युग्मन टेंसर इन दो स्थानों के टेंसर उत्पाद से क्षेत्र k में रैखिक परिवर्तन है
द्विरेखीय रूप के अनुरूप
जहाँ f, V∗ में है और v, V में है। मानचित्र C, प्रकार (1, 1) के टेन्सर पर संकुचन संचालन को परिभाषित करता है , जो तत्व है ध्यान दें कि परिणाम अदिश (गणित) (k का तत्व) है। k मध्य प्राकृतिक समरूपता का उपयोग करना और V से V तक रैखिक परिवर्तनों का स्थान,[1] ट्रेस (रैखिक बीजगणित) की आधार-स्वतंत्र परिभाषा प्राप्त करता है।
सामान्यतः, प्रकार (m, n) ( m ≥ 1 और n ≥ 1) का टेंसर सदिश स्थान का तत्व है
(जहां m कारक V और n कारक V हैं∗).[2][3] k वें V कारक और lवें V∗ कारक के लिए प्राकृतिक युग्मन प्रारम्भ करना, और अन्य सभी कारकों पर पहचान का उपयोग करते हुए, (k, l) संकुचन संक्रिया को परिभाषित करता है, जो रेखीय मानचित्र है जो प्रकार (m − 1, n − 1) का टेन्सर उत्पन्न करता है .[2](1, 1) स्थिति के अनुरूप, सामान्य संकुचन ऑपरेशन को कभी-कभी ट्रेस कहा जाता है।
सूचकांक अंकन में संकुचन
टेंसर सूचकांक अंकन में, वेक्टर और डुअल वेक्टर के मूल संकुचन को किसके द्वारा दर्शाया जाता है
जो स्पष्ट समन्वय योग के लिए आशुलिपि है[4]
(जहाँ vi विशेष आधार पर v और fi के घटक हैं इसी दोहरे आधार में f के घटक हैं )।
चूंकि सामान्य मिश्रित डायडिक टेंसर प्रपत्र के विघटनीय टेन्सर का रैखिक संयोजन है , डायडिक स्थिति के लिए स्पष्ट सूत्र इस प्रकार है: मान लीजिए
मिश्रित डायाडिक टेंसर बनें। तब उसका संकुचन होता है
- .
सामान्य संकुचन सहसंयोजक सूचकांक और प्रतिपरिवर्ती सूचकांक को एक ही वर्ण से लेबलिंग करके निरूपित किया जाता है, उस सूचकांक पर योग योग सम्मेलन द्वारा निहित किया जा रहा है। परिणामी अनुबंधित टेन्सर मूल टेन्सर के शेष सूचकांकों को इनहेरिट करता है। उदाहरण के लिए, प्ररूप (1,1) का नवीन टेंसर U बनाने के लिए दूसरे और तीसरे सूचकांक पर प्ररूप (2,2) के टेंसर T को अनुबंधित करना इस प्रकार लिखा जाता है
इसके विपरीत, चलो
अमिश्रित डायाडिक टेंसर बनें। यह टेंसर अनुबंध नहीं करता है; यदि इसके आधार वैक्टर बिंदीदार हैं,[clarification needed] परिणाम प्रतिपरिवर्ती मीट्रिक (गणित) टेंसर है,
- ,
जिसकी श्रेणी 2 है।
मीट्रिक संकुचन
जैसा कि पिछले उदाहरण में, सूचकांकों की संकुचन सामान्य रूप से संभव नहीं है जो या तो प्रतिपरिवर्ती या दोनों सहपरिवर्ती हैं। चूँकि , आंतरिक उत्पाद (मीट्रिक टेंसर के रूप में भी जाना जाता है) g की उपस्थिति में, ऐसे संकुचन संभव हैं। कोई किसी सूचकांक को आवश्यकतानुसार बढ़ाने या घटाने के लिए मीट्रिक का उपयोग करता है, और कोई संकुचन के सामान्य संचालन का उपयोग करता है। संयुक्त ऑपरेशन को मीट्रिक संकुचन के रूप में जाना जाता है।[5]
टेंसर क्षेत्र के लिए आवेदन
संकुचन अधिकांशतः रिक्त स्थान पर टेंसर क्षेत्र पर प्रारम्भ होता है (उदाहरण के लिए यूक्लिडियन अंतरिक्ष , मैनिफोल्ड्स, या स्कीम (गणित))[citation needed] चूंकि संकुचन विशुद्ध रूप से बीजगणितीय संक्रिया है, इसे बिंदुवार टेन्सर क्षेत्र में प्रारम्भ किया जा सकता है, उदाहरण. यदि T यूक्लिडियन अंतरिक्ष पर (1,1) टेंसर क्षेत्र है, तो किसी भी निर्देशांक में, इसका संकुचन (स्केलर क्षेत्र) U बिंदु x पर दिया जाता है
चूँकि x की भूमिका यहाँ जटिल नहीं है, टेन्सर क्षेत्रों के लिए संकेतन विशुद्ध रूप से बीजगणितीय टेन्सरों के समान हो जाता है।
रीमैनियन मैनिफोल्ड्स पर, मीट्रिक (आंतरिक उत्पादों का क्षेत्र) उपलब्ध है, और सिद्धांत के लिए मीट्रिक और गैर-मीट्रिक संकुचन दोनों महत्वपूर्ण हैं। उदाहरण के लिए, रिक्की टेन्सर रीमैन वक्रता टेन्सर का गैर-मीट्रिक संकुचन है, और स्केलर वक्रता रिक्की टेंसर का अद्वितीय मीट्रिक संकुचन है।
मैनिफोल्ड्स पर कार्यों की उपयुक्त वलय पर मॉड्यूल के संदर्भ में टेन्सर क्षेत्र का संकुचन भी देख सकता है[5]या संरचना शीफ पर मॉड्यूल के ढेरों का संदर्भ;[6] इस लेख के अंत में चर्चा देखें।
टेंसर विचलन
टेंसर क्षेत्र के संकुचन के अनुप्रयोग के रूप में, V को रिमेंनियन मैनिफोल्ड (उदाहरण के लिए, यूक्लिडियन स्पेस) पर वेक्टर क्षेत्र होता है । मान लो V का सहसंयोजक व्युत्पन्न हो (निर्देशांक के कुछ विकल्प में)। यूक्लिडियन अंतरिक्ष में कार्टेशियन निर्देशांक के स्थिति में, कोई लिख सकता है
सूचकांक β को α में बदलने से सूचकांकों की जोड़ी एक-दूसरे से बंधी हो जाती है, जिससे कि निम्नलिखित योग प्राप्त करने के लिए व्युत्पन्न अनुबंध स्वयं के साथ हो:
जो विचलन div V है। फिर
V के लिए निरंतरता समीकरण है।
सामान्यतः, उच्च-श्रेणी के टेंसर क्षेत्रों पर विभिन्न विचलन संचालन को निम्नानुसार परिभाषित किया जा सकता है। यदि T प्रतिपरिवर्ती सूचकांक वाला टेन्सर क्षेत्र है, सहपरिवर्ती भिन्नता को लेते हुए और चुने हुए प्रतिपरिवर्ती सूचकांक को नवीन सहपरिवर्ती सूचकांक के साथ अनुबंधित करते हुए भिन्नताके परिणामस्वरूप T की समानता में अल्प श्रेणी के नवीन टेंसर का परिणाम होता है।[5]
टेंसरों की जोड़ी का संकुचन
टेंसर T और U की जोड़ी पर विचार करके कोर संकुचन ऑपरेशन (दोहरी वेक्टर वाला वेक्टर) को अल्प भिन्न विधि से सामान्यीकृत किया जा सकता है। टेंसर उत्पाद नवीन टेन्सर होता है, जिसे, यदि उसके निकट सहपरिवर्ती और प्रतिपरिवर्ती सूचकांक हो, तो उसे अनुबंधित किया जा सकता है। वह स्थितियां जहां T सदिश है और U दोहरा सदिश है, इस लेख में सबसे पूर्व प्रस्तुत किया गया कोर ऑपरेशन है।
टेंसर सूचकांक अंकन में, एक दूसरे के साथ दो टेंसरों को अनुबंधित करने के लिए, एक ही शब्द के कारकों के रूप में उन्हें साथ-साथ रखा जाता है। यह टेंसर उत्पाद को प्रारम्भ करता है, समग्र टेंसर उत्पन्न करता है। इस समग्र टेंसर में दो सूचकांकों को अनुबंधित करना दो टेंसरों के वांछित संकुचन को प्रारम्भ करता है।
उदाहरण के लिए, आव्यूहों को प्रकार (1,1) के टेन्सर के रूप में दर्शाया जा सकता है, जिसमें प्रथम सूचकांक प्रतिपरिवर्ती और दूसरा सूचकांक सहपरिवर्ती होता है। मान मैट्रिक्स के घटक बनें और दूसरे मैट्रिक्स के घटक बनें है। उनका गुणन निम्नलिखित संकुचन द्वारा दिया जाता है, टेंसरों के संकुचन का उदाहरण:
- .
इसके अतिरिक्त, वेक्टर का आंतरिक उत्पाद के साथ दो टेंसरों के संकुचन की विशेष स्थितियां है।
अधिक सामान्य बीजगणितीय संदर्भ
R क्रमविनिमेय वलय होता है और M को R पर परिमित स्वतंत्र मॉड्यूल (गणित) होता है। संकुचन M के पूर्ण (मिश्रित) टेन्सर बीजगणित पर उचित उसी प्रकार से संचालित होता है जैसा कि क्षेत्र पर वेक्टर रिक्त स्थान के स्थिति में होता है। (महत्वपूर्ण तथ्य यह है कि इस स्थिति में प्राकृतिक जोड़ी सही है।)
सामान्यतः, OX को स्थलीय स्थान X पर क्रमविनिमेय वलयों का समूह होता है। OX जटिल मैनिफोल्ड, विश्लेषणात्मक स्थान, या योजना (गणित) का संरचना शीफ हो सकता है। M को OX पर मॉड्यूल का स्थानीय रूप से स्वतंत्र शीफ होता है। तब M का दोहरा उत्तम व्यवहार करता है और संकुचन संचालन इस संदर्भ में समझ में आता है।[6]
यह भी देखें
- टेंसर उत्पाद
- आंशिक निशान
- आंतरिक उत्पाद
- सूचकांकों को ऊपर उठाना और घटाना
- संगीत समरूपता
- घुंघराले पथरी
टिप्पणियाँ
- ↑ Let L(V, V) be the space of linear transformations from V to V. Then the natural map
- ↑ 2.0 2.1 Fulton, William; Harris, Joe (1991). प्रतिनिधित्व सिद्धांत: एक पहला कोर्स. GTM. Vol. 129. New York: Springer. pp. 471–476. ISBN 0-387-97495-4.
- ↑ Warner, Frank (1993). डिफरेंशियल मैनिफोल्ड्स और लाई ग्रुप्स की नींव. GTM. Vol. 94. New York: Springer. pp. 54–56. ISBN 0-387-90894-3.
- ↑ In physics (and sometimes in mathematics), indices often start with zero instead of one. In four-dimensional spacetime, indices run from 0 to 3.
- ↑ 5.0 5.1 5.2 O'Neill, Barrett (1983). सापेक्षता के अनुप्रयोगों के साथ अर्ध-रिमानियन ज्यामिति. Academic Press. p. 86. ISBN 0-12-526740-1.
- ↑ 6.0 6.1 Hartshorne, Robin (1977). बीजगणितीय ज्यामिति. New York: Springer. ISBN 0-387-90244-9.
संदर्भ
- Bishop, Richard L.; Goldberg, Samuel I. (1980). Tensor Analysis on Manifolds. New York: Dover. ISBN 0-486-64039-6.
- Menzel, Donald H. (1961). Mathematical Physics. New York: Dover. ISBN 0-486-60056-4.