ज्यामितीय गणना: Difference between revisions
Line 94: | Line 94: | ||
===ज्यामितीय कलन का मौलिक प्रमेय=== | ===ज्यामितीय कलन का मौलिक प्रमेय=== | ||
सदिश व्युत्पन्न और समाकलित को उपरोक्त के रूप में परिभाषित करने का कारण यह है कि वे स्टोक्स के प्रमेय के एक मजबूत सामान्यीकरण की अनुमति देते हैं। | सदिश व्युत्पन्न और समाकलित को उपरोक्त के रूप में परिभाषित करने का कारण यह है कि वे स्टोक्स के प्रमेय के एक मजबूत सामान्यीकरण की अनुमति देते हैं। <math>\mathsf{L}(A;x)</math> का एक बहुसदिश-मूल्य फलन है <math>r</math>-ग्रेड इनपुट <math>A</math> और सामान्य स्थिति <math>x</math>, अपने पहले तर्क में रैखिक है। फिर ज्यामितीय कलन का मौलिक प्रमेय वॉल्यूम पर व्युत्पन्न के समाकलित से संबंधित है इसकी सीमा पर समाकलित के लिए <math>V</math>: | ||
<math>\int_V \dot{\mathsf{L}} \left(\dot{\nabla} dX;x \right) = \oint_{\partial V} \mathsf{L} (dS;x).</math> | <math>\int_V \dot{\mathsf{L}} \left(\dot{\nabla} dX;x \right) = \oint_{\partial V} \mathsf{L} (dS;x).</math> | ||
एक उदाहरण के रूप में, | |||
एक उदाहरण के रूप में, <math>\mathsf{L}(A;x)=\langle F(x) A I^{-1} \rangle</math> सदिश-मूल्यवान फलन के लिए <math>F(x)</math> और एक (<math>n-1</math>)-ग्रेड बहुसदिश <math>A</math>. हम पाते हैं | |||
:<math>\begin{align}\int_V \dot{\mathsf{L}} \left(\dot{\nabla} dX;x \right) &= \int_V \langle\dot{F}(x)\dot{\nabla}\,dX\,I^{-1} \rangle \\ | :<math>\begin{align}\int_V \dot{\mathsf{L}} \left(\dot{\nabla} dX;x \right) &= \int_V \langle\dot{F}(x)\dot{\nabla}\,dX\,I^{-1} \rangle \\ | ||
Line 110: | Line 111: | ||
:<math>\int_V \nabla \cdot F(x)\,|dX| = \oint_{\partial V} F(x) \cdot \hat{n}\,|dS|.</math> | :<math>\int_V \nabla \cdot F(x)\,|dX| = \oint_{\partial V} F(x) \cdot \hat{n}\,|dS|.</math> | ||
== सहसंयोजक व्युत्पन्न == | == सहसंयोजक व्युत्पन्न == | ||
Revision as of 10:17, 24 May 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, ज्यामितीय कलन विभेदीकरण और एकीकरण को शामिल करने के लिए ज्यामितीय बीजगणित का विस्तार करता है। औपचारिकता प्रभावशाली है और अंतर ज्यामिति और विभेदक रूपों सहित अन्य गणितीय सिद्धांतों को शामिल करने के लिए दिखाया जा सकता है।[1]
भेद
दिए गए ज्यामितीय बीजगणित के साथ, मान लीजिए और सदिश (गणित और भौतिकी) हो और सदिश का एक बहुसदिश-मूल्यवान फलन हो। की दिशात्मक व्युत्पत्ति साथ में पर परिभाषित किया जाता है
बशर्ते कि सीमा सभी के लिए मौजूद हो , जहां अदिश के लिए सीमा ली जाती है . यह एक दिशात्मक व्युत्पत्ति की सामान्य परिभाषा के समान है, लेकिन इसे उन कार्यों तक विस्तारित करता है जो आवश्यक रूप से अदिश-मूल्यवान नहीं हैं।
अगला, आधार सदिश का एक सेट चुनें और संचालको पर विचार करें, निरूपित , जो की दिशाओं में दिशात्मक व्युत्पन्न करता है :
फिर, आइंस्टीन योग अंकन का उपयोग करते हुए, संकारक पर विचार करें:
मतलब
जहां दिशात्मक व्युत्पन्न के बाद ज्यामितीय उत्पाद लागू होता है। अधिक मौखिक रूप से:
यह ऑपरेटर फ्रेम की पसंद से स्वतंत्र है, और इस प्रकार यह परिभाषित करने के लिए इस्तेमाल किया जा सकता है कि ज्यामितीय कलन में सदिश व्युत्पन्न कहा जाता है:
यह प्रवणता की सामान्य परिभाषा के समान है, लेकिन यह उन कार्यों तक भी फैली हुई है जो आवश्यक रूप से अदिश-मूल्यवान नहीं हैं।
दिशात्मक व्युत्पन्न अपनी दिशा के संबंध में रैखिक है, अर्थात:
इससे यह पता चलता है कि दिशात्मक व्युत्पन्न सदिश व्युत्पन्न द्वारा इसकी दिशा का आंतरिक उत्पाद है। सभी को देखने की जरूरत है कि दिशा है लिखा जा सकता है , ताकि:
इस कारण से, अक्सर नोट किया जाता है .
सदिश व्युत्पन्न के संचालन का मानक क्रम यह है कि यह केवल अपने तत्काल दाईं ओर निकटतम फलन पर कार्य करता है। दो फलन दिए गए और , तो उदाहरण के लिए हमारे पास है
उत्पाद नियम
हालांकि आंशिक व्युत्पन्न एक उत्पाद नियम प्रदर्शित करता है, सदिश व्युत्पन्न केवल आंशिक रूप से इस संपत्ति को प्राप्त करता है। दो फलन पर विचार करें और :
चूँकि ज्यामितीय गुणनफल क्रमविनिमेय नहीं है सामान्य तौर पर, हमें आगे बढ़ने के लिए एक नए अंकन की आवश्यकता होती है। एक समाधान ओवरडॉट नोटेशन को अपनाना है, जिसमें एक ओवरडॉट के साथ सदिश व्युत्पन्न का दायरा एक ही ओवरडॉट साझा करने वाला बहुसदिश-मूल्य फ़ंक्शन है। इस मामले में, अगर हम परिभाषित करते हैं
तो सदिश व्युत्पन्न के लिए उत्पाद नियम है
आंतरिक और बाहरी व्युत्पन्न
होने देना एक हो -ग्रेड बहुसदिश हो। तब हम ऑपरेटरों की एक अतिरिक्त जोड़ी, आंतरिक और बाहरी व्युत्पन्न को परिभाषित कर सकते हैं,
विशेष रूप से, अगर ग्रेड 1 (सदिश-मूल्य फ़ंक्शन) है, तो हम लिख सकते हैं
और विचलन और कर्ल (गणित) की पहचान करें
सदिश व्युत्पन्न के विपरीत, न तो आंतरिक व्युत्पन्न ऑपरेटर और न ही बाहरी व्युत्पन्न ऑपरेटर व्युत्क्रमणीय है।
बहुविकल्पी व्युत्पन्न
जैसा कि ऊपर चर्चा की गई है, सदिश के संबंध में व्युत्पन्न को एक सामान्य बहुवेक्टर के संबंध में व्युत्पन्न के लिए सामान्यीकृत किया जा सकता है, जिसे बहुवेक्टर व्युत्पन्न कहा जाता है।
होने देना एक बहुसदिश का बहुसदिश-मूल्य फलन हो। की दिशात्मक व्युत्पत्ति इसके संबंध में दिशा में , जहां और बहुसदिश हैं, के रूप में परिभाषित किया गया है
जहां अदिश गुणनफल है। साथ एक सदिश आधार और इसी दोहरे आधार पर, बहुसदिश व्युत्पन्न को दिशात्मक व्युत्पन्न के रूप में परिभाषित किया गया है[2]
जहां आधार सदिश सूचकांक के व्यवस्था किए गए सेट को इंगित कर रहा है, जैसा कि आर्टिकल अनुभाग जियोमेट्रिक अलजेब्रा डुअल आधार में है। यह समीकरण सिर्फ व्यक्त कर रहा है ब्लेड के पारस्परिक आधार पर घटकों के संदर्भ में, जैसा कि लेख अनुभाग में चर्चा की गई है।
बहुसदिश व्युत्पन्न की एक प्रमुख गुण यह है
जहां का प्रक्षेपण है में निहित ग्रेड पर .
बहुसदिश व्युत्पन्न लैग्रैंगियन (क्षेत्र सिद्धांत) में अनुप्रयोग पाता है।
एकीकरण
आधार सदिशों का एक समुच्चय हो जो a को विस्तृत करता हो -आयामी सदिश स्थान। ज्यामितीय बीजगणित से, हम छद्म अदिश की व्याख्या करते हैं का हस्ताक्षरित मात्रा होना इन आधार सदिशों द्वारा अंतरित -समानांतरोटोप है। यदि आधार सदिश ऑर्थोनॉर्मल हैं, तो यह यूनिट छद्म अदिश है।
अधिक आम तौर पर, हम खुद को एक सबसेट तक सीमित कर सकते हैं आधार सदिश, जहां , लंबाई, क्षेत्र, या अन्य सामान्य का हल करने के लिए कुल मिलाकर एक उप-स्थान का -मात्रा -आयामी सदिश स्थान। हम इन चयनित आधार सदिशों को निरूपित करते हैं . एक सामान्य - मात्रा -समानांतर इन आधार सदिशों द्वारा स्थान ग्रेड है अंतरित बहुसदित है।
इससे भी अधिक आम तौर पर, हम सदिशों के एक नए सेट पर विचार कर सकते हैं के आनुपातिक आधार सदिश, जहां प्रत्येक एक घटक है जो किसी एक आधार सदिश का मापन करता है। जब तक वे गैर-शून्य रहते हैं, तब तक हम घटकों को असीमित रूप से छोटे रूप में चुनने के लिए स्वतंत्र हैं। चूंकि इन शर्तों के बाहरी उत्पाद को a के रूप में व्याख्या किया जा सकता है -वॉल्यूम, एक माप (गणित) को परिभाषित करने का एक स्वाभाविक उपाय है
इसलिए माप हमेशा a की इकाई स्यूडोअदिश के समानुपाती होती है सदिश स्थान के -आयामी उप-स्थान है। अंतर रूप के सिद्धांत में रिमेंनियन वॉल्यूम फॉर्म की तुलना करें। वह समाकलित इस उपाय के संबंध में लिया जाता है:
अधिक औपचारिक रूप से, कुछ निर्देशित मात्रा पर विचार करें उप-स्थान का । हम इस मात्रा को सरलताओं के योग में विभाजित कर सकते हैं। शीर्षों के निर्देशांक हों। प्रत्येक शीर्ष पर हम एक माप प्रदान करते हैं शीर्ष साझा करने वाले सरलताओं के औसत माप के रूप में। समाकलित अंग के संबंध में इस आयतन से अधिक आयतन के उत्कृष्ट विभाजन की सीमा को छोटे सरलताओं में प्राप्त किया जाता है:
ज्यामितीय कलन का मौलिक प्रमेय
सदिश व्युत्पन्न और समाकलित को उपरोक्त के रूप में परिभाषित करने का कारण यह है कि वे स्टोक्स के प्रमेय के एक मजबूत सामान्यीकरण की अनुमति देते हैं। का एक बहुसदिश-मूल्य फलन है -ग्रेड इनपुट और सामान्य स्थिति , अपने पहले तर्क में रैखिक है। फिर ज्यामितीय कलन का मौलिक प्रमेय वॉल्यूम पर व्युत्पन्न के समाकलित से संबंधित है इसकी सीमा पर समाकलित के लिए :
एक उदाहरण के रूप में, सदिश-मूल्यवान फलन के लिए और एक ()-ग्रेड बहुसदिश . हम पाते हैं
वैसे ही,
इस प्रकार हम विचलन प्रमेय को पुनः प्राप्त करते हैं,
सहसंयोजक व्युत्पन्न
पर्याप्त चिकना -सतह में एक -आयामी स्थान को कई गुना माना जाता है। कई गुना पर प्रत्येक बिंदु के लिए, हम एक संलग्न कर सकते हैं -ब्लेड यह कई गुना स्पर्शरेखा है। स्थानीय रूप से, के स्यूडोअदिश के रूप में कार्य करता है -आयामी स्थान। यह ब्लेड एक ज्यामितीय बीजगणित#प्रोजेक्शन और सदिश की अस्वीकृति को कई गुना परिभाषित करता है:
सदिश व्युत्पन्न के रूप में समग्र रूप से परिभाषित किया गया है -आयामी स्थान, हम एक आंतरिक व्युत्पन्न को परिभाषित करना चाह सकते हैं , स्थानीय रूप से कई गुना परिभाषित:
(ध्यान दें: उपरोक्त का दाहिना हाथ कई गुना स्पर्शरेखा स्थान में नहीं हो सकता है। इसलिए, यह समान नहीं है , जो आवश्यक रूप से स्पर्शरेखा स्थान में स्थित है।)
अगर कई गुना के लिए एक सदिश स्पर्शरेखा है, तो वास्तव में सदिश व्युत्पन्न और आंतरिक व्युत्पन्न दोनों एक ही दिशात्मक व्युत्पन्न देते हैं:
हालांकि यह ऑपरेशन पूरी तरह से वैध है, यह हमेशा उपयोगी नहीं होता है क्योंकि जरूरी नहीं कि खुद कई गुना हो। इसलिए, हम सहसंयोजक व्युत्पन्न को कई गुना पर आंतरिक व्युत्पन्न के मजबूर प्रक्षेपण के रूप में परिभाषित करते हैं:
चूंकि इस मामले में किसी भी सामान्य बहुसदिश को प्रक्षेपण और अस्वीकृति के योग के रूप में व्यक्त किया जा सकता है
हम एक नया फलन, आकार टेंसर पेश करते हैं , जो संतुष्ट करता है
कहाँ कम्यूटेटर है। स्थानीय समन्वय के आधार पर स्पर्शरेखा सतह को फैलाते हुए, आकार टेंसर द्वारा दिया जाता है
महत्वपूर्ण रूप से, एक सामान्य कई गुना पर, सहसंयोजक व्युत्पन्न कम्यूट नहीं करता है। विशेष रूप से, कम्यूटेटर आकृति टेंसर से संबंधित है
स्पष्ट रूप से पद रुचि का है। हालांकि, यह आंतरिक व्युत्पन्न की तरह, कई गुना जरूरी नहीं है। इसलिए, हम रीमैन टेंसर को कई गुना पर प्रक्षेपण के रूप में परिभाषित कर सकते हैं:
अंत में, अगर कोटि का है , तो हम आंतरिक और बाहरी सहसंयोजक व्युत्पन्न को परिभाषित कर सकते हैं
और इसी तरह आंतरिक व्युत्पन्न के लिए।
अंतर ज्यामिति से संबंध
कई गुना पर, स्थानीय रूप से हम आधार सदिश के एक सेट द्वारा फैले स्पर्शरेखा सतह को निर्दिष्ट कर सकते हैं . हम एक मीट्रिक टेंसर, क्रिस्टोफ़ेल प्रतीकों और रीमैन वक्रता टेन्सर के घटकों को निम्नानुसार संबद्ध कर सकते हैं:
ये संबंध ज्यामितीय कलन के भीतर अंतर ज्यामिति के सिद्धांत को एम्बेड करते हैं।
अंतर रूपों से संबंध
एक स्थानीय समन्वय प्रणाली में (), समन्वय अंतर , ..., समन्वय चार्ट के भीतर एक-रूपों का मूल सेट बनाता है। एक बहु-सूचकांक दिया साथ में के लिए , हम एक परिभाषित कर सकते हैं -प्रपत्र
हम वैकल्पिक रूप से ए पेश कर सकते हैं -ग्रेड बहुसदिश जैसा
और एक उपाय
सदिश के संबंध में बाहरी उत्पाद बनाम बाहरी उत्पाद के संबंध में बाहरी उत्पाद के अर्थ में सूक्ष्म अंतर के अलावा (पूर्व में वेतन वृद्धि कोसदिश हैं, जबकि बाद में वे अदिश्स का प्रतिनिधित्व करते हैं), हम अंतर के पत्राचार को देखते हैं प्रपत्र
इसका व्युत्पन्न
और इसका हॉज दोहरी
ज्यामितीय कलन के भीतर विभेदक रूपों के सिद्धांत को एम्बेड करें।
इतिहास
निम्नलिखित ज्यामितीय कलन के इतिहास का सारांश देने वाला आरेख है।
सन्दर्भ और आगे पढ़ना
- ↑ David Hestenes, Garrett Sobczyk: Clifford Algebra to Geometric Calculus, a Unified Language for mathematics and Physics (Dordrecht/Boston:G.Reidel Publ.Co., 1984, ISBN 90-277-2561-6
- ↑ Doran, Chris; Lasenby, Anthony (2007). भौतिकविदों के लिए ज्यामितीय बीजगणित. Cambridge University press. p. 395. ISBN 978-0-521-71595-9.
- मैकडोनाल्ड, एलन (2012). सदिश और ज्यामितीय गणना. चार्ल्सटन: स्थान बनाएं. ISBN 9781480132450. OCLC 829395829.
श्रेणी:अनुप्रयुक्त गणित
श्रेणी:गणना
श्रेणी:ज्यामितीय बीजगणित