नॉनकम्यूटेटिव ज्योमेट्री: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
नॉनकम्यूटेटिव ज्योमेट्री (एनसीजी) गणित की एक शाखा है जो नॉनकम्यूटेटिव अलजेब्रा के लिए ज्यामितीय दृष्टिकोण और ''रिक्त स्थान'' के निर्माण से संबंधित है जो स्थानीय रूप से कार्यों के गैरकम्यूटेटिव बीजगणित (संभवतः कुछ सामान्यीकृत अर्थों में) द्वारा प्रस्तुत किए जाते हैं। एक [[गैर क्रम[[विनिमेय]] बीजगणित]] एक [[साहचर्य बीजगणित]] है जिसमें गुणन क्रमविनिमेय नहीं है, अर्थात जिसके लिए <math>xy</math> हमेशा बराबर नहीं होता <math>yx</math>; या अधिक सामान्यतः एक [[बीजगणितीय संरचना]] जिसमें प्रमुख [[बाइनरी ऑपरेशन]]ों में से एक क्रमविनिमेय नहीं है; कोई अतिरिक्त संरचनाओं की भी अनुमति देता है, उदा. [[टोपोलॉजी]] या [[मानक (गणित)]], संभवतः कार्यों के गैर-अनुवांशिक बीजगणित द्वारा किया जाना है।
नॉनकम्यूटेटिव ज्योमेट्री (एनसीजी) गणित की एक शाखा है जो नॉनकम्यूटेटिव अलजेब्रा के लिए ज्यामितीय दृष्टिकोण और ''रिक्त स्थान'' के निर्माण से संबंधित है जो स्थानीय रूप से कार्यों के गैरकम्यूटेटिव बीजगणित (संभवतः कुछ सामान्यीकृत अर्थों में) द्वारा प्रस्तुत किए जाते हैं। एक [[गैर क्रम[[विनिमेय]] बीजगणित]] एक [[साहचर्य बीजगणित]] है जिसमें गुणन क्रमविनिमेय नहीं है, अर्थात जिसके लिए <math>xy</math> हमेशा बराबर नहीं होता <math>yx</math>; या अधिक सामान्यतः एक [[बीजगणितीय संरचना]] जिसमें प्रमुख [[बाइनरी ऑपरेशन]]ों में से एक क्रमविनिमेय नहीं है; कोई अतिरिक्त संरचनाओं की भी अनुमति देता है, उदा. [[टोपोलॉजी]] या [[मानक (गणित)]], संभवतः कार्यों के गैर-अनुवांशिक बीजगणित द्वारा किया जाना है।


नॉनकम्यूटेटिव स्पेस के बारे में गहरी जानकारी देने वाला एक दृष्टिकोण ऑपरेटर बीजगणित (यानी [[ हिल्बर्ट स्थान ]] पर [[परिबद्ध रैखिक संचालिका]] के बीजगणित) के माध्यम से होता है।{{sfn|Khalkhali|Marcolli|2008|p=171}} शायद नॉनकम्यूटेटिव स्पेस के विशिष्ट उदाहरणों में से एक [[नॉनकम्यूटेटिव टोरस]] है, जिसने 1980 के दशक में इस क्षेत्र के शुरुआती विकास में महत्वपूर्ण भूमिका निभाई और [[वेक्टर बंडल]], [[कनेक्शन (वेक्टर बंडल)]], [[वक्रता]] आदि के नॉनकम्यूटेटिव संस्करणों को जन्म दिया।{{sfn|Khalkhali|Marcolli|2008|p=21}}
नॉनकम्यूटेटिव स्पेस के बारे में गहरी जानकारी देने वाला एक दृष्टिकोण ऑपरेटर बीजगणित (अर्थात [[ हिल्बर्ट स्थान ]] पर [[परिबद्ध रैखिक संचालिका]] के बीजगणित) के माध्यम से होता है।{{sfn|Khalkhali|Marcolli|2008|p=171}} संभवतः नॉनकम्यूटेटिव स्पेस के विशिष्ट उदाहरणों में से एक [[नॉनकम्यूटेटिव टोरस]] है, जिसने 1980 के दशक में इस क्षेत्र के प्रारंभिक विकास में महत्वपूर्ण भूमिका निभाई और [[वेक्टर बंडल]], [[कनेक्शन (वेक्टर बंडल)]], [[वक्रता]] आदि के नॉनकम्यूटेटिव संस्करणों को जन्म दिया।{{sfn|Khalkhali|Marcolli|2008|p=21}}


==प्रेरणा==
==प्रेरणा==


मुख्य प्रेरणा रिक्त स्थान और कार्यों के बीच क्रमविनिमेय द्वंद्व को गैरअनुवांशिक सेटिंग तक विस्तारित करना है। गणित में, रिक्त स्थान, जो प्रकृति में ज्यामितीय होते हैं, उन पर संख्यात्मक [[फ़ंक्शन (गणित)]] से संबंधित हो सकते हैं। सामान्य तौर पर, ऐसे फ़ंक्शन एक [[क्रमविनिमेय वलय]] बनाएंगे। उदाहरण के लिए, कोई [[टोपोलॉजिकल स्पेस]] X पर निरंतर फ़ंक्शन [[जटिल संख्या]]-मूल्य वाले फ़ंक्शन का रिंग C(X) ले सकता है। कई मामलों में (जैसे, यदि ), और इसलिए यह कहना कुछ समझ में आता है कि एक्स में क्रमविनिमेय टोपोलॉजी है।
मुख्य प्रेरणा रिक्त स्थान और कार्यों के बीच क्रमविनिमेय द्वंद्व को गैरअनुवांशिक सेटिंग तक विस्तारित करना है। गणित में, रिक्त स्थान, जो प्रकृति में ज्यामितीय होते हैं, उन पर संख्यात्मक [[फ़ंक्शन (गणित)]] से संबंधित हो सकते हैं। सामान्यतः , ऐसे फ़ंक्शन एक [[क्रमविनिमेय वलय]] बनाएंगे। उदाहरण के लिए, कोई [[टोपोलॉजिकल स्पेस]] X पर निरंतर फ़ंक्शन [[जटिल संख्या]]-मूल्य वाले फ़ंक्शन का रिंग C(X) ले सकता है। कई स्थितियों में (जैसे, यदि ), और इसलिए यह कहना कुछ समझ में आता है कि एक्स में क्रमविनिमेय टोपोलॉजी है।


अधिक विशेष रूप से, टोपोलॉजी में, कॉम्पैक्ट [[हॉसडॉर्फ़ स्थान]] टोपोलॉजिकल स्पेस को अंतरिक्ष पर कार्यों के [[बानाच बीजगणित]] से पुनर्निर्मित किया जा सकता है (गेलफैंड प्रतिनिधित्व#कम्यूटेटिव गेलफैंड-नैमार्क प्रमेय का विवरण|गेलफैंड-नैमार्क)। क्रमविनिमेय [[बीजगणितीय ज्यामिति]] में, स्कीम (बीजगणितीय ज्यामिति) कम्यूटेटिव यूनिटल रिंग्स (अलेक्जेंडर ग्रोथेंडिक|ए. ग्रोथेंडिक) के स्थानीय रूप से प्रमुख स्पेक्ट्रा हैं, और प्रत्येक अर्ध-पृथक योजना <math>X</math> के क्वासिकोहेरेंट शीव्स की श्रेणी से योजनाओं की समरूपता तक पुनर्निर्माण किया जा सकता है <math>O_X</math>-मॉड्यूल (पियरे गेब्रियल|पी. गेब्रियल–ए. रोसेनबर्ग)। [[ग्रोथेंडिक टोपोलॉजी]] के लिए, किसी साइट के कोहोमोलॉजिकल गुण सेट के ढेरों की संबंधित श्रेणी के अपरिवर्तनीय होते हैं जिन्हें अमूर्त रूप से एक [[टोपोस]] (ए ग्रोथेंडिक) के रूप में देखा जाता है। इन सभी मामलों में, किसी स्थान का पुनर्निर्माण कार्यों के बीजगणित या उसके वर्गीकृत संस्करण से किया जाता है - उस स्थान पर कुछ शीफ (गणित)।
अधिक विशेष रूप से, टोपोलॉजी में, कॉम्पैक्ट [[हॉसडॉर्फ़ स्थान]] टोपोलॉजिकल स्पेस को अंतरिक्ष पर कार्यों के [[बानाच बीजगणित]] से पुनर्निर्मित किया जा सकता है (गेलफैंड प्रतिनिधित्व#कम्यूटेटिव गेलफैंड-नैमार्क प्रमेय का विवरण|गेलफैंड-नैमार्क)। क्रमविनिमेय [[बीजगणितीय ज्यामिति]] में, स्कीम (बीजगणितीय ज्यामिति) कम्यूटेटिव यूनिटल रिंग्स (अलेक्जेंडर ग्रोथेंडिक|ए. ग्रोथेंडिक) के स्थानीय रूप से प्रमुख स्पेक्ट्रा हैं, और प्रत्येक अर्ध-पृथक योजना <math>X</math> के क्वासिकोहेरेंट शीव्स की श्रेणी से योजनाओं की समरूपता तक पुनर्निर्माण किया जा सकता है <math>O_X</math>-मॉड्यूल (पियरे गेब्रियल|पी. गेब्रियल–ए. रोसेनबर्ग)। [[ग्रोथेंडिक टोपोलॉजी]] के लिए, किसी साइट के कोहोमोलॉजिकल गुण सेट के ढेरों की संबंधित श्रेणी के अपरिवर्तनीय होते हैं जिन्हें अमूर्त रूप से एक [[टोपोस]] (ए ग्रोथेंडिक) के रूप में देखा जाता है। इन सभी स्थितियों में, किसी स्थान का पुनर्निर्माण कार्यों के बीजगणित या उसके वर्गीकृत संस्करण से किया जाता है - उस स्थान पर कुछ शीफ (गणित)।


टोपोलॉजिकल स्पेस पर फ़ंक्शंस को बिंदुवार गुणा और जोड़ा जा सकता है इसलिए वे एक क्रमविनिमेय बीजगणित बनाते हैं; वास्तव में ये ऑपरेशन बेस स्पेस की टोपोलॉजी में स्थानीय हैं, इसलिए फ़ंक्शंस बेस स्पेस पर कम्यूटेटिव रिंग्स का एक समूह बनाते हैं।
टोपोलॉजिकल स्पेस पर फ़ंक्शंस को बिंदुवार गुणा और जोड़ा जा सकता है इसलिए वे एक क्रमविनिमेय बीजगणित बनाते हैं; वास्तव में ये ऑपरेशन बेस स्पेस की टोपोलॉजी में स्थानीय हैं, इसलिए फ़ंक्शंस बेस स्पेस पर कम्यूटेटिव रिंग्स का एक समूह बनाते हैं।
Line 14: Line 14:
नॉनकम्यूटेटिव ज्योमेट्री का सपना इस द्वंद्व को नॉनकम्यूटेटिव अलजेब्रा, या नॉनकम्यूटेटिव अलजेब्रा के ढेर, या शीफ-जैसे नॉनकम्यूटेटिव बीजगणित या ऑपरेटर-बीजगणितीय संरचनाओं और कुछ प्रकार की ज्यामितीय संस्थाओं के बीच द्वंद्व में सामान्यीकृत करना है, और बीजगणित और के बीच बातचीत देना है। इस द्वंद्व के माध्यम से उनका ज्यामितीय विवरण।
नॉनकम्यूटेटिव ज्योमेट्री का सपना इस द्वंद्व को नॉनकम्यूटेटिव अलजेब्रा, या नॉनकम्यूटेटिव अलजेब्रा के ढेर, या शीफ-जैसे नॉनकम्यूटेटिव बीजगणित या ऑपरेटर-बीजगणितीय संरचनाओं और कुछ प्रकार की ज्यामितीय संस्थाओं के बीच द्वंद्व में सामान्यीकृत करना है, और बीजगणित और के बीच बातचीत देना है। इस द्वंद्व के माध्यम से उनका ज्यामितीय विवरण।


इस संबंध में कि क्रमविनिमेय वलय सामान्य एफ़िन योजनाओं के अनुरूप हैं, और क्रमविनिमेय C*-बीजगणित सामान्य टोपोलॉजिकल रिक्त स्थान के अनुरूप हैं, गैर-अनुवांशिक वलय और बीजगणित के विस्तार के लिए गैर-कम्यूटेटिव रिक्त स्थान के रूप में टोपोलॉजिकल रिक्त स्थान के गैर-तुच्छ सामान्यीकरण की आवश्यकता होती है। इस कारण से [[गैर-कम्यूटेटिव टोपोलॉजी]] के बारे में कुछ चर्चा है, हालांकि इस शब्द के अन्य अर्थ भी हैं।
इस संबंध में कि क्रमविनिमेय वलय सामान्य एफ़िन योजनाओं के अनुरूप हैं, और क्रमविनिमेय C*-बीजगणित सामान्य टोपोलॉजिकल रिक्त स्थान के अनुरूप हैं, गैर-अनुवांशिक वलय और बीजगणित के विस्तार के लिए गैर-कम्यूटेटिव रिक्त स्थान के रूप में टोपोलॉजिकल रिक्त स्थान के गैर-तुच्छ सामान्यीकरण की आवश्यकता होती है। इस कारण से [[गैर-कम्यूटेटिव टोपोलॉजी]] के बारे में कुछ चर्चा है, चूंकि इस शब्द के अन्य अर्थ भी हैं।


===गणितीय भौतिकी में अनुप्रयोग===
===गणितीय भौतिकी में अनुप्रयोग===
Line 20: Line 20:
[[कण भौतिकी]] में कुछ अनुप्रयोगों को [[गैर-अनुवांशिक मानक मॉडल]] और [[गैर-अनुवांशिक क्वांटम क्षेत्र सिद्धांत]] प्रविष्टियों में वर्णित किया गया है। 1997 में [[एम-सिद्धांत]] में इसकी भूमिका की अटकलों के बाद भौतिकी में गैर-अनुवांशिक ज्यामिति में रुचि में अचानक वृद्धि हुई है।<ref>{{cite journal | last1=Connes | first1=Alain | last2=Douglas | first2=Michael R | last3=Schwarz | first3=Albert | title=नॉनकम्यूटेटिव ज्योमेट्री और मैट्रिक्स सिद्धांत| journal=Journal of High Energy Physics | volume=1998 | issue=2 | date=1998-02-05 | issn=1029-8479 | doi=10.1088/1126-6708/1998/02/003 | pages=003|arxiv=hep-th/9711162| bibcode=1998JHEP...02..003C | s2cid=7562354 }}</ref>
[[कण भौतिकी]] में कुछ अनुप्रयोगों को [[गैर-अनुवांशिक मानक मॉडल]] और [[गैर-अनुवांशिक क्वांटम क्षेत्र सिद्धांत]] प्रविष्टियों में वर्णित किया गया है। 1997 में [[एम-सिद्धांत]] में इसकी भूमिका की अटकलों के बाद भौतिकी में गैर-अनुवांशिक ज्यामिति में रुचि में अचानक वृद्धि हुई है।<ref>{{cite journal | last1=Connes | first1=Alain | last2=Douglas | first2=Michael R | last3=Schwarz | first3=Albert | title=नॉनकम्यूटेटिव ज्योमेट्री और मैट्रिक्स सिद्धांत| journal=Journal of High Energy Physics | volume=1998 | issue=2 | date=1998-02-05 | issn=1029-8479 | doi=10.1088/1126-6708/1998/02/003 | pages=003|arxiv=hep-th/9711162| bibcode=1998JHEP...02..003C | s2cid=7562354 }}</ref>
===[[एर्गोडिक सिद्धांत]] से प्रेरणा===
===[[एर्गोडिक सिद्धांत]] से प्रेरणा===
तकनीकी स्तर पर गैर-अनुवांशिक ज्यामिति को संभालने के लिए [[एलेन कोन्स]] द्वारा विकसित कुछ सिद्धांतों की जड़ें पुराने प्रयासों में हैं, विशेष रूप से एर्गोडिक सिद्धांत में। एक आभासी उपसमूह सिद्धांत बनाने के लिए [[जॉर्ज मैके]] का प्रस्ताव, जिसके संबंध में एर्गोडिक समूह क्रियाएं (गणित) एक विस्तारित प्रकार के [[सजातीय स्थान]] बन जाएंगी, अब तक शामिल हो चुकी है।
तकनीकी स्तर पर गैर-अनुवांशिक ज्यामिति को संभालने के लिए [[एलेन कोन्स]] द्वारा विकसित कुछ सिद्धांतों की जड़ें पुराने प्रयासों में हैं, विशेष रूप से एर्गोडिक सिद्धांत में। एक आभासी उपसमूह सिद्धांत बनाने के लिए [[जॉर्ज मैके]] का प्रस्ताव, जिसके संबंध में एर्गोडिक समूह क्रियाएं (गणित) एक विस्तारित प्रकार के [[सजातीय स्थान]] बन जाएंगी, अब तक सम्मिलित हो चुकी है।


[[[[अविनिमेय]]]] [[सी*-बीजगणित]], [[वॉन न्यूमैन बीजगणित]]=गैर-कम्यूटेटिव सी*-बीजगणित के (औपचारिक) दोहरे को अब अक्सर गैर-कम्यूटेटिव स्पेस कहा जाता है। यह [[गेलफैंड प्रतिनिधित्व]] के अनुरूप है, जो दर्शाता है कि क्रमविनिमेय C*-बीजगणित स्थानीय रूप [[स्थानीय रूप से सघन]] हॉसडॉर्फ रिक्त स्थान के लिए [[द्वैत (गणित)]] हैं। सामान्य तौर पर, कोई भी किसी भी C*-बीजगणित S को एक टोपोलॉजिकल स्पेस Ŝ से जोड़ सकता है; [[C*-बीजगणित का स्पेक्ट्रम]] देखें।
[[[[अविनिमेय]]]] [[सी*-बीजगणित]], [[वॉन न्यूमैन बीजगणित]]=गैर-कम्यूटेटिव सी*-बीजगणित के (औपचारिक) दोहरे को अब अधिकांशतः गैर-कम्यूटेटिव स्पेस कहा जाता है। यह [[गेलफैंड प्रतिनिधित्व]] के अनुरूप है, जो दर्शाता है कि क्रमविनिमेय C*-बीजगणित स्थानीय रूप [[स्थानीय रूप से सघन]] हॉसडॉर्फ रिक्त स्थान के लिए [[द्वैत (गणित)]] हैं। सामान्यतः , कोई भी किसी भी C*-बीजगणित S को एक टोपोलॉजिकल स्पेस Ŝ से जोड़ सकता है; [[C*-बीजगणित का स्पेक्ट्रम]] देखें।


σ-परिमित माप स्थान और क्रमविनिमेय वॉन न्यूमैन बीजगणित के बीच द्वंद्व (गणित) के लिए, गैर-अनुवांशिक वॉन न्यूमैन बीजगणित को गैर-अनुवांशिक माप स्थान कहा जाता है।
σ-परिमित माप स्थान और क्रमविनिमेय वॉन न्यूमैन बीजगणित के बीच द्वंद्व (गणित) के लिए, गैर-अनुवांशिक वॉन न्यूमैन बीजगणित को गैर-अनुवांशिक माप स्थान कहा जाता है।
Line 30: Line 30:
एक चिकनी [[रीमैनियन मैनिफोल्ड]] एम बहुत सारी अतिरिक्त संरचना वाला एक टोपोलॉजिकल स्थान है। इसके निरंतर फलनों C(M) के बीजगणित से हम केवल M को स्थलीय रूप से पुनर्प्राप्त करते हैं। बीजगणितीय अपरिवर्तनीय जो रीमैनियन संरचना को पुनः प्राप्त करता है वह एक वर्णक्रमीय त्रिक है। इसका निर्माण एम के ऊपर एक चिकने वेक्टर बंडल ई से किया गया है, उदाहरण के लिए। बाहरी बीजगणित बंडल। हिल्बर्ट स्पेस एल<sup>2</sup>(M,E) E के वर्गाकार पूर्णांक खंडों में गुणन ऑपरेटरों द्वारा C(M) का प्रतिनिधित्व होता है, और हम L में एक अनबाउंड ऑपरेटर D पर विचार करते हैं।<sup>2</sup>(एम, ई) कॉम्पैक्ट रिज़ॉल्वेंट (उदाहरण के लिए [[हस्ताक्षर ऑपरेटर]]) के साथ, जैसे कि कम्यूटेटर [डी, एफ] जब भी एफ सुचारू होता है तो बंधे होते हैं। एक गहरा प्रमेय<ref>{{cite journal |doi=10.4171/JNCG/108|title=मैनिफोल्ड्स के वर्णक्रमीय लक्षण वर्णन पर|year=2013 |last1=Connes |first1=Alain |journal=Journal of Noncommutative Geometry |volume=7 |pages=1–82 |s2cid=17287100|arxiv=0810.2088}}</ref> बताता है कि एम को रीमैनियन मैनिफोल्ड के रूप में इस डेटा से पुनर्प्राप्त किया जा सकता है।
एक चिकनी [[रीमैनियन मैनिफोल्ड]] एम बहुत सारी अतिरिक्त संरचना वाला एक टोपोलॉजिकल स्थान है। इसके निरंतर फलनों C(M) के बीजगणित से हम केवल M को स्थलीय रूप से पुनर्प्राप्त करते हैं। बीजगणितीय अपरिवर्तनीय जो रीमैनियन संरचना को पुनः प्राप्त करता है वह एक वर्णक्रमीय त्रिक है। इसका निर्माण एम के ऊपर एक चिकने वेक्टर बंडल ई से किया गया है, उदाहरण के लिए। बाहरी बीजगणित बंडल। हिल्बर्ट स्पेस एल<sup>2</sup>(M,E) E के वर्गाकार पूर्णांक खंडों में गुणन ऑपरेटरों द्वारा C(M) का प्रतिनिधित्व होता है, और हम L में एक अनबाउंड ऑपरेटर D पर विचार करते हैं।<sup>2</sup>(एम, ई) कॉम्पैक्ट रिज़ॉल्वेंट (उदाहरण के लिए [[हस्ताक्षर ऑपरेटर]]) के साथ, जैसे कि कम्यूटेटर [डी, एफ] जब भी एफ सुचारू होता है तो बंधे होते हैं। एक गहरा प्रमेय<ref>{{cite journal |doi=10.4171/JNCG/108|title=मैनिफोल्ड्स के वर्णक्रमीय लक्षण वर्णन पर|year=2013 |last1=Connes |first1=Alain |journal=Journal of Noncommutative Geometry |volume=7 |pages=1–82 |s2cid=17287100|arxiv=0810.2088}}</ref> बताता है कि एम को रीमैनियन मैनिफोल्ड के रूप में इस डेटा से पुनर्प्राप्त किया जा सकता है।


इससे पता चलता है कि कोई गैर-अनुवांशिक रीमैनियन मैनिफोल्ड को वर्णक्रमीय ट्रिपल (ए, एच, डी) के रूप में परिभाषित कर सकता है, जिसमें हिल्बर्ट स्पेस एच पर सी*-बीजगणित ए का प्रतिनिधित्व शामिल है, साथ में एच पर एक असीमित ऑपरेटर डी, कॉम्पैक्ट के साथ रिसॉल्वेंट, जैसे कि [डी, ए] ए के कुछ घने उपबीजगणित में सभी ए के लिए घिरा हुआ है। वर्णक्रमीय ट्रिपल में अनुसंधान बहुत सक्रिय है, और गैर-अनुवांशिक मैनिफ़ोल्ड के कई उदाहरण बनाए गए हैं।
इससे पता चलता है कि कोई गैर-अनुवांशिक रीमैनियन मैनिफोल्ड को वर्णक्रमीय ट्रिपल (ए, एच, डी) के रूप में परिभाषित कर सकता है, जिसमें हिल्बर्ट स्पेस एच पर सी*-बीजगणित ए का प्रतिनिधित्व सम्मिलित है, साथ में एच पर एक असीमित ऑपरेटर डी, कॉम्पैक्ट के साथ रिसॉल्वेंट, जैसे कि [डी, ए] ए के कुछ घने उपबीजगणित में सभी ए के लिए घिरा हुआ है। वर्णक्रमीय ट्रिपल में अनुसंधान बहुत सक्रिय है, और गैर-अनुवांशिक मैनिफ़ोल्ड के कई उदाहरण बनाए गए हैं।


==नॉनकम्यूटेटिव एफ़िन और प्रोजेक्टिव स्कीम==
==नॉनकम्यूटेटिव एफ़िन और प्रोजेक्टिव स्कीम==
[[एफ़िन योजना]]ओं और क्रमविनिमेय रिंगों के बीच द्वंद्व (गणित) के अनुरूप, हम गैर-अनुवांशिक एफ़िन योजनाओं की एक श्रेणी को सहयोगी यूनिटल रिंगों की श्रेणी के दोहरे के रूप में परिभाषित करते हैं। उस संदर्भ में ज़ारिस्की टोपोलॉजी के कुछ एनालॉग हैं ताकि कोई ऐसी एफ़िन योजनाओं को अधिक सामान्य वस्तुओं से जोड़ सके।
[[एफ़िन योजना]]ओं और क्रमविनिमेय रिंगों के बीच द्वंद्व (गणित) के अनुरूप, हम गैर-अनुवांशिक एफ़िन योजनाओं की एक श्रेणी को सहयोगी यूनिटल रिंगों की श्रेणी के दोहरे के रूप में परिभाषित करते हैं। उस संदर्भ में ज़ारिस्की टोपोलॉजी के कुछ एनालॉग हैं जिससे कि कोई ऐसी एफ़िन योजनाओं को अधिक सामान्य वस्तुओं से जोड़ सके।


प्रोज पर [[ जीन पियरे सेरे ]] के प्रमेय की नकल करते हुए, क्रमविनिमेय श्रेणीबद्ध रिंग के शंकु और प्रोज के सामान्यीकरण भी हैं। अर्थात् क्रमविनिमेय श्रेणीबद्ध बीजगणित की एक परियोजना पर ओ-मॉड्यूल के क्वासिकोहेरेंट शीव्स की श्रेणी, परिमित लंबाई के श्रेणीबद्ध मॉड्यूल की सेरे की उपश्रेणी पर स्थानीयकृत रिंग पर श्रेणीबद्ध मॉड्यूल की श्रेणी के बराबर है; जब बीजगणित नोथेरियन हो तो सुसंगत ढेरों के लिए अनुरूप प्रमेय भी होता है। इस प्रमेय को [[माइकल आर्टिन]] और जे.जे. झांग द्वारा गैर-अनुवांशिक प्रक्षेप्य ज्यामिति की परिभाषा के रूप में विस्तारित किया गया है।<ref>{{cite journal | last1=Artin | first1=M. | last2=Zhang | first2=J.J. | title=नॉनकम्यूटेटिव प्रोजेक्टिव स्कीमें| journal=[[Advances in Mathematics]] | volume=109 | issue=2 | year=1994 | issn=0001-8708 | doi=10.1006/aima.1994.1087 | pages=228–287| doi-access=free }}</ref> जो कुछ सामान्य रिंग-सैद्धांतिक शर्तें भी जोड़ते हैं (उदाहरण के लिए आर्टिन-शेल्टर नियमितता)।
प्रोज पर [[ जीन पियरे सेरे ]] के प्रमेय की नकल करते हुए, क्रमविनिमेय श्रेणीबद्ध रिंग के शंकु और प्रोज के सामान्यीकरण भी हैं। अर्थात् क्रमविनिमेय श्रेणीबद्ध बीजगणित की एक परियोजना पर ओ-मॉड्यूल के क्वासिकोहेरेंट शीव्स की श्रेणी, परिमित लंबाई के श्रेणीबद्ध मॉड्यूल की सेरे की उपश्रेणी पर स्थानीयकृत रिंग पर श्रेणीबद्ध मॉड्यूल की श्रेणी के बराबर है; जब बीजगणित नोथेरियन हो तो सुसंगत ढेरों के लिए अनुरूप प्रमेय भी होता है। इस प्रमेय को [[माइकल आर्टिन]] और जे.जे. झांग द्वारा गैर-अनुवांशिक प्रक्षेप्य ज्यामिति की परिभाषा के रूप में विस्तारित किया गया है।<ref>{{cite journal | last1=Artin | first1=M. | last2=Zhang | first2=J.J. | title=नॉनकम्यूटेटिव प्रोजेक्टिव स्कीमें| journal=[[Advances in Mathematics]] | volume=109 | issue=2 | year=1994 | issn=0001-8708 | doi=10.1006/aima.1994.1087 | pages=228–287| doi-access=free }}</ref> जो कुछ सामान्य रिंग-सैद्धांतिक शर्तें भी जोड़ते हैं (उदाहरण के लिए आर्टिन-शेल्टर नियमितता)।


प्रक्षेप्य योजनाओं के कई गुण इस संदर्भ तक विस्तारित हैं। उदाहरण के लिए, आर्टिन और झांग की गैर-अनुवांशिक प्रोजेक्टिव योजनाओं के लिए प्रसिद्ध [[सेरे द्वैत]] का एक एनालॉग मौजूद है।<ref>{{cite journal | last1=Yekutieli | first1=Amnon | last2=Zhang | first2=James J. |title=गैर-अनुवांशिक प्रक्षेप्य योजनाओं के लिए क्रमिक द्वंद्व| journal=Proceedings of the American Mathematical Society | publisher=American Mathematical Society (AMS) | volume=125 | issue=3 | date=1997-03-01 | issn=0002-9939 | doi=10.1090/s0002-9939-97-03782-9 | pages=697–708|doi-access=free}}</ref>
प्रक्षेप्य योजनाओं के कई गुण इस संदर्भ तक विस्तारित हैं। उदाहरण के लिए, आर्टिन और झांग की गैर-अनुवांशिक प्रोजेक्टिव योजनाओं के लिए प्रसिद्ध [[सेरे द्वैत]] का एक एनालॉग उपस्तिथ है।<ref>{{cite journal | last1=Yekutieli | first1=Amnon | last2=Zhang | first2=James J. |title=गैर-अनुवांशिक प्रक्षेप्य योजनाओं के लिए क्रमिक द्वंद्व| journal=Proceedings of the American Mathematical Society | publisher=American Mathematical Society (AMS) | volume=125 | issue=3 | date=1997-03-01 | issn=0002-9939 | doi=10.1090/s0002-9939-97-03782-9 | pages=697–708|doi-access=free}}</ref>


एएल रोसेनबर्ग ने गैर-अनुवांशिक क्वासिकॉम्पैक्ट योजना (एक आधार श्रेणी पर) की एक सामान्य सापेक्ष अवधारणा बनाई है, जो क्वासिकोहेरेंट शीव्स और फ्लैट स्थानीयकरण फ़ैक्टर्स की श्रेणियों के संदर्भ में योजनाओं और कवरों के आकारिकी के ग्रोथेंडिक के अध्ययन को सारगर्भित करती है।<ref>A. L. Rosenberg, Noncommutative schemes, Compositio Mathematica 112 (1998) 93--125, [https://dx.doi.org/10.1023/A:1000479824211 doi]; Underlying spaces of noncommutative schemes, preprint MPIM2003-111, [http://www.mpim-bonn.mpg.de/preprints/send?bid=1947 dvi], [http://www.mpim-bonn.mpg.de/preprints/send?bid=1948 ps]; [[Mathematical Sciences Research Institute|MSRI]] lecture ''Noncommutative schemes and spaces'' (Feb 2000): [http://www.msri.org/publications/ln/msri/2000/interact/rosenberg/1/index.html video]</ref> स्थानीयकरण सिद्धांत के माध्यम से एक और दिलचस्प दृष्टिकोण भी है, [[फ्रेड वान ओयस्टेयेन]], ल्यूक विलार्ट और एलेन वर्सचोरेन के कारण, जहां मुख्य अवधारणा एक योजनाबद्ध बीजगणित की है।<ref>Freddy van Oystaeyen, Algebraic geometry for associative algebras, {{isbn|0-8247-0424-X}} - New York: Dekker, 2000.- 287 p. - (Monographs and textbooks in pure and applied mathematics, 232)</ref><ref>{{cite journal | last1=Van Oystaeyen | first1=Fred | last2=Willaert | first2=Luc | title=ग्रोथेंडिक टोपोलॉजी, सुसंगत शीव्स और योजनाबद्ध बीजगणित के लिए सेरे का प्रमेय| journal=Journal of Pure and Applied Algebra | publisher=Elsevier BV | volume=104 | issue=1 | year=1995 | issn=0022-4049 | doi=10.1016/0022-4049(94)00118-3 | pages=109–122| hdl=10067/124190151162165141 | url=https://repository.uantwerpen.be/docman/irua/3d00aa/5163.pdf | hdl-access=free }}</ref>
एएल रोसेनबर्ग ने गैर-अनुवांशिक क्वासिकॉम्पैक्ट योजना (एक आधार श्रेणी पर) की एक सामान्य सापेक्ष अवधारणा बनाई है, जो क्वासिकोहेरेंट शीव्स और फ्लैट स्थानीयकरण फ़ैक्टर्स की श्रेणियों के संदर्भ में योजनाओं और कवरों के आकारिकी के ग्रोथेंडिक के अध्ययन को सारगर्भित करती है।<ref>A. L. Rosenberg, Noncommutative schemes, Compositio Mathematica 112 (1998) 93--125, [https://dx.doi.org/10.1023/A:1000479824211 doi]; Underlying spaces of noncommutative schemes, preprint MPIM2003-111, [http://www.mpim-bonn.mpg.de/preprints/send?bid=1947 dvi], [http://www.mpim-bonn.mpg.de/preprints/send?bid=1948 ps]; [[Mathematical Sciences Research Institute|MSRI]] lecture ''Noncommutative schemes and spaces'' (Feb 2000): [http://www.msri.org/publications/ln/msri/2000/interact/rosenberg/1/index.html video]</ref> स्थानीयकरण सिद्धांत के माध्यम से एक और रोचक दृष्टिकोण भी है, [[फ्रेड वान ओयस्टेयेन]], ल्यूक विलार्ट और एलेन वर्सचोरेन के कारण, जहां मुख्य अवधारणा एक योजनाबद्ध बीजगणित की है।<ref>Freddy van Oystaeyen, Algebraic geometry for associative algebras, {{isbn|0-8247-0424-X}} - New York: Dekker, 2000.- 287 p. - (Monographs and textbooks in pure and applied mathematics, 232)</ref><ref>{{cite journal | last1=Van Oystaeyen | first1=Fred | last2=Willaert | first2=Luc | title=ग्रोथेंडिक टोपोलॉजी, सुसंगत शीव्स और योजनाबद्ध बीजगणित के लिए सेरे का प्रमेय| journal=Journal of Pure and Applied Algebra | publisher=Elsevier BV | volume=104 | issue=1 | year=1995 | issn=0022-4049 | doi=10.1016/0022-4049(94)00118-3 | pages=109–122| hdl=10067/124190151162165141 | url=https://repository.uantwerpen.be/docman/irua/3d00aa/5163.pdf | hdl-access=free }}</ref>
==गैर-अनुवांशिक स्थानों के लिए अपरिवर्तनीय ==
==गैर-अनुवांशिक स्थानों के लिए अपरिवर्तनीय ==


सिद्धांत के कुछ प्रेरक प्रश्न ज्ञात [[ टोपोलॉजिकल अपरिवर्तनीय ]] को गैर-अनुवांशिक (ऑपरेटर) बीजगणित के औपचारिक दोहरे और गैर-अनुवांशिक रिक्त स्थान के लिए अन्य प्रतिस्थापन और उम्मीदवारों तक विस्तारित करने से संबंधित हैं। गैर-अनुवांशिक ज्यामिति में एलेन कॉन्स की दिशा के मुख्य शुरुआती बिंदुओं में से एक गैर-अनुवांशिक साहचर्य बीजगणित और गैर-अनुवांशिक ऑपरेटर बीजगणित से जुड़े एक नए होमोलॉजी सिद्धांत की उनकी खोज है, अर्थात् [[चक्रीय समरूपता]] और बीजगणितीय के-सिद्धांत से इसके संबंध (मुख्य रूप से कॉन्स के माध्यम से) [[चेर्न चरित्र]] मानचित्र)।
सिद्धांत के कुछ प्रेरक प्रश्न ज्ञात [[ टोपोलॉजिकल अपरिवर्तनीय ]] को गैर-अनुवांशिक (ऑपरेटर) बीजगणित के औपचारिक दोहरे और गैर-अनुवांशिक रिक्त स्थान के लिए अन्य प्रतिस्थापन और उम्मीदवारों तक विस्तारित करने से संबंधित हैं। गैर-अनुवांशिक ज्यामिति में एलेन कॉन्स की दिशा के मुख्य प्रारंभिक बिंदुओं में से एक गैर-अनुवांशिक साहचर्य बीजगणित और गैर-अनुवांशिक ऑपरेटर बीजगणित से जुड़े एक नए होमोलॉजी सिद्धांत की उनकी खोज है, अर्थात् [[चक्रीय समरूपता]] और बीजगणितीय के-सिद्धांत से इसके संबंध (मुख्य रूप से कॉन्स के माध्यम से) [[चेर्न चरित्र]] मानचित्र)।


ऑपरेटर के-सिद्धांत और चक्रीय कोहोलॉजी के उपकरणों को नियोजित करते हुए, चिकनी मैनिफोल्ड्स की [[विशेषता वर्ग]]ों के सिद्धांत को वर्णक्रमीय ट्रिपल तक बढ़ाया गया है। अब-शास्त्रीय [[सूचकांक प्रमेय]]ों के कई सामान्यीकरण वर्णक्रमीय त्रिगुणों से संख्यात्मक अपरिवर्तकों के प्रभावी निष्कर्षण की अनुमति देते हैं। चक्रीय कोहोलॉजी में मौलिक विशेषता वर्ग, [[जेएलओ सहचक्र]], शास्त्रीय चेर्न चरित्र को सामान्यीकृत करता है।
ऑपरेटर के-सिद्धांत और चक्रीय कोहोलॉजी के उपकरणों को नियोजित करते हुए, चिकनी मैनिफोल्ड्स की [[विशेषता वर्ग]]ों के सिद्धांत को वर्णक्रमीय ट्रिपल तक बढ़ाया गया है। अब-मौलिक  [[सूचकांक प्रमेय]]ों के कई सामान्यीकरण वर्णक्रमीय त्रिगुणों से संख्यात्मक अपरिवर्तकों के प्रभावी निष्कर्षण की अनुमति देते हैं। चक्रीय कोहोलॉजी में मौलिक विशेषता वर्ग, [[जेएलओ सहचक्र]], मौलिक  चेर्न चरित्र को सामान्यीकृत करता है।


==गैर-अनुवांशिक रिक्त स्थान के उदाहरण==
==गैर-अनुवांशिक रिक्त स्थान के उदाहरण==
* क्वांटम यांत्रिकी के [[चरण स्थान]] निर्माण में, [[हैमिल्टनियन यांत्रिकी]] का [[सिंपलेक्टिक मैनिफ़ोल्ड]] चरण स्थान [[हाइजेनबर्ग समूह]] द्वारा उत्पन्न एक गैर-कम्यूटेटिव चरण स्थान में [[विरूपण परिमाणीकरण]] है।
* क्वांटम यांत्रिकी के [[चरण स्थान]] निर्माण में, [[हैमिल्टनियन यांत्रिकी]] का [[सिंपलेक्टिक मैनिफ़ोल्ड]] चरण स्थान [[हाइजेनबर्ग समूह]] द्वारा उत्पन्न एक गैर-कम्यूटेटिव चरण स्थान में [[विरूपण परिमाणीकरण]] है।
* नॉनकम्यूटेटिव [[मानक मॉडल]] कण भौतिकी के मानक मॉडल का एक प्रस्तावित विस्तार है।
* नॉनकम्यूटेटिव [[मानक मॉडल]] कण भौतिकी के मानक मॉडल का एक प्रस्तावित विस्तार है।
* नॉनकम्यूटेटिव टोरस, साधारण टोरस के फ़ंक्शन बीजगणित की विकृति, को वर्णक्रमीय ट्रिपल की संरचना दी जा सकती है। उदाहरणों के इस वर्ग का गहनता से अध्ययन किया गया है और यह अभी भी अधिक जटिल स्थितियों के लिए एक परीक्षण मामले के रूप में कार्य करता है।
* नॉनकम्यूटेटिव टोरस, साधारण टोरस के फ़ंक्शन बीजगणित की विकृति, को वर्णक्रमीय ट्रिपल की संरचना दी जा सकती है। उदाहरणों के इस वर्ग का गहनता से अध्ययन किया गया है और यह अभी भी अधिक जटिल स्थितियों के लिए एक परीक्षण स्थितियों के रूप में कार्य करता है।
* स्नाइडर स्पेस<ref>{{cite journal | last=Snyder | first=Hartland S. | title=परिमाणित अंतरिक्ष-समय| journal=Physical Review | publisher=American Physical Society (APS) | volume=71 | issue=1 | date=1947-01-01 | issn=0031-899X | doi=10.1103/physrev.71.38 | pages=38–41| bibcode=1947PhRv...71...38S }}</ref>
* स्नाइडर स्पेस<ref>{{cite journal | last=Snyder | first=Hartland S. | title=परिमाणित अंतरिक्ष-समय| journal=Physical Review | publisher=American Physical Society (APS) | volume=71 | issue=1 | date=1947-01-01 | issn=0031-899X | doi=10.1103/physrev.71.38 | pages=38–41| bibcode=1947PhRv...71...38S }}</ref>
* पर्णसमूह से उत्पन्न होने वाले गैर-विनिमेय बीजगणित।
* पर्णसमूह से उत्पन्न होने वाले गैर-विनिमेय बीजगणित।
* [[संख्या सिद्धांत]] से उत्पन्न होने वाली गतिशील प्रणालियों से संबंधित उदाहरण, जैसे कि निरंतर भिन्न#निरंतर भिन्न और निरंतर भिन्नों पर गतिशील प्रणालियां, गैर-अनुवांशिक बीजगणित को जन्म देती हैं जिनमें दिलचस्प गैर-अनुवांशिक ज्यामितियां दिखाई देती हैं।
* [[संख्या सिद्धांत]] से उत्पन्न होने वाली गतिशील प्रणालियों से संबंधित उदाहरण, जैसे कि निरंतर भिन्न#निरंतर भिन्न और निरंतर भिन्नों पर गतिशील प्रणालियां, गैर-अनुवांशिक बीजगणित को जन्म देती हैं जिनमें रोचक गैर-अनुवांशिक ज्यामितियां दिखाई देती हैं।


== कनेक्शन ==
== कनेक्शन ==
===कॉन्स के अर्थ में ===
===कॉन्स के अर्थ में ===
एक कॉन्स कनेक्शन अंतर ज्यामिति में एक [[कनेक्शन (गणित)]] का एक गैर-अनुवांशिक सामान्यीकरण है। इसे एलेन कोन्स द्वारा पेश किया गया था, और बाद में [[जोआचिम कुंत्ज़]] और [[डेनियल क्विलेन]] द्वारा सामान्यीकृत किया गया था।
एक कॉन्स कनेक्शन अंतर ज्यामिति में एक [[कनेक्शन (गणित)]] का एक गैर-अनुवांशिक सामान्यीकरण है। इसे एलेन कोन्स द्वारा प्रस्तुत किया गया था, और बाद में [[जोआचिम कुंत्ज़]] और [[डेनियल क्विलेन]] द्वारा सामान्यीकृत किया गया था।


==== परिभाषा ====
==== परिभाषा ====

Revision as of 19:00, 6 July 2023

नॉनकम्यूटेटिव ज्योमेट्री (एनसीजी) गणित की एक शाखा है जो नॉनकम्यूटेटिव अलजेब्रा के लिए ज्यामितीय दृष्टिकोण और रिक्त स्थान के निर्माण से संबंधित है जो स्थानीय रूप से कार्यों के गैरकम्यूटेटिव बीजगणित (संभवतः कुछ सामान्यीकृत अर्थों में) द्वारा प्रस्तुत किए जाते हैं। एक [[गैर क्रमविनिमेय बीजगणित]] एक साहचर्य बीजगणित है जिसमें गुणन क्रमविनिमेय नहीं है, अर्थात जिसके लिए हमेशा बराबर नहीं होता ; या अधिक सामान्यतः एक बीजगणितीय संरचना जिसमें प्रमुख बाइनरी ऑपरेशनों में से एक क्रमविनिमेय नहीं है; कोई अतिरिक्त संरचनाओं की भी अनुमति देता है, उदा. टोपोलॉजी या मानक (गणित), संभवतः कार्यों के गैर-अनुवांशिक बीजगणित द्वारा किया जाना है।

नॉनकम्यूटेटिव स्पेस के बारे में गहरी जानकारी देने वाला एक दृष्टिकोण ऑपरेटर बीजगणित (अर्थात हिल्बर्ट स्थान पर परिबद्ध रैखिक संचालिका के बीजगणित) के माध्यम से होता है।[1] संभवतः नॉनकम्यूटेटिव स्पेस के विशिष्ट उदाहरणों में से एक नॉनकम्यूटेटिव टोरस है, जिसने 1980 के दशक में इस क्षेत्र के प्रारंभिक विकास में महत्वपूर्ण भूमिका निभाई और वेक्टर बंडल, कनेक्शन (वेक्टर बंडल), वक्रता आदि के नॉनकम्यूटेटिव संस्करणों को जन्म दिया।[2]

प्रेरणा

मुख्य प्रेरणा रिक्त स्थान और कार्यों के बीच क्रमविनिमेय द्वंद्व को गैरअनुवांशिक सेटिंग तक विस्तारित करना है। गणित में, रिक्त स्थान, जो प्रकृति में ज्यामितीय होते हैं, उन पर संख्यात्मक फ़ंक्शन (गणित) से संबंधित हो सकते हैं। सामान्यतः , ऐसे फ़ंक्शन एक क्रमविनिमेय वलय बनाएंगे। उदाहरण के लिए, कोई टोपोलॉजिकल स्पेस X पर निरंतर फ़ंक्शन जटिल संख्या-मूल्य वाले फ़ंक्शन का रिंग C(X) ले सकता है। कई स्थितियों में (जैसे, यदि ), और इसलिए यह कहना कुछ समझ में आता है कि एक्स में क्रमविनिमेय टोपोलॉजी है।

अधिक विशेष रूप से, टोपोलॉजी में, कॉम्पैक्ट हॉसडॉर्फ़ स्थान टोपोलॉजिकल स्पेस को अंतरिक्ष पर कार्यों के बानाच बीजगणित से पुनर्निर्मित किया जा सकता है (गेलफैंड प्रतिनिधित्व#कम्यूटेटिव गेलफैंड-नैमार्क प्रमेय का विवरण|गेलफैंड-नैमार्क)। क्रमविनिमेय बीजगणितीय ज्यामिति में, स्कीम (बीजगणितीय ज्यामिति) कम्यूटेटिव यूनिटल रिंग्स (अलेक्जेंडर ग्रोथेंडिक|ए. ग्रोथेंडिक) के स्थानीय रूप से प्रमुख स्पेक्ट्रा हैं, और प्रत्येक अर्ध-पृथक योजना के क्वासिकोहेरेंट शीव्स की श्रेणी से योजनाओं की समरूपता तक पुनर्निर्माण किया जा सकता है -मॉड्यूल (पियरे गेब्रियल|पी. गेब्रियल–ए. रोसेनबर्ग)। ग्रोथेंडिक टोपोलॉजी के लिए, किसी साइट के कोहोमोलॉजिकल गुण सेट के ढेरों की संबंधित श्रेणी के अपरिवर्तनीय होते हैं जिन्हें अमूर्त रूप से एक टोपोस (ए ग्रोथेंडिक) के रूप में देखा जाता है। इन सभी स्थितियों में, किसी स्थान का पुनर्निर्माण कार्यों के बीजगणित या उसके वर्गीकृत संस्करण से किया जाता है - उस स्थान पर कुछ शीफ (गणित)।

टोपोलॉजिकल स्पेस पर फ़ंक्शंस को बिंदुवार गुणा और जोड़ा जा सकता है इसलिए वे एक क्रमविनिमेय बीजगणित बनाते हैं; वास्तव में ये ऑपरेशन बेस स्पेस की टोपोलॉजी में स्थानीय हैं, इसलिए फ़ंक्शंस बेस स्पेस पर कम्यूटेटिव रिंग्स का एक समूह बनाते हैं।

नॉनकम्यूटेटिव ज्योमेट्री का सपना इस द्वंद्व को नॉनकम्यूटेटिव अलजेब्रा, या नॉनकम्यूटेटिव अलजेब्रा के ढेर, या शीफ-जैसे नॉनकम्यूटेटिव बीजगणित या ऑपरेटर-बीजगणितीय संरचनाओं और कुछ प्रकार की ज्यामितीय संस्थाओं के बीच द्वंद्व में सामान्यीकृत करना है, और बीजगणित और के बीच बातचीत देना है। इस द्वंद्व के माध्यम से उनका ज्यामितीय विवरण।

इस संबंध में कि क्रमविनिमेय वलय सामान्य एफ़िन योजनाओं के अनुरूप हैं, और क्रमविनिमेय C*-बीजगणित सामान्य टोपोलॉजिकल रिक्त स्थान के अनुरूप हैं, गैर-अनुवांशिक वलय और बीजगणित के विस्तार के लिए गैर-कम्यूटेटिव रिक्त स्थान के रूप में टोपोलॉजिकल रिक्त स्थान के गैर-तुच्छ सामान्यीकरण की आवश्यकता होती है। इस कारण से गैर-कम्यूटेटिव टोपोलॉजी के बारे में कुछ चर्चा है, चूंकि इस शब्द के अन्य अर्थ भी हैं।

गणितीय भौतिकी में अनुप्रयोग

कण भौतिकी में कुछ अनुप्रयोगों को गैर-अनुवांशिक मानक मॉडल और गैर-अनुवांशिक क्वांटम क्षेत्र सिद्धांत प्रविष्टियों में वर्णित किया गया है। 1997 में एम-सिद्धांत में इसकी भूमिका की अटकलों के बाद भौतिकी में गैर-अनुवांशिक ज्यामिति में रुचि में अचानक वृद्धि हुई है।[3]

एर्गोडिक सिद्धांत से प्रेरणा

तकनीकी स्तर पर गैर-अनुवांशिक ज्यामिति को संभालने के लिए एलेन कोन्स द्वारा विकसित कुछ सिद्धांतों की जड़ें पुराने प्रयासों में हैं, विशेष रूप से एर्गोडिक सिद्धांत में। एक आभासी उपसमूह सिद्धांत बनाने के लिए जॉर्ज मैके का प्रस्ताव, जिसके संबंध में एर्गोडिक समूह क्रियाएं (गणित) एक विस्तारित प्रकार के सजातीय स्थान बन जाएंगी, अब तक सम्मिलित हो चुकी है।

[[अविनिमेय]] सी*-बीजगणित, वॉन न्यूमैन बीजगणित=गैर-कम्यूटेटिव सी*-बीजगणित के (औपचारिक) दोहरे को अब अधिकांशतः गैर-कम्यूटेटिव स्पेस कहा जाता है। यह गेलफैंड प्रतिनिधित्व के अनुरूप है, जो दर्शाता है कि क्रमविनिमेय C*-बीजगणित स्थानीय रूप स्थानीय रूप से सघन हॉसडॉर्फ रिक्त स्थान के लिए द्वैत (गणित) हैं। सामान्यतः , कोई भी किसी भी C*-बीजगणित S को एक टोपोलॉजिकल स्पेस Ŝ से जोड़ सकता है; C*-बीजगणित का स्पेक्ट्रम देखें।

σ-परिमित माप स्थान और क्रमविनिमेय वॉन न्यूमैन बीजगणित के बीच द्वंद्व (गणित) के लिए, गैर-अनुवांशिक वॉन न्यूमैन बीजगणित को गैर-अनुवांशिक माप स्थान कहा जाता है।

नॉनकम्यूटेटिव डिफरेंशियल मैनिफोल्ड्स

एक चिकनी रीमैनियन मैनिफोल्ड एम बहुत सारी अतिरिक्त संरचना वाला एक टोपोलॉजिकल स्थान है। इसके निरंतर फलनों C(M) के बीजगणित से हम केवल M को स्थलीय रूप से पुनर्प्राप्त करते हैं। बीजगणितीय अपरिवर्तनीय जो रीमैनियन संरचना को पुनः प्राप्त करता है वह एक वर्णक्रमीय त्रिक है। इसका निर्माण एम के ऊपर एक चिकने वेक्टर बंडल ई से किया गया है, उदाहरण के लिए। बाहरी बीजगणित बंडल। हिल्बर्ट स्पेस एल2(M,E) E के वर्गाकार पूर्णांक खंडों में गुणन ऑपरेटरों द्वारा C(M) का प्रतिनिधित्व होता है, और हम L में एक अनबाउंड ऑपरेटर D पर विचार करते हैं।2(एम, ई) कॉम्पैक्ट रिज़ॉल्वेंट (उदाहरण के लिए हस्ताक्षर ऑपरेटर) के साथ, जैसे कि कम्यूटेटर [डी, एफ] जब भी एफ सुचारू होता है तो बंधे होते हैं। एक गहरा प्रमेय[4] बताता है कि एम को रीमैनियन मैनिफोल्ड के रूप में इस डेटा से पुनर्प्राप्त किया जा सकता है।

इससे पता चलता है कि कोई गैर-अनुवांशिक रीमैनियन मैनिफोल्ड को वर्णक्रमीय ट्रिपल (ए, एच, डी) के रूप में परिभाषित कर सकता है, जिसमें हिल्बर्ट स्पेस एच पर सी*-बीजगणित ए का प्रतिनिधित्व सम्मिलित है, साथ में एच पर एक असीमित ऑपरेटर डी, कॉम्पैक्ट के साथ रिसॉल्वेंट, जैसे कि [डी, ए] ए के कुछ घने उपबीजगणित में सभी ए के लिए घिरा हुआ है। वर्णक्रमीय ट्रिपल में अनुसंधान बहुत सक्रिय है, और गैर-अनुवांशिक मैनिफ़ोल्ड के कई उदाहरण बनाए गए हैं।

नॉनकम्यूटेटिव एफ़िन और प्रोजेक्टिव स्कीम

एफ़िन योजनाओं और क्रमविनिमेय रिंगों के बीच द्वंद्व (गणित) के अनुरूप, हम गैर-अनुवांशिक एफ़िन योजनाओं की एक श्रेणी को सहयोगी यूनिटल रिंगों की श्रेणी के दोहरे के रूप में परिभाषित करते हैं। उस संदर्भ में ज़ारिस्की टोपोलॉजी के कुछ एनालॉग हैं जिससे कि कोई ऐसी एफ़िन योजनाओं को अधिक सामान्य वस्तुओं से जोड़ सके।

प्रोज पर जीन पियरे सेरे के प्रमेय की नकल करते हुए, क्रमविनिमेय श्रेणीबद्ध रिंग के शंकु और प्रोज के सामान्यीकरण भी हैं। अर्थात् क्रमविनिमेय श्रेणीबद्ध बीजगणित की एक परियोजना पर ओ-मॉड्यूल के क्वासिकोहेरेंट शीव्स की श्रेणी, परिमित लंबाई के श्रेणीबद्ध मॉड्यूल की सेरे की उपश्रेणी पर स्थानीयकृत रिंग पर श्रेणीबद्ध मॉड्यूल की श्रेणी के बराबर है; जब बीजगणित नोथेरियन हो तो सुसंगत ढेरों के लिए अनुरूप प्रमेय भी होता है। इस प्रमेय को माइकल आर्टिन और जे.जे. झांग द्वारा गैर-अनुवांशिक प्रक्षेप्य ज्यामिति की परिभाषा के रूप में विस्तारित किया गया है।[5] जो कुछ सामान्य रिंग-सैद्धांतिक शर्तें भी जोड़ते हैं (उदाहरण के लिए आर्टिन-शेल्टर नियमितता)।

प्रक्षेप्य योजनाओं के कई गुण इस संदर्भ तक विस्तारित हैं। उदाहरण के लिए, आर्टिन और झांग की गैर-अनुवांशिक प्रोजेक्टिव योजनाओं के लिए प्रसिद्ध सेरे द्वैत का एक एनालॉग उपस्तिथ है।[6]

एएल रोसेनबर्ग ने गैर-अनुवांशिक क्वासिकॉम्पैक्ट योजना (एक आधार श्रेणी पर) की एक सामान्य सापेक्ष अवधारणा बनाई है, जो क्वासिकोहेरेंट शीव्स और फ्लैट स्थानीयकरण फ़ैक्टर्स की श्रेणियों के संदर्भ में योजनाओं और कवरों के आकारिकी के ग्रोथेंडिक के अध्ययन को सारगर्भित करती है।[7] स्थानीयकरण सिद्धांत के माध्यम से एक और रोचक दृष्टिकोण भी है, फ्रेड वान ओयस्टेयेन, ल्यूक विलार्ट और एलेन वर्सचोरेन के कारण, जहां मुख्य अवधारणा एक योजनाबद्ध बीजगणित की है।[8][9]

गैर-अनुवांशिक स्थानों के लिए अपरिवर्तनीय

सिद्धांत के कुछ प्रेरक प्रश्न ज्ञात टोपोलॉजिकल अपरिवर्तनीय को गैर-अनुवांशिक (ऑपरेटर) बीजगणित के औपचारिक दोहरे और गैर-अनुवांशिक रिक्त स्थान के लिए अन्य प्रतिस्थापन और उम्मीदवारों तक विस्तारित करने से संबंधित हैं। गैर-अनुवांशिक ज्यामिति में एलेन कॉन्स की दिशा के मुख्य प्रारंभिक बिंदुओं में से एक गैर-अनुवांशिक साहचर्य बीजगणित और गैर-अनुवांशिक ऑपरेटर बीजगणित से जुड़े एक नए होमोलॉजी सिद्धांत की उनकी खोज है, अर्थात् चक्रीय समरूपता और बीजगणितीय के-सिद्धांत से इसके संबंध (मुख्य रूप से कॉन्स के माध्यम से) चेर्न चरित्र मानचित्र)।

ऑपरेटर के-सिद्धांत और चक्रीय कोहोलॉजी के उपकरणों को नियोजित करते हुए, चिकनी मैनिफोल्ड्स की विशेषता वर्गों के सिद्धांत को वर्णक्रमीय ट्रिपल तक बढ़ाया गया है। अब-मौलिक सूचकांक प्रमेयों के कई सामान्यीकरण वर्णक्रमीय त्रिगुणों से संख्यात्मक अपरिवर्तकों के प्रभावी निष्कर्षण की अनुमति देते हैं। चक्रीय कोहोलॉजी में मौलिक विशेषता वर्ग, जेएलओ सहचक्र, मौलिक चेर्न चरित्र को सामान्यीकृत करता है।

गैर-अनुवांशिक रिक्त स्थान के उदाहरण

  • क्वांटम यांत्रिकी के चरण स्थान निर्माण में, हैमिल्टनियन यांत्रिकी का सिंपलेक्टिक मैनिफ़ोल्ड चरण स्थान हाइजेनबर्ग समूह द्वारा उत्पन्न एक गैर-कम्यूटेटिव चरण स्थान में विरूपण परिमाणीकरण है।
  • नॉनकम्यूटेटिव मानक मॉडल कण भौतिकी के मानक मॉडल का एक प्रस्तावित विस्तार है।
  • नॉनकम्यूटेटिव टोरस, साधारण टोरस के फ़ंक्शन बीजगणित की विकृति, को वर्णक्रमीय ट्रिपल की संरचना दी जा सकती है। उदाहरणों के इस वर्ग का गहनता से अध्ययन किया गया है और यह अभी भी अधिक जटिल स्थितियों के लिए एक परीक्षण स्थितियों के रूप में कार्य करता है।
  • स्नाइडर स्पेस[10]
  • पर्णसमूह से उत्पन्न होने वाले गैर-विनिमेय बीजगणित।
  • संख्या सिद्धांत से उत्पन्न होने वाली गतिशील प्रणालियों से संबंधित उदाहरण, जैसे कि निरंतर भिन्न#निरंतर भिन्न और निरंतर भिन्नों पर गतिशील प्रणालियां, गैर-अनुवांशिक बीजगणित को जन्म देती हैं जिनमें रोचक गैर-अनुवांशिक ज्यामितियां दिखाई देती हैं।

कनेक्शन

कॉन्स के अर्थ में

एक कॉन्स कनेक्शन अंतर ज्यामिति में एक कनेक्शन (गणित) का एक गैर-अनुवांशिक सामान्यीकरण है। इसे एलेन कोन्स द्वारा प्रस्तुत किया गया था, और बाद में जोआचिम कुंत्ज़ और डेनियल क्विलेन द्वारा सामान्यीकृत किया गया था।

परिभाषा

एक सही ए-मॉड्यूल ई दिया गया है, ई पर एक कॉन्स कनेक्शन एक रैखिक मानचित्र है

जो लीबनिज नियम को संतुष्ट करता है .[11]

यह भी देखें

उद्धरण

  1. Khalkhali & Marcolli 2008, p. 171.
  2. Khalkhali & Marcolli 2008, p. 21.
  3. Connes, Alain; Douglas, Michael R; Schwarz, Albert (1998-02-05). "नॉनकम्यूटेटिव ज्योमेट्री और मैट्रिक्स सिद्धांत". Journal of High Energy Physics. 1998 (2): 003. arXiv:hep-th/9711162. Bibcode:1998JHEP...02..003C. doi:10.1088/1126-6708/1998/02/003. ISSN 1029-8479. S2CID 7562354.
  4. Connes, Alain (2013). "मैनिफोल्ड्स के वर्णक्रमीय लक्षण वर्णन पर". Journal of Noncommutative Geometry. 7: 1–82. arXiv:0810.2088. doi:10.4171/JNCG/108. S2CID 17287100.
  5. Artin, M.; Zhang, J.J. (1994). "नॉनकम्यूटेटिव प्रोजेक्टिव स्कीमें". Advances in Mathematics. 109 (2): 228–287. doi:10.1006/aima.1994.1087. ISSN 0001-8708.
  6. Yekutieli, Amnon; Zhang, James J. (1997-03-01). "गैर-अनुवांशिक प्रक्षेप्य योजनाओं के लिए क्रमिक द्वंद्व". Proceedings of the American Mathematical Society. American Mathematical Society (AMS). 125 (3): 697–708. doi:10.1090/s0002-9939-97-03782-9. ISSN 0002-9939.
  7. A. L. Rosenberg, Noncommutative schemes, Compositio Mathematica 112 (1998) 93--125, doi; Underlying spaces of noncommutative schemes, preprint MPIM2003-111, dvi, ps; MSRI lecture Noncommutative schemes and spaces (Feb 2000): video
  8. Freddy van Oystaeyen, Algebraic geometry for associative algebras, ISBN 0-8247-0424-X - New York: Dekker, 2000.- 287 p. - (Monographs and textbooks in pure and applied mathematics, 232)
  9. Van Oystaeyen, Fred; Willaert, Luc (1995). "ग्रोथेंडिक टोपोलॉजी, सुसंगत शीव्स और योजनाबद्ध बीजगणित के लिए सेरे का प्रमेय" (PDF). Journal of Pure and Applied Algebra. Elsevier BV. 104 (1): 109–122. doi:10.1016/0022-4049(94)00118-3. hdl:10067/124190151162165141. ISSN 0022-4049.
  10. Snyder, Hartland S. (1947-01-01). "परिमाणित अंतरिक्ष-समय". Physical Review. American Physical Society (APS). 71 (1): 38–41. Bibcode:1947PhRv...71...38S. doi:10.1103/physrev.71.38. ISSN 0031-899X.
  11. Vale 2009, Definition 8.1.


संदर्भ


कॉन्स कनेक्शन के लिए संदर्भ

अग्रिम पठन


बाहरी संबंध